Physical Studies on some Liquid Crystals by

Surajit Dhara

Thesis submitted to the Jawaharlal Nehru University for the degree of Doctor of Philosophy

2003

Raman Research Institute Bangalore - 560080

DECLARATION

I hereby declare that this thesis is composed independently by me at the Raman Research Institute, Bangalore, under the supervision of Prof. N. V. Madhusudana. The subject matter presented in this thesis has not previously formed the basis of the award of any degree, diploma, associateship, fellowship or any other similar title in any other University.

(Prof. N. V. Madhusudana) Raman Research Institute Bangalore

Surajit Dhara

CERTIFICATE

This is to certify that the thesis entitled **Physical Studies on Some Liquid Crystals** submitted by Surajit Dhara for the award of the degree of DOCTOR OF PHILOSOPHY of Jawarharlal Nehru University is his original work. This has not been published or submitted to any other University for any other degree or diploma.

Prof. N. Kumar (Centre Chairperson) Director Raman Research Institute Prof. N. V. Madhusudana (Thesis Supervisor) Raman Research Institute

ACKNOWLEDGEMENT

I am very happy to express my deep sense of gratitude to Professor N. V. Madhusudana for his inspiring and invaluable guidance throughout the years. Working under him has been a rich and rewarding experience and I consider myself fortunate to have had this unique opportunity. I sincerely thank for the immense patience, kind advice, sustained encouragement, help and everything that I learnt from him.

Parts of the work presented in this thesis were done in collaboration with Dr. R. Pratibha and Dr. Yashodhan Hatwalne. I would like to express my sincere thanks to them.

I am very grateful to Prof. B. K. Sadashiva, Prof. V. Lakshminarayanan, Dr. Abhishek Dhar, Dr. Madan Rao, Prof. Bala Iyer, Prof. J. Samuel, Dr. V. A. Raghunathan, Dr. T. N. Ruckmongathan, Dr. Vijayaraghavan for helping me in various ways.

I am specially indebted to Raj, Sanat, Uday, Ujjal for their help in both academic and non-academic life.

Special thanks to my labmate and friend V. Manjuladevi for her help, discussions and many other things. I thank my batchmates Amarnath and H. N. S. Murthy for their cooperation, encouragement and various kinds help.

Special regards to Mr. H. Subramonyam (Ram) for his patience in the preparation of the cells. My sincere thanks to Mrs. Vasudha, Mr. K. Subramanya for technical assistance. I thank Mr. K. Radhakrishna, Mr. K. Krishnamaraju and Mrs. Marisa and Mrs. Radha for making all official matters look easy.

I was lucky to have Subbu, Giridhar, Srivasta, Anantha, Sushil, Reks, Pani, Amithabha as my seniors, Viswanath, Amitesh, Rema as my batchmates and Brindaban, Vani, Roopa,

Divya, Pandey, Pratiti, Ganesh, Anija, Atish, Arun, Amit, Govind, as my juniors. I wish to thank all my friends in the Institute who made my stay enjoyable.

My thanks are also due to Mr. Dashon, Mr. Mani, Mr. Ishaq, Mr. Raju, Mr. Gangadharan for their kind help in various ways. I thank the library staff of RRI for their support. The eversmiling staff of the Library would oblige for all requests including books and journals from various libraries. I would like to thank the staff in the computer section of RRI, specially Sridhar and Jacob for their prompt help. I also thank RRI canteen staff for their help providing food and coffee during my stay at RRI.

Finally, I am grateful to the administrative authorities of the Raman Research Institute for providing me a research fellowship during the course of this work as well as for the book grant.

My deep gratitude to my parents and brothers and sister Bula Dhara for their constant encouragement throughout this period. I also thank all my family members and friend Partha for their support to complete this work.

Contents

1	Introduction				
1.1	1.1 Liquid Crystals				
1.2	Nematic Liquid Crystals				
	1.2.1	Orientational Order Parameter	2		
	1.2.2	Refractive Indices	5		
	1.2.3	Curvature Elasticity	6		
	1.2.4	Dielectric Constants	7		
	1.2.5	Electrical Conductivity	9		
	1.2.6	Freedericksz Transition in Nematic Liquid Crystals	9		
1.3	Chirality				
	1.3.1	Cholesteric Liquid Crystals	11		
	1.3.2	Bragg Reflection	12		
1.4	Smectics				
	1.4.1	Smectic-A (SmA) Liquid Crystals	13		
	1.4.2	Smectic-C (SmC) Liquid Crystals	14		
	1.4.3	Smectic-C [*] (SmC [*]) Liquid Crystals	14		
1.5	Topol	Topological Defects in Liquid Crystals1			
	1.5.1	Twist Grain Boundary (TGB) Liquid Crystals	16		
1.6	Prepa	Preparation of Cell			
	1.6.1	Cell Thickness Measurement	18		
	1.6.2	Alignment of Liquid Crystals	20		
2	Effect of High Electric Fields on the N-I Phase Transition of a				
	Nematic Liquid Crystal Exhibiting Large Negative Dielectric				
	Aniso	Anisotropy			
2.1	Introd	Introduction			

2.2	Theor	Theoretical Background25			
	2.2.1	Landau Theory of Phase Transitions	25		
	2.2.2	Landau-de Gennes Theory for the Nematic to			
		Isotropic (N-I) Phase Transition	26		
	2.2.3	Nematic-Paranematic Phase Transition in the Presence of			
		an External Electric Field for a System with $\Delta \epsilon > 0$	28		
	2.2.4	Macroscopic Quenching of Thermal Fluctuations of the Director	31		
	2.2.5	Nematic–Paranematic Phase Transition under an			
		External Electric Field for a System with $\Delta \varepsilon < 0$	34		
2.3	Exper	Experimental41			
	2.3.1	Results and Discussion	45		
	2.3.2	Surface Induced Order	58		
	2.3.3	Order Parameter Enhancement by the Field	61		
	2.3.4	Variation of T_{PN} with Field: Inclusion of Director Fluctuations	64		
	2.3.5	Order Parameter Susceptibility: Generation of third harmonic			
		component of the electrical signal	69		
2.4	Concl	usions	73		
3	Enhancement of Orientational Order Parameter of Nematic Liquid				
	Cryst	als in Thin Cells	77		
3.1	Introd	uction			
3.2	Exper	imental			
3.3	Resul	Results and Discussion			
	3.3.1	Quenching of Director Fluctuations in Thin Cells	92		
	3.3.2	Landau de Gennes Theory of a Nematic Liquid Crystal Confined			
		Between Two Plane Parallel Plates with a Large Surface			
		Orientation Potential	95		
	3.3.3	Confinement Induced Biaxiality	99		
3.4	Concl	onclusions102			

4	Ionic contribution to the Dielectric Properties of Nematic Liquid Crystals in					
	ThinC	Cells	106			
4.1	Introd	action	106			
4.2	Experi	Experimental107				
4.3	Equiva	alent Circuit and Impedance Analysis	109			
4.4	Experi	mental Results and Discussion	110			
	4.4.1	Theoretical Analysis	113			
4.5	Conclu	isions	122			
5	Some Experimental Investigations on Type-II Chiral Liquid Crystals125					
5.1	Introd	uction	125			
5.2	Electro	Electroclinic effect				
5.3	Experimental					
5.4	Results and Discussion					
	5.4.1	Helical Pitch in the Cholesteric Phase	135			
	5.4.2	Electroclinic Measurements	137			
	5.4.3	Effect of a Strong Electric Field on the TGB _A Phase	139			
	5.4.4	Freestanding Films	140			
5.5	Conclu	usions	144			
6	Theoretical Estimation of Structural Parameters of The Twist Grain					
	Boundary-A Liquid Crystals147					
	6.1	Introduction	147			
	6.2	Energetics of a Single Screw Dislocation	149			
	6.3	Energetics of a Single Twist Grain Boundary	151			
	6.4	Interacting Twist Grain Boundaries	154			
	6.5	Conclusions	158			