
Chapter V 

SEMICLASSICAL DECAY OF THE KALUZA-KLEIN VACUUM 

IN HIGHER ORDER GRAVITY 

In this chapter, we are going to extend the ideas and techniques stated in chapter I11 

to the vacuum state coming from theories involving higher order terms. The starting point 

is the classical D-dimensional Einstein action modified by the Gauss-Bonnet combination 

of higher order terms given by Eq.(I.26). 

As has been discussed in chapter 111, a very much related question that one has to 

address in this regard is of the validity of the Positive Energy Theorem (PET) in this 

theory. There are exactly two distinct considerations : 

(i) effect of the presence of the extra higher order terms, 

(ii) the topology of the gravitating system. 

The first consideration in an almost similar situation (i.e. R + R2 gravity in four 

dimensions) was investigated by Strominger (1984) who proved PET in that theory. Also. 

flat space was shown to be the unique topologically Minkowskian stationary point of energy. 

It is not too obvious that the PET will remain to be valid in the Einstein- Gauss- 

Bonnet theory or the Lovelock gravity as a whole. In field equations (1.27) if one identifies 

the contribution of the Gauss-Bonnet term with some stress energy tensor, S p ,  (although 

it is not a very comfortable idea ), one may see that Soo is of indefinite sign. So, although 

the energy consideration is dependent on the dynamics at large distances which is mainly 

determined by the Einstein term, a negative sign of Soo (for a > 0) may make the total 

energy negative. 

To see whether Witten-type arguments can be applied in this case, one has to take into 

account supersymmetric considerations. It seems plausible that the'model incorporating 



Gauss-Bonnet term has a supersymmetric extension at least for o > 0 [Deser, 19861. It was 

also pointed out by Boulware and Deser (1985) that, due to this reason, the global energy 

will be positive only for the asymptotically Minkowskian flat solutions (a  consideration 

also used in the proof of the theorem in four dimensions, see sec. III.B), but not for those 

which asymptotically approach de Sitter or anti de-Sitter spacetime. 

As far as the consideration (ii) regarding the topology of the system is concerned, all 

arguments presented in sec. III(B) can be extended to this case. Here, we show that the 

theorem will not be valid for a multiply connected topology of the initial value hypersurface. 

We consider M4 x S1 to be the flat spacetime solution of such a theory. We are 

interested in the case of pure gravity without matter fields and, therefore, we study the 

source free Einstein-Gauss-Bonnet field equations given by Eq.(I.28) [Bhawal and Mani, 

19921. 

Due to such a choice of the topology of the ground state, the 5-dimensional gravita- 

tional constant is taken to be Gs = 2nGRo, where Ro is the radius of the fifth dimension. 

So, by definition, K = 32n2GRo. 

Now, to look for a semiclassical instability of this vacuum state, we have to search for 

an instanton-like 'bounce' solution of the classical Euclidean field equations of the higher 

order theory, Such a solution should be asymptotic to the flat infinite Euclidean spacetime 

By introducing polar coordinates (p, $, 0, 4) in the four noncompact dimensions x,y,z ,t, 

we can rewrite this as 

Also, this solution will represent an instability of the vacuum, if there exists negative 

action modes in small fluctuations around it. To look for such a solution, we can use the 

five-dimensional Boulware-Deser metric [Eq.II.l & 51. After analytically continuing that 



metric to the Euclidean time, the solution can be written as (in dimensionless variables): 

where a = 32aa (see Eq.II.4). The quantity rn is an arbitrary of dimension 

[L2]. This solution satisfies the Euclidean field equations for any value of m, except at 

p = pi = JG, where P becomes zero. To study the behaviour at p i ,  we make a 

coordinate transformation p = p; + X2, where X2 is very small. Then as X2 + 0, the p - x 

subspace will behave as 

where we have neglected the higher order terms of (A2) in gxx 

The expression within the bracket can be compared with the standard line element 

for the metric of the plane in polar coordinates. Therefore? this will describe a nonsingular 

space, if x is a periodic variable with periodicity 2n(2m + a)/  J=. So, we obtain 

We get two solutions for m 

(V. 7) 

Note that Ri > 8a. Also, now p can run between pi 5 p < m. The value of pi in the 

two cases will be different 

Unfortunately, it is not easy to arrive at a conclusion regarding the presence of negative 

action modes in small fluctuations around these solutions, since the perturbation equations 

turn out to be extremely complex. The general procedure is as follows. 
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Let us consider a perturbation, h,, of a metric g,, which satisfies the Euclidean 

vacuum field equations corresponding to Eq.(I.27) 

where gap is with Euclidean signature. The perturbed metric (g,, + h,,) also should 

satisfy the field equations and so 

One may choose to work in a tracefree transverse gauge for h,,, so that 

(V. 11) 

(V.12) 

The most general traceless metric perturbation of Eq.(V.3) may be given as 

1 
h,, = i l ( p ) ~ - ' d p ~  - - [ ~ ( p )  + ~ ( p ) ] p ~  [d$2 +sin2 $(dB2 +sin2 8 dd2)] + B(p)P  dx2. (V.13) 

3 

This preserves both the rotational and time symmetry of the metric. 

One may use the p-component of Eq.(V.12) to derive a relationship between A and 

B.  The other components of this equation will be trivially satisfied. The next task is 

to solve the appropriate eigenvalue equation corresponding to Eq.(V.10). This equation 

which essentially comes out of the second variation of the action turns out to be a very 

complicated one involving various con~binations of higher order terms [To get an idea of 

how it may look like, one may see Wiltshire (1988) where the Lorentzian version of the 

same perturbation equation has been explicitly written by choosing a de Donder gauge 

(h" - -1 29 v h X A ) ; ,  = 0. The situation will not improve much in a transverse traceless 

gauge]. It is almost impossible to solve such an equation except probably by the use of a 

powerful computer symbolic manipulation program. 



Since the m+ solution approaches the 'bounce' solution given by Witten [eq.III. 101 in 

the a -, 0 limit, we expect a negative action mode to be present in this case. It is difficult 

to guess any result on the m- solution. But it is quite possible that the actual higher 

order perturbation equation in each case may contain more than one negative eigenvalue. 

However, as pointed out by Witten (1982), the much simpler way to see that the 

bounce solutions (V.3) actually describe the instability, is to perform a suitable analytical 

continuation of these solutions from the Euclidean to the Minkowskian space. If a real 

Euclidean solution remains to be a real valued Minkowski solution after the analytical 

continuation, it should describe the instability. This argument will also be confirmed by 

the fact that both the Minkowski solutions have zero energy and, therefore, represent the 

nonuniqueness of the assumed ground state, thus violating the positive energy theorem. 

Therefore, performing the transformation $ + 5 + ir on the metrics [Eq.V.3], we 

write the Minkowskian signature solutions as 

ds2 = -p2dr2 + p-'dp2 + p2 cosh2 r(ds2 + sin2 odd2) + pdX2.  (V. 14) 

As discussed in sec.III.(B), these represent the alternative spacetimes into which the 

assumed ground state decays. We verify below that the energy of these spacetimes is zero. 

We can easily see that the presence of higher order terms will not create any problem 

in defining the energy integral for such a system. Because the dynamics of large distances 

are governed by the lower order Einstein term, the conserved energy of an asymptotically 

flat spacetime can be given by the usual ADM expression. For a quasi-Minkowskian 

spacetime, the metric y,, can be splitted up into its asymptotic value 77," and a deviation 

h,, : g,, = q,, + h,,. Then we can rewrite Einstein's equations as 

where the supe.rscript L represents the linear part of the corresponding quantities. T,, 
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includes all the terms of Gpu, nonlinear in h. 

+ 2a[2RRPu - 4R,,Ra. - ~ R , ~ R ~ , ~ ,  + ~ R , , ~ , R , , ~ ~ ~  (V. 16) 

Then one can proceed in the standard way [Weinberg, 19721 to define the energy of 

such a spacetime geometry. For our purpose, we are using the energy integral defined by 

Deser and Soldate, 1988, for a geometry with a compactified dimension : 

(V. 17) 

Now we can see that only the terms in the metric of order l / p  are relevant. However, 

since P contains no term of order l /p,  the energy integrals for these spacetime geometries 

will give zero energy. These two solutions are, therefore, two counter-examples of the 

uniqueness of the k1" S1 ground state in Einstein-Gauss-Bonnet theory. 

Both the solutions will have the same behaviour as that of ordinary Witten bubble, 

but their initial radii will be different : p,+ and p, -. Any of the two solutions will represent 

a perfectly reflecting espanding bubble of area 47rpf cosh2 r and at any time t ,  its radius 

will be p(t) = d m .  This corresponds to a distorted Minkowskian space in which the 

interior of the hyperboloid x2 - t2 < pf has been deleted [refer to Fig.9 by replacing r + p 

and Ro + pz]. 

We can study the behaviour of the solutions in the limit a + 0. In that limit, two 

solutions of m will behave as 

(V. 18) 

When a=O, the solutions are given by the values of P as. 

(V. 19) 



So, the '+' solution, in the o + 0 limit, approaches the Witten bubble solution. 

On the other hand, the second solution, in that limit, approaches the assumed vacuum 

state. We can say that the '+' solution is actually the modified Witten bubble solution, 

whereas, the '-'solution is an entirely new one, but with the same physical properties. One 

should note the significance of the higher order terms here. Higher order corrections not 

only modifies the Witten bubble solution, but also provides a new solution. Only because 

of the presence of nonzero string parameter (and consequently higher order terms), the 

second solution comes into being to be interpreted as an alternative decay solution of the 

Kaluza-Iclein vacuum. 

It is obvious from Eq.(V.8) that the initial radius p; of the bubble represented by '+' 
solution will always be greater than or equal to Ro/2. But that for the '-' solution will 

always be less than or equal to Ro/2. As a + 0, pi- goes as fi and eventually becomes 

zero for a = 0, which represents the I<aluza-I<lein ground state. 

Another interesting feature in our calculation is the relationship: Ri > 8a. One can 

interpret this in two ways. One can say that the presence of nonzero string parameter 

has set a lower limit to the radius of the fifth dimension, although the upper limit is not 

fixed. On the other hand, as has already been pointed out, in ordinary Einstein action, the 

radius of the fifth dimension is undetermined. This can be determined only by including 

quantum corrections. Therefore, if one wishes to keep Ro theoretically unrestricted, one 

can say that for any determined value of Ro, the string parameter will have an upper limit. 

To probe into the geometry of these spacetimes, one may wish to study the behaviour 

of geodesics and scalar waves in these spacetimes. The nature of time-like and null geodesics 

in the Witten bubble solution was studied by Brill and Matlin (1989). We can easily 

see that there will not be any qualitative difference between that case and present ones, 

since respective 'P' in different cases is always positive and zero only at p = pi .  The 

time-like geodesics will execute oscillating behaviour in p,  with turning points at pi and 

at k = k: - k: - k;, where k,, k,, kx are constants of motion in the corresponding d 



directions. On the other hand, if a massless particle is directed toward the bubble, it will 

be reflected only once and then will move away at the speed of light. 

For studying scalar waves in these spacetimes, the mathematical formalism developed 

in the work of Bha~val and Vishveshwara, 1990, on Witten bubble may be used here in a 

straightforward manner. Only the radial solutions in the present cases will differ from the 

radial solution given by them. But, as discussed in the appendix of their paper, appropriate 

coordinate transformations can bring the radial equations in the Schrodinger's form which 

can be studied. However, that will not provide any result qualitatively different from the 

Witten bubble case. 

A few points discussed here will be elaborated in the next chapter. 



Chapter VI 

EPILOGUE 

We discussed our motivation and summarized our successes and failures in various 

problems in the previous chapters. Here, we attempt to interrelate our failures and propose 

some logical extensions and improvements thereof. We indicate some important works done 

by others to shed some light on some unexplored prospects and problems in higher order 

gravity. 

Let us start with black holes. One solution that holds the string of most of the works 

done by us is the Boulware-Deser black hole (BDBH). There is a series of other more 

generalised black hole solutions in the general second order Lovelock gravity [see sec.I(D)] . 

However, there still remains some more unsettled profound issues related to black holes in 

quadratic gravity. 

We do not yet know the status of the singularity theorems in these theories, since 

the condition of the validity of these theorems may get violated by the higher order La- 

grangians. Questions related to the different energy conditions (weak, strong, dominant) 

are also to be revisited, since they play an important role in both the classical and semi- 

classical aspects of various models. Since the vacuum field equations add up extra higher 

order terms with an indefinite sign, the above issues affect the status of the positive energy 

theorem which we discussed in chapter V. 

One also has to explore carefully and in details the intricate issues related to the 

uniqueness theorem, quantum coherence problem arising out of the evaporation of the 

black holes and the back reaction problem in this context. 

Another important problem that remains to be unsolved is the investigation of the 

classical stability (gravitational) of these black holes. This can be checked by performing 

similar analyses done in the case of four dimensional Lorentzian Schwarzschild solution by 



several authors [Regge and Wheeler, 1957; Vishveshwara, 1970; Edelstein and Vishvesh- 

wara, 19701. The actual calculation, however, faces severe problems by the fact that the 

perturbation equations are extremely complex. One needs to develop a powerful computer 

symbolic manipulation program to solve these problems. It has, however, been argued 

by Boulware and Deser (1985) that the asymptotically de Sitter branch of these solutions 

(M > 0, cr > 0) is unstable. 

The same problem has thwarted our attempt to find negative modes in small oscilla- 

tions around the 'bounce' solutions obtained by us in chapter V, which may interpolate 

between the M4 x S1 ground state and alternative zero energy bubble solutions in Einstein- 

Gauss-Bonnet (EGB) theory. 

One may guess from the structure of the higher order perturbation equation that there 

may exist some possibilty of obtaining more than one negative eigenvalue. In quantum 

field theory, it was pointed out and proved by Coleman (1988) that, in all cases of the 

decay of a metastable state by quantum tunneling, the second variation derivative of the 

Euclidean action at the bounce has one and only one negative eigenmlue. However, the 

same problem has not yet been investigated in the case of an Euclidean Lagrangian with 

higher order or higher derivative terms. 

The 'bounce' solution obtained by Witten (1982) representing the decay of M4 x S1 in 

ordinary GR possesses only one negative eigenvalue in the functional determinant for small 

oscillations around it. This result actually stems out from the fact that there also exist 

only one negative eigenvalue in the Lichnerowitz equation representing the perturbation 

of the Euclidean Schwarzschild solution which Wit ten (1982) used. 

So, in our context, it will be very interesting to know whether the perturbation around 

the BDBH solution possesses more than one negative eigenvalue. The comparison of this 

result with that in a higher order or higher derivative extension of the field theoretic 

analysis by Coleman (1988) may give us good insight into the nature of the vacuum decay 

in these theories. The implication of the extra negative modes may then be studied. 



In this context, we would also like to point out a related problem which has not 

attracted much attention. Although the study of scalar perturbations in higher dimensional 

spacetimes is relatively straightforward the case of 'higher spin' perturbations is technically 

more complicated and should prove to be of mathematical interest at least. 

Now, we would like to mention two significant related works done by others, which 

may have far-reaching consequences on the future of Lovelock gravity. 

An interesting study related to the classical stability of the EGB theory and, in general, 

the Lovelock gravity with compactified higher dimensions has been reported by Sokolowski 

e t  al(1991). They showed that the presence of dilaton (and of other geometric scalar fields) 

may render the possible ground state solutions of the reduced theory (i.e. the Minkowski 

and anti-de-Sitter spaces) unstable against perturbation of the scalar field. They have 

argued that the Gauss-Bonnet combination should, therefore, be discarded because this 

poses a serious problem which, unlike in the case of higher dimensional Einstein gravity, 

cannot be removed by field redefinitions. 

Another interesting and somewhat controversial point has been raised in a series of 

papers by Simon (1990,91,92). He pointed out that if the second order terms are thought to 

be semiclassical perturbation corrections (of order t z ) ,  some new nonperturbative solutions 

may arise in this theory [note that one of our 'bounce' solutions, m- in Eq.V.7 falls in this 

category]. But unlike the effective action and the field equations which generate them, 

most of these new solutions do not satisfy the initial perturbative ansatz, i.e. they are 

not perturbatively expandable in f i .  The anti-de-Sitter branch of the solutions given by 

Boulware and Deser (1985) has this property. 

Simon's argument is that the most self-consistent approach would be to discard these 

nonperturbative solutions because semiclassical gravity is only expected to approximate 

a perturbative expansion of the full theory and so, these 'pseudo-solutions' will fail to 

give any insight into the nonperturbative features of the full theory of quantum gravity. 

By these arguments, he showed that flat space is perturbatively stable to first order in 
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ti against quantum fluctuations in semiclassical approximations to quantum gravity, al- 

though the past predictions had gone to the contrary [Hartle and Horowitz, 19811. Similar 

arguments rule out Starobinsky (1980) inflation (de Sitter solutions driven only by higher 

order curvature terms). 

All these points are to be cautiously studied before we arrive at any final conclusion. 

We would like to point out, while drawing an end to this thesis, that our physical intuition 

always suffers a drawback gaining its experience mostly from the ordinary theories. Higher 

order or higher derivative theories have never been extensively studied despite the fact that 

these may naturally arise in different branches of Physics [e.g., the relativistic model of the 

classsical radiating electron given by Dirac(l938)l. We should be careful enough before 

making any statement or jumping into any conclusion regarding any problem in these 

theories. 

The not-so-happy marriage of gravity with quantum theory gave a 'natural' birth to 

the twins- higher dimensional and higher order gravity. They are here to stay and grow 

up and only God knows, when they will find themselves at the limiting end of the complete 

thory of quantum gravity and will come to know what God only knows. 


