
Chapter I 

INTRODUCTION 

The fact that General Relativity (GR) is the correct classical theory of gravity has 

been well established by sufficient experimental evidence. It is believed that this theory is 

the low frequency limit of a quantum theory of gravity which is yet to be developed. In 

the last few years the search for a consistent quantum theory of gravity and the quest for 

a unification of gravity with other forces have both led to a renewed interest in theories 

with extra spatial dimensions incorporated in them. 

In this chapter, we first establish the motivation for studying higher dimensional 

Gravity and present a brief chronology and review of the works done in this line. We 

then go on to introduce higher order terms that may be naturally incorporated in the 

Lagrangian of such theories. In the third section, we present an analysis based on the 

existing literature of these higher order terms in the language of Differential Forms. The 

last section is a brief review of the features of some solutions of these theories. This chapter, 

as a whole, will provide the essential groundwork for the topics to be discussed in the rest 

of the chapters. 

I.(A) Higher Dimensional Gravity 

When Einstein first talked of a new kind of Physics in a 4-dimensional manifold 

unifying space and time, a large cross section of the society including physicists as well as 

nonspecialists raised eyebrows either in disbelief or in bewilderment. The 3-dimensional 

realm of the Newtonian Mechanics was an adequate framework to common human mind 

for studying phenomena encountered in its daily life. The special theory of relativity was 

revolutionary in the sense that it first disabused people of the idea that Physics is just the 

study of objects in their familiar 3-dimensional world where time acts just as a parameter. 

A beautiful equation like E = mc2 was an outcome of this kind of Physics in 4-manifold 
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and could never be conceived through the Newtonian Mechanics. The real implication of 

this formula could be convincingly verified in different processes in nuclear and particle 

Physics. 

Once this breakthrough was achieved and the psychological stumbling blocks got re- 

imen- moved, there was no bar in extending the limit of imagination to higher (D > 4) d' 

sional manifolds by incorporating extra spatial dimensions *. In fact, in any of the basic 

laws of nature (e.g. Newton's laws of motion, the Lagrangian and Hamiltonian formalisms, 

principles of the special relativity, Principle of equivalence, Principle of general covariance, 

the geodesic principle, the quantum mechanics principles), neither the statement of the 

principle nor the mathematical machineries were ever restricted to three dimensions. The 

general hope was that such an exercise might as well be successful in giving us some dis- 

tinctive results which can again be verified by either experiments or the observation of the 

universe. 

T. Kaluza(l921) and 0. I(lein(1926) [see Appelquist et a1.,1987, for the original papers 

and English translation thereof] suggested that gravitation and electromagnetism could be 

unified in a theory of 5-dimensional Riemannian Geometry. Over the years, however, such 

an idea became decrepit because of its failure to provide some unique verifiable prediction: 

instead, it yielded some unphysical results when combined with quantum theory [Bailin 

and love,1987]. 

However, with the growing importance of gauge invariance as a major guiding principle 

for the formulation of physical laws, the urgency of unifying gauge fields with General 

Relativity (GR) began to be strongly felt. So, in the 70's this approach was resurrected 

again with much more vigour [Scherk and Schwarz, 1975, Cho, 1975, Cremmer and Scherk, 

19761. 

In contrast to the classical literature, this modern approach [Witten, 1981 b, Salam 

* Theories with additional time-like dimensions appear to be plagued with ghosts, see 

e.g. Duff, Nilsson, and Pope (1986) 



and Stathdee, 1982; For a concise review, see Bailin and Love, 19871 established the idea 

that the extra dimensions should be regarded as true, physical dimensions on par with the 

four observed dimensions and not be treated as a mere mathematical device. In this line of 

attack the gauge invariance assumes the same status as spacetime invariance and internal 

symmetries originate in the spacetime symmetries associated with the extra dimensions. 

In this framework, therefore, it is essential that at every stage in the derivation of the 

effective 4-dimensional field theory, one maintains consistency with the higher dimensional 

field equations. 

The sizes of the extra dimensions are free parameters of the model, ones that are not 

determined even when we specify all parameters of the Lagrangian. However, establishing 

a relationship among the coupling constants, gravitational constant G and the size of the 

extra dimensions ( each coupling is given by the ratio of 2 ~ ( 1 6 ? ; ~ ) ' / ~  to an arbitrary 

root-mean-square circumference), UTeinberg (1983) and Candelas and Weinberg (1984) 

suggested that the size of the extra dimensions are at most a few orders of magnitude 

greater than the Planck length (- 1 0 - ~ ~ c m . ) .  Since the present day accelerators can 

probe matter at 10-l6 cm. only, resolving the extra dimensions at currently available 

energies is out of question. But this may not have been always so. If we go back in 

time, according to the standard cosmological model, there must have been a time when 

the visible universe was of a comparable size to that of the internal space. The present 

difference between the four observed dimensions and the extra microscopic ones could arise 

from a spontaneous breakdown of the vacuum symmetry i.e.'spontaneous compactification' 

of the extra dimensions. 

The idea of extra hidden dimensions also stimulated much work in supersymmetry 

theory. This idea permits a simple derivation of the SO(8) supergravity Lagrangian by 

an appropriate dimensional reduction of the N = 1 supergravity Lagrangian in eleven 

dimensions [Cremmer and Julia, 19791. 

The foundation of the superstring theory has also been built on spacetime of more 



than four dimensions. In this theory, the dimension of the Minkowskian spacetime in which 

the first quantization can be perturbatively done turns out to be D = 10, while for the old 

bosonic string, this same number is D = 26 [Green et al., 19871. 

The fact that higher dimensions naturally arise in different unification theories in- 

volving gravitation provides the main motivation for studying higher dimensional gravity. 

However, we should remember that there remains a more subtle aim of such a study. This 

direction of investigation concentrates on attempting to explain why the observed space 

is so specific to choose three dimensions, although almost always there exists a greater 

generality in the statements and mathematics describing the laws of nature. Such a ques- 

tion should also be addressed to all the unification schemes since those also involve the 

'specificity7 of choosing a particular number of dimensions. 

I.(B) Higher order Terms 

Einstein's gravitational tensor (together with the cosmological term) was, in any di- 

mension, the only symmetric and conserved tensor depending only on the metric and its 

first and second derivatives, with a linear dependence on the latter. He was able to de- 

duce the simple Ricci scalar Lagrangian only by making certain simplifying assumptions 

[Einstein, 19161. The gravity Lagrangian could, in fact, contain an arbitrary number of 

terms consisting of the invariants which can be constructed from powers of the Riemann 

curvature tensor. It is hard to argue on experimental ground that such additional terms 

should not be present since, in all practical situations, the curvature is very small. It was 

Weyl(1919) who first introduced such terms in his affine theory which claimed to unify 

gravity and electromagnetism. 

It is false to assume that adding a higher order correction term with a small coefficient 

will only perturb the original theory. The presence of an urlconstrained higher order term. 

no matter how small it may naively appear, may make the new theory dramatically different 

from the original. 

The classical Einstein theory should be the low energy limit of a quantum theory of 



gravity. It was suggested that the action for a quantum theory of gravity should contain 

some nonminimal functionals of the metric tensor which involve more than two derivatives. 

The action gets modified by higher order interactions in any attempt to perturbatively 

quantize gravity as a field theory [Grisaru et  al, 1976; Deser, Kay, Stelle,1977; Goroff and 

Sagnot ti, 19861. Gravitational actions which include terms quadratic in curvature tensor 

are renormalizable [Stelle, 1977; Birrel and Davies, 19821. 

It is hoped that the full low energy theory will solve the problem of singularities in 

GR. However, in the absence of the knowledge of the details of such a theory, attempts 

have been made to gain further insight by studying models which include only the leading 

order correct ions. 

From time to time people studied different objects and issues arising in ordinary GR 

in the context of four dimensional theories involving higher powers of the curvature tensor 

(e.g., R + R2 theory etc.). The associated field equations are typically of fourth order in 

the derivatives and are exceedingly nonlinear [For a review of such theories. see Boulware, 

Strominger, Tomboulis, 19841. 

In cosmology, such terms were introduced first by Starobinsky (1980.1983) with an 

aim to avoid the init,ial singularity. It was found that such models may lead to inflationary 

expansion driven only by gravity. 

Recent developments in the superstring approach to the unification of all forces have 

also provided concrete suggestions for higher order corrections to the Einstein action. In 

their field theoretic limit [Scherk and Schwarz, 19741, string theories give rise to effective 

models of gravity in higher dimensions which involve higher powers of Riemann curvature. 

Of these, the quadratic term is of particular importance because it is the leading one and 

can affect the gravitational excitation spectrum near the flat space. 

However, if like the string itself, its slope expansion is to be ghost free, the quadratic 

term, if any, must be the Gauss-Bonnet (GB) combination [Zwiebach, 19851 



Such an addition would not modify the propagator because now if one expands the 

action about Minkowski space, the terms quadratic in the gravitational field combine to a 

total derivative and integrate to zero. In four dimensions the combination multiplied by 

J-g is a total derivative and proportional to the Euler topological invariant. 

Therefore, the Gauss-Bonnet combination can act as the leading correction to Einstein 

theory in the low frequency effective field theory of the string only for dimensions greater 

than four. 

The presence of these higher order terms can also be understood from the point of 

view of Lovelock's theorem. It is interesting to note that Lovelock [1971,72] was also led 

to this action by a different route. 

Within the realm of classical gravity, Lovelock tried to obtain the most general second 

rank tensor in arbitrary dimensions, which is (i) symmetric, (ii) depends on the metric 

and its derivatives upto second order and (iii) divergence free. He relaxed the requirement 

that the tensor be linear in second derivatives of the metric. However, it turns out that in 

4-dimensions, this follows naturally from the above assumptions and nonlinear terms arise 

only in higher dimensions. 

The Lovelock theorem states that in D-dimensions, the number of such independent 

tensors is m = D/2  for D even and m = (D + 1)/2 for D odd. The most general metric 

Lagrangian is given by a finite sum of the dimensionally extended Euler densities (to be 

explained in detail in section 1.3) 

A," = 1 a p ~ ( p ) P Y  + a6," ( 1 . 2 ~ )  

where ap (p = 1, . . , m - 1) and 'a' are arbitrary constants. The generalised Kronecker 

delta symbol is given as 

V I . . , Y N  = S[vl ,5"2 . . . S v ~ l  
' r l . . - r r r  [PI P 2  LN]'  ( 1 . 2~ )  



In 10 dimensions, for example, we would expect terms in the action of up to quartic 

order in the curvature. The quantity 'a' is equivalent to the cosmological constant. The 

lowest order term (p = 1) in the summation is identical with the Einstein tensor, whereas 

the (p = 2) term corresponds to the leading quadratic curvature correction or the Gauss- 

Bonnet combination. 

Again, the field equations have the anomalous property that in D > 4, the tensor 

A,' is nonlinear in the second order derivatives of g,, and differs from Einstein tensor 

only if the spacetime has more than four dimensions. Therefore, it yields the most natural 

generalisation of GR in higher dimensional spacetimes. 

A misnomer : Before we end this section, we would like to point out that the Lovelock 

gravity is frequently referred to in the literature as a higher derivative theory. It is a 

misnomer to call such theories to be 'higher derivative' ones since the Lagrangian, just 

like the Einstein-Hilbert gravity, does not contain more than the second derivative of the 

metric. 'Higher Order Gravity' is an appropriate name for such theories. 

I.(C) Higher Order Lagrangian I11 The Language Of Differential Forms 

In this section we present an analysis of higher order terms arising in the Lagrangian 

of higher dimensional gravity by making use of the calculus of differential forms. This 

presentation is based on the existing literature on this subject [Zumino, 1986; Teitelboim 

and Zanelli, 19871. Our aim is to systematize the whole procedure and present the same 

in a coherent way. 

We consider a D-dimensional spacetime with a metric g of signature (- + + * - - +). 

Let eA, A = 1, .  . . D denote the orthogonal coframe (vielbein 1-forms). 



Let us introduce the differential forms 
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1 
€A l . . . ~ m =  ..-AmAm+l. . -AD e A m + l  A . .  . l\ e A ~ ,  

(D - m)! 

where EA,. . .A~ is totally antisymmetric with El. . .o= 1. They satisfy 

Let wA be a spin connection one-form compatible with the metric g. The torsion and 

curvature Zforms are defined respectively as 

From now onwards, we stop indicating explicitly the wedge product sign. 

The torsion and curvature 2-forms satisfy the Bianchi identities 

A small variation Sw of the connection form induces a variation of R given by 

The Lagrangian can be considered to be a linear combination of D-forms (in D di- 

mensions) which, integrated over the manifold, gives the action. A particularly interesting 

class of D-forms invariant under local lorentz transformation are given by 

where 0 5 K < D/2. Therefore, in a given dimension, the number of Lagrangians consid- 

ered here is finite. 
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Rewriting this expression in terms of the 4-index Riemann curvature tensor, 

where e  = det eA, .  

When D(= 2E) is even, the particular 2E-form corresponding to K = E will be given 

by 

L ~ , ~  = R A I B I  . . . RAE BE B ~ . . . A E  BE (1.14) 

This is proportional to the Euler invariant. For obvious reasons, Euler invariants 

corresponding to odd dimensions do not exist at all. Now, rewriting Eq.(I.15) in terms of 

4-index Riemann curvature tensor, 

(I. 15) 

So, barring a multiplying constant, both Llc,D-21c and LE,o will generate the same 

expression, if K = E, except that the indices will run over different number of dimensions. 

In the first case, number of dimensions may be any D > 2IC. In the latter case, it is equal 

In essence, all the D-forms LK,D-2K  can be interpreted as the extension to a higher 

number of dimensions D of the Euler number LIiIo corresponding to dimensions 2IC. We 

may, therefore, represent the total Lagrangian as a linear combination of dimensionally 

extended Euler invariants : 

Ah' are constants 

when D is even 
and = {fD/y 1) /2  when D is odd. 



In particular, we have 

Lo =E = volume form, 

L1 = R~~ R E, 

L2 = R ~ ~ R ~ ~  EABCD= (RABCDR ABCD - ~ R ~ ~ R ~ ~  f R2) E (1.18) 

A B  CD EF 
L3 = R  R R EABCDEF 

. . . etc. 

So, the first term in L gives a cosmological constant, the second is proportional to 

the Einstein-Hilbert Lagrangian, the third is the Gauss-Bonnet combination. In D = 21< 

dimensions, LK is proportional to the Euler form which gives rise to the Euler (character- 

istic) class. In that case, there is no contribution to the field equations, since the entire 

expression (,/TjLI,-) is a total derivative. This will have contribution only in a theory with 

D > 21c. For example, in four dimensions, the Gauss-Bonnet combination will not have 

any contribution to the field equations and this fact leads to the Bach-Lanczos identity 

[Lanczos, 19381 

where CpVxu is the Weyl tensor. 

Now, let us consider an infinitesimal variation of the connection and vielbein forms. 

The corresponding variation of L1; is b,L1,- + b,L1,-. 

For 1 5 K 5 012, variation of w A
B  yields (using Eq.I.12) 



Now, using Eq.(I.ll), 

so,  6 , ~ ~ ~  = 1 { 6 ~ ~ l ~ l  ~ " 2 ~ 2  . . . R A K ~ K  ( D  € A ,  B~ . . . A ~  B ~ )  + exact form ( 1 . 2 2 )  

If D = 21<: the above variation is in exact form. For D > 2 I < ,  

6,LK = 1<6wAlB1  RAzB2 . - R ~ ~ ~ ~ T ~  E A ~  BI . . . A K B K C  +exact form ( 1 . 2 3 )  

If we restrict our considerations to the pure metric theory where T~ = 0, we see 

that that the variation of the connection does not contribute to the field equations : (if 

D > 2 I C )  

In particular, one gets 

S e L 1  = 6 e A ( R g A B  - 2 R B A )  E~ 

6 e L 2  =beE [ ( R A B C D R  C D A B  - 
~ R A B R ~ "  + R ' ) ~ E F  

ABC + ~ ( R F C A B R  E + ? R F A E B R ~ *  4- ~ R F C R ~ E  - R R F E ) ]  € F  

. . . etc. 

All these terms contribute higher order corrections to the field equations of these theories. 



I.(D) Solutions of Higher Dimensional and Higher Order Gravity 

Many known objects which naturally arise in ordinary GR have been studied in the 

context of higher dimensional theories with or without higher order terms. In the former 

case, the interest has been mainly centered on the simplest version of higher order gravity, 

i.e. the Einstein-Gauss-Bonnet (EGB) theory in which the Lagrangian is a sum of the 

Einstein-Hilbert and the Gauss-Bonnet terms. The action can thus be written as 

where K = 4G dfl,, J n = D - 2 .  

J dfl, is the area of a unit n-sphere and rr is the string slope parameter with magnitude 

of the order of the square of the Planck length, and is positive as long as we consider EGB 

theory to be the low frequency limit of Superstring theory. However, if the EGB theory is 

assumed as a theory in its own right (i.e. Lovelock gravity), there is no restriction on the 

magnitude or the sign of rr and it is viewed as just a coupling coefficient of higher order 

terms. Both the Newton's constant G and K have dimensions L ( ~ - " / M .  

The field equations that follow from such an action are given as 

An action like (1.26) is of independent interest since this allows spontaneous compact- 

ification [Miiller-Hoissen, 1985; Mignemi, 19861. The multidimensional solutions which 

have been studied so far may be categorised into two classes: 

(a) WITHOUT COMPACTIFIED DIMENSIONS : 

In these cases, all dimensions are considered to be on equal footing. The generalised 

Einstein equations have as 'ground states' the maximally symmetric solutions- Minkowski 



space, de Sitter space and Anti de Sitter space. So, the solutions asymptotically approach 

either the Minkowski space (M4) if the spacetime becomes flat at infinity, or D-dimensional 
I 

de Sitter or Anti de Sitter space if the spacetime remains curved at infinity. Although these 

solutions are irrelevent to present day low energy physics, but the study of such solutions 

may give us important insight into the concept of the existence of higher dimensions 

and may answer some questions related to the 'specificity' of the number of dimensions 

discussed in section I.(A). 

Here we are mentioning various works done in this line : 

(i) Black Holes : In ordinary (without higher order terms) higher dimensional gravity. 

both static and stationary solutions (charged or uncharged) have been studied [see 

Tangherlini,l963, Myers and Perry,1986, Dianyan,l988]. In higher order gravity, so 

far, only static spherically symmetric black holes seem to have been investigated [see 

Boulware and Deser,l985. Wheeler,l986, Myers,1987, Myers and Simon, 1988, Wilt- 

shire, 1988, Callan, Myers and Perry, 19891. Wiltshire (1986) did the electromagnetic 

extension of such solutions. The assumed topology for such solutions is R2 x s ~ - ~  
and spherical symmetry in all the (D - 1) spatial dimensions. 

(ii) Gravitational lt'aves and their propagation in higher order theory have been studied by 

Boulware and Deser (1985), Gibbons and Ruback (1986) and Tomimatsu and Ishihara 

(1987). 

(iii) Euclidean Tilbrmholes : Gonsalez-Diaz (1990) and Jianjun and Sicong (1991) studied 

Euclidean wormholes in the context of the EGB theory. 

(iv) Lorentzian Wormholes : Bha~val and Iiar (1992) first investigated the possibility of 

the existense of Lorentzian 14Tormhole solutions in EGB theory. They have shown that 

similar to the situation in four dimensional GR, the matter that threads the wormhole 

violates the !$leak Energy Condition for positive values of a. For negative values of 

a, the condition may or may not be violated. They have also suggested the possible 

construction of a solution with matter satisfying Weak energy condition everywhere. 



(b) WITH COMPACTIFIED EXTRA DIMENSIONS : 

This class of solutions is based on the Kaluza-IUein view of the world geometry and 

more relevent to our present day low energy physics where the extra dimensions are unob- 

servable. All cosmological solutions belong to this class. The main purpose for developing 

them is to find the reasons for a phase transition and the consequent dynamical reduc- 

tion mechanism which may account for the huge discrepency of scales between the three 

observed dimensions and the extra microscopic ones. These models may also explore the 

possibility of solving horizon and flatness problems which arise in the standard cosmol- 

ogy. Thus, these also appear to be possible alternatives to the usual inflationary models. 

When the ordinary dimensions increase, the extra dimensions decrease and with them the 

mean volume. This corresponds to the increase in temperature which, in turn, may be 

interpreted to be an increase in the entropy of the universe. 

Ordinary higher dimensional Kaluza-I<lein cosmological models have been studied by 

several authors [see Sahdev, 1984 and references therein. Also see Appelquist et a1.,1987 

for a collection of papers]. In the context of higher order theories such models were studied 

by Shafi and Wetterich(l985), Madore(1985,1986), Yoshimural986), Wheeler(l986), Ishi- 

hara(1986), Maeda(1986), Muller-Hoissen(l986), Henriques (1986)[but initial field equa- 

tions(2.7) written in this paper are not correctly written], Deruelle and Madore(l987), 

Mukherjee and Paul(1990, Barrow and Cotsakis(l991) etc. 

In the next chapter, we shall study and discuss different classical and semiclassical 

aspects of a simple model of this theory- a static, spherically symmetric solution- the 

Boulware Deser black hole. 



Chapter I1 

THE BOULWARE-DESER BLACK HOLE 

In this chapter, we concentrate our study on a static spherically symmetric black 

hole solution of the EGB theory given by Boulware and Deser (1985). This solution may 

be thought to be the extension of higher dimensional Schwarzschild black hole to higher 

order theory. Therefore, study of such a simple model may reveal the nature of physical 

processes involved in a higher order gravity model. We shall specifically study two cases, 

i.e. Geodesic motion and Hawking radiation, and try to see to what extent the extra 

dimensions and/or higher order terms affect these aspects. 

The metric element of this exact solution of the field equations (1.27) is written as (in 

unit c = 1) 

8 G M t i ~  
where P = l +  z[i 2 6 ~  - [I + + ] l i2] ,  

and i i = a ( n - l ) ( n - 2 ) ,  n = ~ - 2 .  

do: is the surface element of a unit n-sphere : 

where O < 0 1 < 2 x ,  O < B i < r ,  i = 2 , 3  ,..., n. 

If we choose units c = G = 1, then [MI .v Ln-' and P can be written in terms of 

dimensionless variables 



The variable p is our new dimensionless radial coordinate, so that 

In the limit a -, 0, P can be writ ten in its limiting form 

This represents the higher-dimensional Schwarzschild solution, which we would have ob- 

tained in its 'exact' form, if we had started with the Einstein action of ordinary D- 

dimensional spacetime : 

The horizon is given by P = 0 and, for a Boulware-Deser black hole, this is located 

at p = ph or r = rh and is given by 

Pt-' + - 2 = 0 

or, rt-' + ~ c r ; - ~  - 2G1V = 0 

Correspondingly, for the higher-dimensional Schwarzschild solution (a=O), the horizon is 

located at 

ph = 21/(n-1) or, T h  = ( ~ G M ) " ( ~ - ' ) .  (11.9~) 

For a > 0, there is only one horizon. For the five dimensional Boulware Deser solution the 

horizon is at 

so that we have a black hole solution only if a < 2. 



II.(A) Geodesic motion 

This section contains the results of our investigation on the geodesic motion in the 

Boulware- Deser Black Hole (BDBH) spacetime [ Bhawal, 19901. The study of geodesics 

is very useful for probing into the geometry of a spacetime. In the present context, this 

provides us information about the effect of the presence of extra dimensions and of the 

higher derivative terms on the motion of geodesics. We study only the cases corresponding 

to the positive values of a. Since this solution is asymptotic to the Schwarzschild spacetime 

of corresponding dimensions [Tangherlini, 19631, we also compare the results of the two 

cases. This will help us in isolating the effects originating due to the presence of higher 

derivative terms from those present in ordinary higher dimensional gravity. 

The symmetries of the Boulware-Deser spacetime give us n+1C2 'rotational' Killing 

vectors and one 'time-translational' Killing vector given respectively as 

. . 
( .  11 . = $[;aj1. z , j  = 1 , 2  ,..., ( n + 1 )  

t, = a,. 

Note that different combinations of the assigned values of the indices i, j correspond to 

different Killing vectors and not their tensor components. 

The solution of the geodesic equations is then considerably facilitated if we employ 

integrals of motion by using the theorem that if u is the (n + 2)-velocity of a geodesic, 

then for any Killing vector J, we have a constant of motion (.u. 

In terms of the polar coordinates, X ' C "  we have u, = g,,(dX,/dr) where r is the 

proper time along the geodesic. So. from the Killing vector Jt ,  we obtain the constant E : 

Similarly, the rotational IGlling'vectors give us constants lij, 



These are analogous to angular momenta. This leads us to define the 'total angular mo- 

mentum' to be 

t,, it being unit vectors in p and t directions respectively. So, 

where 'dot' denotes differentiation with respect to T .  The quantity E is defined to be the 

energy. Rearranging, we get 

E2 b2 L2 
-- - 1 for 'timelike' geodesics 

0 for 'null' geodesics 

Since this solution is spherically symmetric, we can always describe the geodesics in 

an invariant hyperplane described by all Ok = 7r/2, k = 2,3, . . . n. Then the Killing vector 

corresponding to the symmetry in the direction of the azimuthal angle O1 gives us 

The set of three equations 11.12, 16 & 17 describes the motion of geodesics in Boulware- 

Deser black hole spacetime. 

(i) Timelike Geodesics (u 2 = - 1) 

Considering the above equations of motion, the behaviour of the trajectory of a particle 

both in proper time and coordinate time can be investigated. The situation in the case of 

an infalling particle has been illustrated in Figure 1 for a particular combination of values 

of 'E7 and 'a' [E = 2, a = 1, p(initia1) = 101. As usual, with respect to an observer 

stationed at infinity, the particle describing a timelike trajectory will take an infinite time 

to reach the horizon, even though it will cross the horizon and arrive at the singularity 

in a finite proper time. It is found that as 'a7 decreases, the finite proper time needed to 

reach the singularity also reduces. This reduction is however very small as compared to 

the usual value of proper time needed. 
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Fig.1 Time in 5-dimensional BDBH. 

The field equation (11.16) may be written as 

This shows that the radial motion of a geodesic is the same as that of a unit mass particle of 

energy E 2/ 2  in ordinary one dimensional non-relativistic mechanics moving in the effective 

potential 

In the case of the five-dimensional Schwarzschild black hole, 

the extremum of which is at p, = 2L/(L2 - 2)lI2.  



RADIAL DISTANCE 

Fig. 2 Veff for timelike geodesics in 5-dim. Schw-arzschild black hole ( a  = 0)  

If L2 < 2, there is no extremum of KR A particle heading toward the center of 

attraction with L2 < 2 will fall directly to the horizon and will continue its fall into the 

spacetime singularity at p = 0. From now on, we shall refer to such a monotonous type of 

potential as type I. 

If L2 > 2, we can easily see that the extremum p, is the maximum point of After 

that, the potential dies down to 0.500 as p -+ ca. From now on. we shall refer to such type 

of potential as type 11. 

Figure 2 shows different vs p plots obtained for different values of L.  The lowest 

one ( L  = 0) is of type I. No stable bound orbit is possible. For a type I1 potential, only 

an unstable circular orbit can exist at p,. 



In a five dimensional Boulware-Deser black hole, 

The extremum point ( p  = p, )  of this potential is given by the equation 

The solution of this quartic equation in p: is very complicated and can be written as 

x = 
-(P - I )  f [ ( p  - 1 ) 2  - 4(k - b)]'I2 

and - (P + 1 )  f [ (p  + 1 ) 2  - 4(k + b)l1l2 
2 2 7 

* 
where 

From this solution, it is very difficult to make a general statement on the shape of 

the VeE vs p characteristics in different cases. However, we have plotted these curves for 

different values of a and L,  a typical one of which is shown in Figure 3. In all cases, the 

effective potential curves are either of type I or 11. Therefore, in no case, a stable bound 

orbit is possible. For a type I1 potential an unstable circular orbit can exist at  a radius 

p = p, . The five velocity of this circular orbit can be represented as 

where 
- 1 1 2  

w 2 = -  1 +  1 +-  
4 

' [ [ ] ] and N - .  = 1  - - 
2a PZ [l + 21 -I". 



RADIAL DISTANCE 

Fig.3 Ka for timelike geodesics for a constant value of a(= 1.9) in 5-dim. BDBH 

For a fixed a as L increases, the height of the maximum increases. The effective 

potential becomes zero at the horizon ph = d z  and, in all cases, asymptotically tends 

to 0.500 as p increases. For a fixed L, as a increases, the horizon consequently shifts to 

the left as does the location of the maximum (Figure 4). 

We have also investigated the field equations in other higher dimensions (D > 5) .  But 

the results obtained are of similar nature as those in fire dimensions. Again. the effective 

potential is either of type I or 11. 

(ii) Null Geodesics (u=O) 

For a five dimensional Schwarzschild black hole, 
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Fig.4 Vef for timelike geodesics for a constant value of L(= 10) in 5-dim. BDBH 

In this case, unlike the timelike geodesics, the potential is always of type I1 and the 

maximum point is at p, = 2. The maximum value of the effective potential is dependent on 

L from which we deduce that the five dimensional Schwarzschild geometry will capture any 

photon sent toward it with an apparent impact parameter smaller than the critical value 

b, = 2 d .  The effective potential for null geodesics in five dimensional Boulware-Deser 

geometry is 

The position of the maximum is at pe = (16 - 8 ~ ) ' ' "  So. in this case also, for any 

value of L or a (0 < a < 2), the potential is of type I1 (Figures 5 S: 6). The critical value 

of the 'apparent impact parameter' can be calculated to be 

112 
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Fig.5 Ire,, for null geodesics for a constant value of a(= 1.9) in 5-dim. BDBH 

(iii) Conclusions 

We have observed that the nature of the effective potential curves for five dimensional 

Boulware-Deser spacetime is not different from those in five dimensional Schwanschild 

solution. If we compare the two cases, we see that for a low or high value of L. the 

presence of a nonzero a  (and, consequently, the presence of higher order terms in the action 

of the field) does not significantly affect the nature of geodesic orbits. except changing the 

position of the horizon and the maximum point of effective potential. However, for values 

of L around L = f i, the presence of a  ( or, sometimes, a high value of a)  may change a 

type I potential to a type I1 one, being determined by Eq.(II.,'3). 

It is a well-known result that in four dimensional Sch~varzschild black hole geometry, 

stable bound orbits are possible for timelike geodesics. On the other hand, our numerical 
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Fig.6 V e f f  for null geodesics for a constant value of L(= 10) in 5-dimensional BDBH 

solutions have shown that the same is not true for higher dimensional Schwarzschild or 

Boulware-Deser spacetimes, where only unstable orbits are possible for suitable values of 

L. Considering the analytical solutions obtained, it is not very easy to arrive at the above 

conclusion because of the complexity of these solutions. Ho~vever, drawing analogy with 

Newtonian mechanics, we can expect the above results. 

It is well known that , also in Newtonian mechanics, a particle in a potential of the form 

4 ix l/rn-' (n > 2) cannot describe a stable bound orbit*. The underlying connection 

between this fact and the present results can be readily understood. In the weal; field 

limit, go0 = -(1 + 24). In the higher dimensional Schwarzschild solution, by Newtonian 

approximation, 4 is taken to be -GM/T(~-*) .  The absence of stable bound orbits in higher 

* A corollary of the Bertrand's theorem 



Also, 1, and ti are integers. All ti > 0 and 

Cfi (ri  ) are Gegenbauer functions. 

The radial function R ( r )  satisfies 

d2 R - + (w2 - V(r))R = 0 
dr* 

where r* is defined to be 
dr* 1 - - -  - 
dr P 

In the asymptotic region ( r  oo or r* + m), Eq.(II.29) reduces to 

N 
u 1 / 2 r 1 / 2  

e-'" A(&, B i )  (11.34) 

N 
and 

u1  12 r1/2 e-aWu A(B1,  B i )  (11.35) 

in terms of the null coordinates u = t - r* and v = t + r*. AT is the normalization constant. 

At early times ( t  -t -m), the solutions fw r  of the wave equation can be chosen so that 

on past null infinity 2- they form a complete family satisfying ort honormality conditions 

In our compact notation the index t = ( e l ,  e2 , .  . . , en ) .  

They contain only positive frequency modes and are chosen to reduce to the incoming 

spherical modes (11.35) in the remote past. The field can be decomposed as 

The 'in vacuum' state corresponding to the absence of incoming radiation from Z- 

can be defined as 

a,i I 0 > i n =  0 for all d, e. (11.38) 
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Because of the presence of the potential V(r) in Eq.(II.31), the standard incoming 

waves (11.35) will be partially scattered back by the background field to become a super- 

position of incoming and outgoing waves. These outgoing modes are totally different from 

those which arise as a result of the passage of incoming modes through the interior of the 

collapsing ball to the opposite side. 

Since the interesting thermal effects arise only from the latter contribution, for the 

time being, we will remove V(r) from Eq.(II.31), so that the field modes can be simply 

given by Eqs.II.34 and 35 everywhere. 

At late times, the field is described by the superposition of two types of modes. First, 

there are the outgoing modes (11.34) which we call pup. At future null infinity Z+, these 

are the positive frequency modes. Also, there will always be modes incoming at the event 

horizon which we call q,!. So, at late times, the field is expanded as 

h.c--t hermitian conjugate. 
\ 

Since massless fields are completely determined by their data on the past null infinity 

I-, one can express both put and q,! as linear combinations of f w p  and f Zp .  Let 

Pw! = 5: / d ~ l ( % d w l f , v  + P,wff;lt). 

This is known as Bogolubov transformation. The coefficients a,,! and P,,I are known 

as Bogolubov coefficients. These satisfy the normalization condition (or the Wronskian 

condition) : 

Therefore, the 'in vacuum' state will not appear to be a vacuum state to an observer 

at Z+. Instead he will find that the expectation value of the Number operator in the 'in 

vacuum' to be 



where Pwwl = (pwe, f:jt). (11.43) 

Thus, in order to determine the number of particles created by the gravitational field 

and emitted to infinity, one has to calculate P,,t. 

To evaluate ,8,,1, it was found to be convenient to take the surface of integration to lie 

in the in-region. This corresponds to the modes p,e being traced back along the null path. 

The modes pwe is of the form (11.34). At early times, the ray will be moving along constant 

v lines. But since the phase of the wave remains constant, it will still have the numerical 

value e-'wu(v) where the function u(v) has to be determined. Following Hawking (1974), 

one may show that 

u = - ln[vo - v]/S + constant (11.44) 

where vo is the value of the ray surface that forms the event horizon. The quantity S is 

called 'Surface Gravity' and is given as 

rh describes the horizon of the black hole where P = 0. Another derivation of Eq.(II.44) 

using moving mirror consideration can be found in Birrel and Davies (1982). 

So, at early times, we have 

~ w - ~ / ~ r - ' d e x ~  [% ln(vo - v) / I<] ,  for v < vo pwe = 
for v > vo. 

where I< is a constant. 

Now, the ordinary in-vacuum is defined with respect to modes fUf given by Eq.(II.35). 

So, using Eq.(II.43), the Bogolubov coefficients can be determined as 

One may also calculate 

1 v0 w1 1 1 2 ~ + i w ' v  iw 
~ W U ~ = ( P ~ ( , ~ ~ ~ I ) -  J do(;) exp [- ln(vo - v)] . 
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These integrals can be evaluated in terms of I?-functions. Using Eq.(II.41) one can 

have 

Now, using Wronskian condition(II.41), we can obtain from Eq.tII.42) 

This corresponds to a Planck spectrum with temperature given by 

Therefore, we observe that the most important quantity in this treatment is the surface 

gravity S and the Hawking temperature of any black hole of topology R2 x sD-* of the 

form(II.1) can be given by Eq.(II.50). 

In five dimensional Boulware-Deser black hole given by Eq.(II.2), 

In general, the temperature of a D-dimensional Boulware-Deser black hole is 

where rh is a solution of Eq.(II.8). 

Also, the temperature of an ordinary higher dimensional Schwarzschild black hole can 

be obtained by setting cr = 0 

Simi!ar expressions were also obtained by Myers and Simon (1988) and Wiltshire 

(1988) by making use of an alternative method which is described below in a sketchy way. 

[ There are ,however, some minor differences in the equation for rh and the expression for T 



because the definition of the constants and parameters of the black hole solution considered 

by them differ from those in the actual solution given by Boulware and Deser (1985).] By 

now, this method is also quite familiar in the literature [see Birrel and Davies,1982; Narlikar 

and Padmanabhan,l986]. 

The Hawking temperature of the spacetime metrics of the form (11.1) may be deter- 

mined in each case by noting that if one analytically continues the metric to imaginary 

time, t + ir, then the resulting manifold is regular if T is identified with a period P = 2x1s. 

After the analytical continuation, the metric (11.1) can be written with a Kruskal-like 

line element as 

where x - s-1 Sr* - e cos ST 

y - s-1 sr* - e s ins7  

This is a positive definite Riemannian space with topology R2 x S2. Since the event 

horizon (r  = 2nd). is represented by the origin of the coordinate system, the singular- 

ity and the space inside the black hole are absent here. There is a rotational symmetry 

corresponding to the Killing vector 8,. This endows r with the properties of an angu- 

lar coordinate with a periodicity 2x1s. This periodicity in r attributes the analytically 

continued Hartle-Hawking propa.gator [Hartle and Hawking,l976] all the properties of a 

thermal Green's function [Gibbons and Peny,1976,1978] from which the temperature can 

be easily identified to be 2x1s. 

Now, we may look back and correct the neglect of back scattering that depletes the 

outgoing flux by a factor R, , the reflection coefficient. This has the effect of replacing the 

left hand side of Eq.(II.41) by (1 - R,). If we consider a sphere of radius ro centered on 

the collapsing ball, the density of states inside it will be rodu/(2n) [for all fixed el ,  &I. 
So, the number of particles per unit time in the frequency range u to w + dw passing out 

through the surface of the sphere can be calculated to be 



Since R, is a function of w, the spectrum is not precisely Planckian in nature. The 

total luminosity of the black hole can be found by integrating (11.55) over all modes. The 

numerical study of the dependence of R, on w for five and six dimensional Boulware-Deser 

black hole can be found in Iyer, Iyer and Vishveshwara(l988). 

At the end of this section, we indicate here an interesting property of the five dimen- 

sional BDBH which one can guess from the expression of temperature in Eq.(II.51). 

A problem faced in the process of Hawking radiation is that a black hole may vanish 

after radiating away its entire mass. In that case the incoming pure state fully converts 

to a mixed thermal state from the point of view of an observer located outside the event 

horizon, thus violating basic principle of quantum coherence- the time evolution should 

be described by a unitary operator, the Hamiltonian. 

As is evident from Eq.(II.51), however, in this case, the black hole temperature may 

vanish at a finite mass and the evolution may end up with a zero temperature soliton. 

But the horizon also vanishes in that limit (2GM + 66) revealing the naked singularity. 

In this instance, then, the cosmic censorship hypothesis [Penrose. 19791 can be identified 

with the third law of black hole thermodynamics [Israel, 19861 which ensures that "No 

continuous process in which the energy tensor of accreted matter remains bounded and 

satisfies the weak energy condition in a neighbourhood of the apparent horizon can reduce 

the surface gravity of a black hole to zero within a finite advanced time". Such a black 

hole may, therefore, continue to radiate for ever without being fully evaporated away. 

The Eq.(II.52) shows that a zero-temperature situation will never arise in BDBH solu- 

tions for D > 5. As shown by Myers and Simon (1988), this feature is always encountered 

in 2 I i  + 1 dimensions for a Lovelock theory including 21i dimensional Euler density. 



II.(C) Comments on Back Reaction 

It is a natural question to ask whether the semiclassical effects or the leading order 

corrections can solve the problem of singularity faced in ordinary GR. Classically speaking, 

in higher dimensions, at short distances, Gravity is more at tractive than in four dimensions 

due to the fact that the force varies inversely as distance to the power of (D - 2). In all 

dimensions, the centrifugal repulsive force varies inversely as distance cubed. So, in dimen- 

sions( > 5 ) ,  the gravitational pull rises even more rapidly than the centrifugal repulsion. 

Also, we have observed in our study in sec.II.(A) that an object following timelike geodesic 

path takes less proper time to reach the singularity in the presence of higher order terms 

with a positive coupling constant. All these eficts seem to make gravitational collapse and 

spacetime singularities even more likely in higher dimensional and higher order gravity. 

The singularity is guaranteed to exist inside the event horizon by virtue of the singu- 

larity theorems of Hawking and Penrose [For references and details, see Hawking and Ellis, 

19731. A basic condition for the validity of these theorems is that the timelike convergence 

condition be satisfied every

w

here, namely, RpvTCv > 0. where C' is any timelike or null 

vector. In GR these theorems remain to be valid provided the gravitational field is coupled 

only to sources which obey the strong energy condition. and the cosmological constant is 

either zero or negative. However, if one identifies S,, in Eq.(I.27) with some sort of stress 

energy tensor, one can see that this does not satisfy the strong energy condition (but we 

should point out that such a consideration is not a very comfortable idea since this quan- 

tity depends on the geometry itself). We do not yet know the details of the validity of the 

singularity theorems and black hole uniqueness theorems in such theories. 

The effects of the higher order terms on the singularity formation can be properly 

understood only if one can solve the back reaction problem in such theories. The general 

procedure for studying back reaction problem in black hole is as follows : 

(1) One has to choose a spherically symmetric metric which may be valid inside the black 



hole 

(2) Then one has to consider a field (say, massless scalar field) in such a background 

and calculate the renormalized vacuum expectation value of the corresponding stress 

energy tensor denoted by < T,, >. The vacuum state under consideration is the 

Hartle-Hawking vacuum [Hartle and Hawking, 19761 which describes the blackbody 

radiation of the scalar massless particles in equilibrium with the thermal bath sur- 

rounding the black hole. The temperature at infinity of this bath is T = S/(27r). 

(3) Then < Tpu > is considered to be the source of the semiclassical Einstein-Gauss- 

Bonnet equations 

Gpv - C V ~ C S ~ ~  = t~ < Tpu >, (11.57) 

to solve for p(r) and q(r). 

Another important quantity for a real scalar field is the renormalized value of the 

mean square field < a2 >, which may determine the estent of symmetry restoration near 

a black hole in theories with spontaneous symmetry breaking [Hawking. 19811. 

However, a detailed back reaction problem is, in general, notoriously difficult to han- 

dle. The procedure described above could never be completed because of the great difficulty 

in calculating < T,, >. Some approximate calculations leading to one loop quantum cor- 

rection to the metric in case of the four dimensional Sch.ivarzschild solution ( a  = 0) were, 

however, done [Howard, 1984; Balbinot and Barlith, 19891. The problem of vacuum polar- 

ization in the gravitational field of a multidimensional black hole was considered by Frolov, 

Mazzitelli and Paz (1989) for a massless scalar field. One can show that the point splitting 

method employed by them can be generalised to BDBH as well. In practice, however, the 

calculation of both < a2 > and < T,, > is hampered by the complicated form of the 900  

component of the metric. Since we could not complete the calculation, we are not going 

to describe the procedure here, but would like to indicate a few difficulties. The paper by 



Frolov et a1 (1989) is quite self explanatory and one may also refer to Birrel 

and Davies (1982). 

The complicated form of 'P' in the BDBH metric poses a great problem 

for obtaining a solution for the radial part of the Euclidean Green's function 

GE(x ,  x'). The solutions for the other parts can be easily obtained. To solve 

this, one may employ similar techniques used by Iyer, Iyer and Vishvesh- 

wara(1989) for the solution of scalar waves in the BDBH background. But 

the equations become very complicated and getting an analytical solution 

seems to be an impossible task. The calculation of the Schwinger-DeWitt 

expansion (SDWE) for the propagator which is very much important for 

getting the renormalized value also faces various difficulties. For exam- 

ple, we failed to solve an important integral representing geodesic interval 

p-lI2 dr,  which is essential for completing this calculation. S ( ~ l  ~ h )  = sph 
Another difficulty arises, if one wants to solve the problem in dimensions 

greater than nine. In that case, one has to know the DeWitt coefficients a k  

upto k = 0 1 2  for even dimensions and k = (D - 1)/2 for odd dimensions. 

However, DeWitt coefficients only upto k = 4 are known. Nobody seems to 

have calculated these coefficients for k > 4, which will be very difficult to do. 

At the end of this section, we would like to point out an interesting 

study in the Einstein- Gauss-Bonnet theory, of the collapsing process by Pois- 

son (1991). With suitable boundary conditions, he numerically studied the 

problem in a black hole spacetime with extra compactified dimensions to 



see whether the effect of the higher order t e r m  can reduce the strength of 

curvature near the singularity. 

The boundary conditions considered by him is as follows. Near the singu- 

larity, the observed four dimensional slice of the spacetime is assumed to  be 

of the form of Eq. (11.56). The extra dimensions are compactified forming the 

internal space of the form ~ ( r ) ~ g , ~ d y "  dyb. On the other hand, very far away 

from the singularity, the spacetime is described by the usual four dimensional 

Schwarzschild metric, g,,, with a constant radius (D - 4)-torus added to the 

original line element : 

The constant radius wo is related to the radius of the internal space, w(r), 

as w(r) = wg exp[z(r)]. Then he numerically integrated the field equations 

inward to solve for p(r), q(r) and d(r). The result shows that for a positive 

coupling constant a, the singularity occurs sooner than the classical descrip- 

tion. For negative coupling the model breaks down because the radius of the 

internal space becomes zero. 

One may attempt to conclude from various results that the extra higher 

order terms will not come to the rescue of the spacetime near the singularity. 

But one should remember that the first order quantum corrections should 

not be considered as the last word in the description of such an important 

issue like singularity formation. The equations governing the evolution of the 

spacetime near the singularity may be totally different from what we expect 

from our present understanding of the subject. Before the final quantum 

theory is arrived at, the questions related to the singularity theorems in the 

context of semiclassical gravity, uniqueness theorem and quantum coherence 

problems are to be rigorously studied. 


