
Chapter 3 

STRONG ELECTRIC FIELD EFFECT ON SOME NEMATIC 
LIQUID CRYSTALS $ 

3.1 Introduction 

In the previous chapter we have described an experimental technique which allows us to measure 
the local temperature of the sample under the application of a strong electric field.. We have also 
described setups for electrical impedance measurement and optical studies. In this chapter we 
present experimental results obtained using these techniques to study the electric field effect on 
the nematic-isotropic phase transition in a few compounds. First we will discuss the theoretical 
background to this problem on the basis of a phenomenological Landau model. 

3.2 Theoretical Background 

3.2.1 Landau Theory of Phase Transitions 

The Landau theory is a phenomenological theory initially developed to describe phase transitions 
of the second kind. It is assumed that near a second order phase transition point, the free energy 
density F can be expanded in powers of the order parameter (S) characterising the phase with 

' the lower symmetry [45]. In the absence of any external field the expansion is as follows: 

where Fo is the free energy density when S = 0. The dependence of the order parameter near 
the phase transition point is then determined by minimising Equation 3.1 with respect to S. 
The term linear in S is absent to ensure the stability of the higher symmetry phase. It can be 
non zero when an external symmetry breaking field is introdbced. A > 0 ensures that S = 0 
corresponds to a minimum in F for the higher temperature phase and A < 0 corresponds to 
that of S # 0 for the lower temperature phase. 

Landau assumed that A = a(T - T*) where T* is the transition temperature. B and C 
are normally assumed not to change with temperature. For a system in which the free energy 
density is independent of the sign of S i.e. F(S) = F(-S) the cubic and higher odd powers of S 
are not allowed as for example, in a ferromagnetic system. In this case for B = 0, and for C > 0 
a second order phase transition takes place between the states S = 0 and S # 0 at T = T*. 
Minimising Equation 3.1 with respect to S the temperature dependence of the order parameter 
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is found to be 
u(T - T*) 

s = (  c > .  
The above argument has been extended to describe weakly first order phase transitions. 

One way of obtaining a first order transition is to have a third order term. If the symmetry of 
the system prevents the presence of a third order term (i.e. B = 0) then a first order transition 
can be obtained by having C < 0. In that case a stabilising sixth order term with coefficient 
E > 0 is required. 

3.2.2 Landau-de Gennes Theory for the Nematic-Isotropic Phase Transition 

The Landau theory for the nematic-isotropic phase transition has been reviewed in detail by 
Gramsbergan et a1 [25]. In the nematic phase the orientational order parameter (as described 
in Chapter 1) is defined as 

1 S = -  
2 

< 3c0s26 - 1 > (3.3) 

which is essentially a second rank tensor. As such, it can be seen that S can take values between 
1 and -$. These two extreme values of S describe two distinct physical situations. The first 
one corresponds to 8 = 0 and the latter to 6 = 5. In general positive and negative S arise from 
different distribution functions, hence F(S) $ F(-S). Thus the free energy density expansion 
for the nematic phase should include odd powers of S. 

The free energy density for the nematic phase is hence written as 

where T* is the temperature below which the isotropic phase cannot be supercooled. The cubic 
term is assumed to be negative to get positive values of S in the nematic phase for positive B. 
Minimising Equation 3.4 with respect to S we get three solutions 

S = 0 corresponds to the isotropic phase. S- corresponds to a maximum in the free energy den- 
sity and is not an acceptable solution. S+ corresponds to a minimum in the free energy density 
and hence S+ is a stable solution. We calculate the transition temperature TNI by equating the 
free energy density of the nematic phase to that of the isotropic phase i.e. F (p, T, S) = Fo. 

where SNI is the order parameter at the transition point. The equilibrium condition yields 

F'rom Equations 3.7 and 3.8 we get 
BS$I CSi I  

3 - 2 
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Figure 3.1: Variation of the free energy density as a function of order parameter at various 
temperatures near the nematic-isotropic transition point. 

4Ca T T" Equation 3.6 has solutions only when 1 - + > 0, leading to an upper temperature limit 
above which the nematic phase cannot exist. This temperature ~t is 

Figure 3.1 shows the variation of the free energy density as a function of order parameter for 
various temperatures. 

For T > T? there is only one minimum for the free energy corresponding to S = 0, i.e. 
the isotropic phase. At T = T?, there is an inflection point in the free energy density curve. 
For TNI < T < T? there are two minima for the free energy density one corresponding to the 
isotropic phase (i.e. the absolute minimum) and the other corresponding to the superheated 
nematic phase (i.e. a local minimum). At T = TNI there are two equal minima and hence a first 
order phase transition takes place from S = 0 to S = SNI.  For T* < T < TNI there are again 
two minima, the absolute minimum corresponding to a nonzero S whereas a local minimum 
corresponds to S = 0. This allows for the supercooling of the isotropic phase. At T = T* there 
is only one minimum for the free energy density corresponding to S > SNI and an inflection 
point at S = 0. Below T* the isotropic phase cannot be further supercooled as there is only one 
minimum in the free energy density corresponding to S > SNI.  

Thus from the presence of a nonzero third order term the nematic-isotropic transition is 
first order in nature. Typically, the order parameter at the transition point SNI 0.3 which in 
principle is not very small. However from the thermodynamic point of view the nematic-isotropic 
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Figure 3.2: Variation of the free energy density as a function of the order parameter in the 
presence and absence of an electric field for T > ~ t .  

phase transition is a weakly first order phase transition. The heat of transition of the nematic- 
isotropic phase transition is very small (- 0.2kcal/mol ) in comparison to the crystal-liquid 
crystal melting transition (- 5kcal/mol). 

3.2.3 N-l Transition in the Presence of an Electric field 
As explained in Chapter 2 in the presence of an external field, a linear term in S has to be 
included in the Landau free energy density. Following the argument described in Section 3.2.1, 
in the presence of a linear term in S, the isotropic phase cannot exist as now the free energy 
density will be a minimum only for a finite value of S.  h he free energy density for the nematic 
phase in the presence of an electric field is 

where h = & A ~ , E ~  = -peE2. Minimising Equation 3.12 with respect to S gives 

a(T - T*) = h/S f BS - cs2. (3.13) 

This shows that when the field is switched on, a given value of S o curs at a higher temperature. 
Figure 3.2 shows the variation of the free energy density at zero "e eld and in the presence of a 
finite field for T > T?, and for a system with r, > 0. It is seen that for a finite value of E the free 
energy density is minimised for a nonzero value of S. Figure 3.3 shows the theoretical variation 
of the order parameter as a function of reduced temperature at different fields. As described in 
Chapter 2 beyond a critical field there is a continuous evolution of the order parameter as the 
temperature is varied. 
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Figure 3.3: Theoretical variation of the order parameter as a function of reduced temperature 
at different electric fields. The dashed line is the coexistence curve. 

At the critical point F' = F" = 0. Differentiating Equation 3.12 twice with respect to S 
and equating the results to 0, at the critical point the following equations are obtained 

where Sc and Tc are the coordinates of the critical point on the temperature order parameter 
phase diagram at the critical field Ec. 

For a system with negative dielectric anisotropy the situation is slightly different. When 
< 0 the director aligns perpendicular to the field. In the isotropic phase this would lead to a 

paranematic phase with orientational order around the field direction but with < 8 > tending 
towards 90". This corresponds to a phase with negative order parameter (NU-). In the nematic 
phase, let us assume that the sample is taken between two glass plates which are treated for 
homogeneous alignment of the director, along a directiongarallel to the glass plates. When an 
electric field is applied perpendicular to the glass plates an additional orientational order sets 
in around the field direction. This field suppresses the thermal fluctuations of the director in 
the plane containing the electric field and the director. In the presence of an e lkr ic  field the 
nematic phase has orientational order around two directions vk. around E and parallel to the 
glass plates, and is hence biaxial ( N B )  in nature. As discussed by Grarnsbergan et al[25], for low 
fields a first order phase transition occurs from the field induced uniaxial phase to the biaxial 
phase as the temperature is reduced. Beyond a certain field this first order phase transition 
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Figure 3.4: T,h phase diagram of a nematic. Thick solid lines are first order transitions, dashed 
lines second order : cp and tcp are critical and tricritical points. Reproduced from Reference 

changes over to a second order phase transition. This point on the phase diagram is a tricritical 
point. Figure 3.4 shows the phase diagrams for nematic liquid crystals with both positive and 
negative dielectric anisotropies as functions of reduced temperature and field. 

In Section 3.3.1 we present experimental results which describe the effect of an electric field ' 

on the nematic-paranematic phase transition using impedance measurements on two nematic 
liquid crystals with positive dielectric anisotropy. In Section 3.3.2 we present experimental 
results on the effect of a strong electric field on a nematogen with negative dielectric anisotropy 
using optical measurements. 

3.3 Experimental Results and Discussion 

We have studied the effect of strong electric fields in the following compounds using the impedance 
mewurements: 4'-n-pentyl-4cyanobiphenyl (5CB) and 4'-n-octyloxy-Pcyanobiphenyl (80CB). 
The chemical structures of these compounds and their transition temperatures are shown in 
Figure 3.5. These cornpow& were obtained from Roche and were used without further purifi- 
cation. We chose theae compounds as they have large positive dielectric anisotropies. Further 
they have relatively low N-I transition temperatures. All the compounds are chemically stable. 

The field effect on the orientational order parameter in 5CB has been studied by Lelidis et 
cal [37, 381. As described in Chapter 2 they were able to probe the critical region. They also 
measured the linear and quadratic variation of the order parameter due to the quenching of the 
thermal fluctuations and the Kerr effect in the nematic phase. 

We have also studied the effect of a strong electric field on Pmethoxyphenyl-trans-4 
pentylcyclohexylcarboxylate (Sl495). We chose this compound as it had the largest negative 
dielectric anisotropy (N - 1.3) amongst the compounds available to us. The chemical structure 
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C -  N- I 
40 O C  71 O C  

Figure 3.5: Chemical structures and the transition temperatures of the compounds used in the 
experimental studies in this chapter. 
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and the transition temperatures of this compound are also shown in Figure 3.5. This compound 
was obtained from Merck and was used without further purification. We have used optical 
measurements in this case. As the dielectric aniaotropy is relatively small we were not able to 
observe a very pronounced effect in this sample. 

3.3.1 Strong Electric Field Effect on the N-l transition in Two Nematogens 
with Positive Dielectric Anisotropy 

For these experiments we used the initial setup which is described in Chapter 2 (Figure 2.19). 
In these first experiments we used cells with the simpler electrode configuration i.e. without 
the guard ring (Figure 2.2). The top plate was aluminium coated (Figure 2.4). We used 19 pm 
spacers and we have assumed that the thickness of the cell is equal to the thickness of the mylar 
spacer. At any given Mettler temperature, a few preset sinusoidal voltages were applied to the 
cell. The signal is measured on the amplitude-phaae (R-8) mode of the lock-in-amplifier. In this 
mode the phase is adjusted for maximum R. When the ratio of the out of phase component 
(the component of the signal at 90' phase with respect to that for maximum R) to the inphase 
component (R) is less than a preset value (- 1 to 2%) the electrical parameters of the cell as 
well as its local temperature are measured. At higher voltages, the temperature of the cell is 
higher. All the measurements were made while cooling the sample from the isotropic phase. A 
flow chart of the program is shown in Figure 3.6. 

Figure 3.7 shows the variation of the dielectric constant of an 80CB sample of thickness - 19 pm, with an AC voltage of N 334 V and frequency of f = 6720 Hz applied to it, as a 
function of the set Mettler temperature. Figure 3.8 shows the variation of the same dielectric 
data as a function of the local temperature measured by the nickel resistance thermometer. It 
can be seen that there is a difference in the actual shape of the two curves. This shape change 
is due to the variation of the local heating of the sample as a function of the temperature when 
a large voltage is applied to the cell. The applied voltage is slightly higher than the critical 
voltage which has been calculated to be N 300 V. It is seen from Figure 3.9 that the variation of 
the heating effect at a specific voltage is highly sensitive to the sample temperature especially 
around the critical region. In this range there is a decrease in the electrical resistance of the 
sample which is accompanied by an increase in the local heating of the sample. This point will 
be discussed in more detail in Chapter 5. So, it is not sufficient to apply a constant voltage to 
the sample and assume that the local heating is independent of the temperature of the sample 
as was done by Nicastro and Keyes [36]. 
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INPUT 

TEMPERATURE -T 
START TEMPERATURE -ST ELECTRICAL SIGNAL -V , 
END TEMPERATURE -ET NICKEL RESISTANCE - R 
TEMPERATURE STEP -TS 
WAIT TZME -Tl,T2 OPTICAL SIGNAL -0s 
START VOLTAGE -VS 
END VOLTAGE-VE 
NUMBER OF VOLTAGE POINTS -NV 
VOLTAGE STEP -DV=(VE-VS)/NV 
POST EXPERIMENT TEMPERATURE-PET 
RATIO OF OUT OF PHASE VOLTAGE TO IN PHASE VOLTAGE-RP 
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C- 
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I P 
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+ 
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OR 
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IF T >ET-- - SET 
T=T-TS GOT0 PET 

IF T=ET 
I I 

Figure 3.6: Flow chart for the programme used to conduct the experiments. 
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Figure 3.7: Variation of the dielectric constant of an 80CB sample 'as a function of the set 
Mettler temperature. V=334.5 V and f =6720 Hz. The thickness of the cell is d = 19 pm. 

Figure 3.8: Same data as shown in Figure 3.7, but now plotted as a function of the local 
temperature measured by the nickel resistance thermometer. 
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Figure 3.9: Difference between the local temperature and the set temperature of the Mettler 
hot stage plotted as a function of the local temperature calculated from the experimental data 
shown in Figures 3.7 and 3.8. 

3.3.1.1 Analysis 

As shown in Equations 1.12 and 1.15 according to the Maier and Meier theory 

Hence the relationship between €11 and the orientational order parameter S can be approx- 
imately written in the form 

2 
€ 1 1  = i + -Ae0S 

3 
(3.17) 

where Aeo is the anisotropy for a medium with S=l and E' is the average dielectric constant. 
It can be seen from Equations 3.15 and 3.16 that both Z and €11 are temperature dependent 
and in principle AE; will be temperature dependent. In the experiments to be described in the 
coming sections we have made measurements over a small temperature range, and for simplicity 
we have ignored this temperature dependence. It is well known that in materials with highly 
polar end groups, the antiparallel near neighbour correlations lead to a slightly lower value of 
5 in the nematic phase compared to that of the isotropic phase at TNI [16]. We have taken Z 
to be 1.5% smaller than the value measured in the isotropic phase at low applied fields to take 
account of this fact. We have used the orientational order parameter measured by an optical 
technique [46] at T N ~  - 2OC to evaluate A%. The nematic order parameter variation with field 
can now be compared with the prediction of the Landau theory discussed in Section 3.2.3. 
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Figure 3.10: Dielectric constant of 5CB as a function of temperature at different fields. Thickness 
of the cell d = 19 pm. Frequency of the applied voltage f =2317 Hz. 

3.3.1.2 Measurements on 5CB 

E I I  is shown as a function of the local temperature for various values of the applied field in a 
5CB sample in Figure 3.10. Ae, (= 18.1) is calculated following the procedure described in 
Section 3.3.1.1. The order parameter is calculated using Equation 3.17 (Figure 3.11). As the 
N-I transition has a first order character the Pparameter Landau theory can be expected to be 
inadequate especially at temperatures below TNz. Hence we have used only the data measured 
close to this temperature and for electric fields close to the critical field in the analysis using 
Equation 3.13. Figure 3.12 shows the experimental points as well as the calculated variation. 
The best overall fit was obtained for the following parameters: 

TNz - T* = 1.3 f 0.06 in OC 
B l a  = 11.0 f 0.1 in cgs units 
C l a  = 21.4 f 0.15 in cgs units 
a = (1.0 f 0.04 ) x  lo6 in cgs units 
Ec = 440 esu. 
These parameters are broadly consistent with the values given by Lelidis and Durand [38]. 

We should note that the calculated temperature variation of S in the nematic phase is steeper 
than that of the experimental data. It is known fiom a number of earlier studies on nematic 
liquid crystals that the order parameter variation is less rapid than that predicted by the mean 
field theory. Often this is assumed to be due to a tricritical rather than a critical behaviour 1251. 

3.3.1.3 Measurements on 80CB 

The measured values of the dielectric constants of 80CB are shown in Figure 3.13. Ae, = 13.0. 
The order parameter is calculated as described in Section 3.3.1.1 (here we have taken the order 
parameter measurements from Reference [44]). Figure 3.14 shows the variation of the order 
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Figure 3.11: Orientational order parameter S of 5CB calculated from the data shown in Figure 
3.10. 

Figure 3.12: Orientational order parameter of 5CB as a function of temperature at different 
fields. Solid curves show the theoretical variation given by the Landau theory. Same sample as 
described in Figure 3.10. 
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Figure 3.13: Dielectric constant of 80CB as a function of temperature at different fields. Thick- 
ness of the cell d = 19 pm. Frequency of the applied voltage f =6170Hz. 

parameter of 80CB as a function of temperature at different fields. The variations of S for 
different fields given by the Landau model are shown in Figure 3.15 for temperatures close to 
the N-I transition and the critical field. The Landau parameters in this case are listed below: 

TNI - T* = 1.2 f 0.2 in OC 
B / a  = 13.5 in cgs units 
C / a  = 29.2 f 0.2 in cgs units 
a = (0.87f 0.1) x lo6 in cgs units 
Ec ,- 540 esu . 

The Landau coefficients of 5CB and 80CB are comparable. The value of a in 80CB is - 10% 
less than that in 5CB. E, is higher in 80CB than that in 5CB as A% = 13 in 80CB which is 
considerably smaller than that in 5CB (A€, = 18.1). 
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Figure 3.14: Orientational order parameter S for 80CB calculated from the data shown in 
Figure 3.13. 

Figure 3.15: Orientational order parameter of 80CB as a function of temperature at different 
fields. Solid curves show the theoretical variation given by the Landau theory. Same sample as 
described in Figure 3.13. 
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40 O C  71 O C  
Figure 3.16: Chemical structure and transition temperatures of S1495. 

3.3.2 Strong Electric Field Effects on a Nematogen with Negative Dielectric 
An isotropy 

Electric field effects on nematogens with negative dielectric anisotropy have been reported by 
Nicastro and Keyes [36] and Rjumtsev et a1 [43]. They have measured the field induced birefrin- 
gence in some compounds in the isotropic phase. As mentioned previously S1495 is a nematogen 
with negative dielectric anisotropy. The chemical structure of S1495 and the transition temper- 
atures are shown in Figure 3.16. The nematic phase of this compound supercools to room 
temperature. In this section we report experimental results on the effect of a strong electric 
field on the N-I transition in S1495 using optical measurements in the reflection mode of the 
microscope. We have measured the DC transmitted intensity as a function of temperature at 
different fields. From these measurements we have calculated the variation of the orientational 
order parameter. 

The sample was taken in a cell, the bottom plate of which is similar to that shown in Figure 
2.2. It consists of the nickel resistance thermometer and the electrode without the guard ring. 
The top plate is a transparent IT0  coated glass plate with an electrode pattern etched in it 
(Figure 2.4). The aluminium electrode reflects the incident light back to the photodiode. Both 
the plates are treated with Si02 (coated in vacuum at a grazing angle of 30") for homogeneous 
alignment of the director. The thickness of the cell was controlled by mylar spacers of thickness 
-12 pm. The optical setup is shown in Figure 2.16. The cell is placed in a Mettler hot stage 
which itself is kept on the stage of a polarising microscope. The sample is illuminated by a 
He-Ne laser beam and the director is aligned perpendicular to the direction of light propagation. 
The experimental procedure is similar to that described in Section 3.3.1. The flow chart of the 
programme is shown in Figure 3.6 and as mentioned above we have measured a DC optical 
intensity instead of the electrical parameters of the cell. 

When the sample is placed between crossed polarisers the transmitted intensity is given by 

(1 - cos A4) 
T = sin2 2$ 

2 
(3.18) 

$ (=45 " in the present case) is the angle between the director and the polariser. At$ is the 
phase difference between the ordinary and extraordinary waves and is given by 

where no and n, are the ordinary and extraordinary refractive indices of the liquid crystal. X 
is the wavelength of light used (0.633 pm) and 2d is twice the sample thickness (as the light 
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beam passes through the sample twice). A minimum and a maximum in the transmitted optical 
intensity correppond to 

respectively, where n is an integer. Figure 3.17 shows the variation of the transmitted optical 
intensity as a function of temperature for different applied fields in a small temperature range 
c l~se  to TNI. The frequency of the applied voltage is 15111 Hz. As mentioned in Section 3.2.3 the 
paranematic phase above the transition temperature is uniaxial with negative order parameter. 
As we are viewing the sample along the optic axis there is no path difference and the intensity 
between crossed polarisers is zero. 

To calculate the variation of the birefringence with temperatufe in the nematic phase we 
need to know the value of n given in Equation 3.20. For this purpose we have measured the 
variation of the optical intensity as a function of temperature at zero field (Figure 3.18) over 
a wide range of temperatures. From magndtic susceptibility measurements (see Chapter 7) the 
orientational order parameter at 46.5OC and 68.3"C which correspond to a maximum (from 
Figure 3.18) and a minimum (from Figure 3.17) in intensity are 0.716 and 0.457 respectively. S 
is given by 

where An = n, - no and An, is the birefringence for the fully aligned state. Substituting for 
An in Equation 3.19 at the above stated temperatures and using Equations 3.20 we find that 
the minimum at T = 68.3OC corresponds to n = 3. Using this we have calculated 2dAn at 
T = 68.3"C and also as a function of temperature (using Equation 3.18) from the data shown 
in Figure 3.17. Calibrating this data with respect to the order parameter as measured from 
the magnetic susceptibility at TNI - 1.7OC we evaluate the order parameter as a function of 
temperature at different fields (Figure 3.19). 

We have plotted the transition temperature (TNI) as a function of field (Figure 3.20). We 
see that there is a large shift in the transition temperature (N 0.2OC) between the zero field and 
the E = 173.61 esu runs. Between the E = 173.61 and E = 547.2 esu runs the shift is N 0.13OC. 
The shift is not quadratic in field. We have fitted a linear curve to the experimental data (Fig- 
ure 3.20). Even in the absence of the electric field the width of the transition temperature is 
N f 0. lo C. Also, the minimum temperature step is O.l°C. Taking these experimental limitations 
into account the data appears to be consistent with a linear variation whereas, according to the 
Landau theory TNI should depend quadratically on E (see Figure 3.4). Our present measure- 
ments are not accurate enough to assert that the dependence is genuinely linear. We have not 
performed experiments on materials with negative dielectric anisotropy further, as our interest 
is mainly in studying transitions exhibited by positive dielectric anisotropy. 
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Figure 3.17: Variation of the transmitted optical intensity of a homogeneously aligned S1495 
sample as a function of temperature at different fields. The frequency of the applied voltage 
f=15111 Hz. 

Figure 3.18: Variation of the optical intensity in the nematic phase of 51495 as a function of 
temperature at V = 0. 
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Figure 3.19: Variation of the order parameter of S1495 as a function of temperature at different 
fields. Calculated from the data shown in Figure 3.17. . 

Figure, 3.20: Transition temperature temperature of S1495 as a function of field. Taken from 
the data shown in Figure 3.19. 
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