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Chapter I

Effect of High Electric Fields on the N-1 Phase Transition of a
Nematic Liquid Crystal Exhibiting Large Negative Dielectric
Anisotropy

2.1 Introduction

Studies on the dfeds of eledric and magnetic fields on liquid crystals are
interesting both from fundamental and techndogicd points of view. There have been
severa reports on the effect of strong electric and magnetic fields on the isotropic to
nematic phase transition [1-7]. The dedric field experiments were performed onsystems

exhibiting positive dieledric anisotropy (Ae = (g, — &) > 0), where the subscripts refer

to dredionsinrelationto . Thefree eergy density dueto the dedric field is given by

F :—ig"Ezcosze—isDEzsinze (2.9
8 8

e

where ¢, and ¢, arethe principal dieledric constants, E the gplied eledric field and fis

the angle between the director and the dectric field (Fig.(2.1)). Equation (2.1) can be
rewritten as

F, = —SiﬂAg(r‘n.E)2 —8—25552. 2.2
It is ®en that for a materia with Ag >0, the free aergy density is reduced when the
diredor is parald to the dedric field while for a material with Ae < 0, the free energy
density is reduced when the director is perpendicular to the field. For a material with

Ag >0, at high fields,

F, =-—¢gE?. (2.3
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Figure 2.1 Schematic diagram showing the diredion d the field with respect to the

diredor.

The free energy density can be lowered with thefield if ¢, is enhanced. Consequently the

distribution function is enhanced near the director. Thus S is incressed and ¢ is

deaeased urder field. Expressng ¢, in terms of Swe can write
_ 2
g =€ +§AEOS (2.9

where £ = (8” +2¢ )/ 3 isthe average dielectric constant and Sis the orientational order

parameter, given by

_Le
Ag,

(2.9

where Ag, is the anisotropy in the fully aligned state (S=1) [8]. In the presence of field,

the order dependent part of equation (2.3) can be written as
- _Ag,SE? _
¢ 127
Thus applicaion d a strong eledric field to nematic liquid crystal with Ae >0 leals to

(2.6)

an enhancement of orientational order parameter [4]. A strong field also shifts the
paranemati c-nematic transition temperature (Tpy). For afield to shift Tpy by a measurable
amourt, the field energy shoud be cmparable to the thermal energy ksT. Similar eff ects
on rematic liquid crystal can also be seen urder a magnetic field. The volume
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diamagnetic anisotropy (Ax ) of a typical nematic is ~10" cgs units and the moleaular

diamagnetic anisotropy Ay, isgiven by

Ax
JAN =2 2.
X m N (2.7

where N is the number of moleaules per unit volume. The number density is given by

N =¥ 2.9

where p is the density of the medium, Na= 6.02x10° /mole is the Avogadro number and

M, the moleaular weight. Assuming M = 300, p =1 gnvcc, we get Ay, ~102° cgs urits.

The anisotropic part of the magnetic energy per molecule is given by
_—Ox,H?

m 5

The required field energy to be egual to the thermal energy (a T = 300K), H shoud be

~ 10" gauss So far only a magnetic field of ~10° gausshas been applied to thermotropic

F 2.9

liquid crystals producing a very small shift in the paranematic-nematic transition
temperature (~6mk) [7]. On the other hand the dielectric anisotropy (~20) can be much
larger than diamagnetic anisotropy. Making a similar caculation as above, bu repladng
Axby Ae/4mand H by E ore finds that the required eedric field is ~10° V/cm

(~300esu). Thiselectric field is pradicdly attainable in the laboratory.
In this chapter we will describe the first experiment on the dfect of strong electric

field on the paranematic-nematic transition on a system with negative dieledric

anisotropy to find some interesting results. First we give the theoreticd background for
describing the nematic-isotropic phase transition in the @sence a well asin the presence
of eledric field.

2.2 Theoretical Background

2.2.1 Landau Theory of Phase Transitions
The Landau theory is a phenomendogicd theory, which was developed for
describing second order phase transitions. In such a phase transition the order parameter

increases continuowsly aaoss the transition pant, and close to the transition pant the
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order parameter is very small. Therefore the free energy density F can be expanded in
powers of order parameter Swhich charaderises the lower symmetry phase [9].

F(p,T,S):FO+§SZ+%S4 (2.10

where Fq isthe free energy density of the disordered phase ( S= 0). The @sence of the
linea term in Sin equation (2.10 ensures the stabili ty of the higher temperature phase. In
the ordered phase (S # 0), the minimum in F is ensured by assuming A < 0 and in the
disordered phase ( S= 0) the minimum in F is ensured by assuming A > 0. Landau
asamed that A= a(T-T*) where a is a constant and T  is the transition temperature and
C (>0) isa monstant which does nat depend ontemperature. Equation (2.10) is valid for a
system in which the free energy density is independent of the sign of order parameter S
(e.g. ferromagnetic system) i.e. F(S = F(-S and the aubic and the higher odd pavers of
Sarenat al owed. Therefore the free aergy density can be written as
F(p,T,S):FO+%(T—T*)SZ+%S4. (2.11)
The euili brium value of the order parameter isfoundby using F'=0 and F" >0 ( each

prime denotes a differentiation with resped to S)

1

s=3-Th 212
0 N

The order parameter profile is continuows with temperature for the second order phase

transiti on.

2.2.2 Landau-de Gennes Theory for the Nematic to Isotropic (N-I)
Phase Transition

Aswe have discussed in sedion 1.2.1the orientational order parameter of nematic

liquid crystal is defined as S:%<3cos2 6 —1> where 6 is the angle between the long

axes of the moleaules and the diredor. The order parameter S can take any vaue between
—1/2 to 1. The two extreme vaues of S describe two dstinct physicd situations of the
system. The first one crresponds to a situation with 8 = 71/2 and second oreto 6 =0.

The positive and regative values of S arise in general from different distribution



27

functions, hence F(S) # F(-S). Hence the free @ergy density of the nematic phase must
include the aubic power of Sandis given by
F(p,T,S):FO+g(T —T*)Sz—gs3+%s4 (2.13
where T is the temperature below which the isotropic phase can na be supercooled and
the negative sign o the aibic term has been assumed to get a lower free aergy for
S >0. Minimising the &ove eguation with resped to Swe get two solutions
S=0

2 _ _ *
ad S+ZEi\/B 4ac(T -7")
©2C 2C
S= 0 corresponds to the isotropic phase. S, corresponds to the lower minimum in the free

. (2.14

energy in the stable nematic phase. The nematic-isotropic transition temperature Ty, can
be cdculated by equating the free energy density in the nematic phase to that of the
isotropic phasei.e. F(p,T,S): F,, which gives

a * B C
E(TNI_T )SSI_ES;I-I-ZS:I =0 (2.19
where Sy, isthe order parameter at the transition pant. The euili brium condtionyields
a(TN, —T*) S, - BS, +CS, =0. (2.16
From equations (2.15 and (2.16), we get
2B
Sy =— ,
NI 3C
and T =7 +28 2.17
N 9aC '

Equation (2.14) has ared solution orly when B? —4Ca(T —T*)> 0, leaing to an upper
temperature limit above which the nematic phase @nna exist. This temperature T~ is
given by

82

T =T + )
4Ca

(2.19

The variation d the free energy density as a function d order parameter for

various temperaturesis $iownin Fig.(2.2). When T>T thereisonly one minimum in
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T=T
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F(a.u)
o
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S

Figure 2.2 Variation d the free aergy density as a function o order parameter at
various temperatures near nematic—isotropic transition. For T<T there is a second

minimum in F at S=-0.02whichis hardly visible.

the free energy curve arrespondng to S=0, i.e. the isotropic phase. An infledion is
observed in the free @ergy density curve & T=T . For Ty < T < T there ae two
minima one of which corresponds to the isotropic phase (S=0) and aher one @rresponds
to the superheaed nematic phase. At T=Ty, there ae two minima of equal energy
density. Therefore afirst order phase transition takes placefrom S=0t0 S=Sy. For T < T
< Ty there ae again two minima, the @solute minimum corresponds to the nematic
phase. Below T  the isotropic phase can na be supercooled. At T=T there is only one
minimum correspondng to S > Sy and an infledion pant at S=0. For T <T , thereisa
second minimum for a negative value of S, and the crrespondng energy is higher than
that for S>0. The inclusion d third order term explains the first order phase transition

sea in al nematogens. The @rrespondng jump in the order parameter is~0.3.

2.2.3 Nematic-Paranematic Phase Transition in the Presence of an
External Eledric Field for a System withAg >0

As explained ealier (equation (2.6)) in the presence of an external field a linear
term in S has to be alded in the Landau free energy expansion (equetion (2.13). This
prevents the existence of the isotropic phase. The field induces aweak orientational order
even in the higher temperature phase, as a result of which all the physical propertiesin



29

the medium beome wedkly anisotropic (paranematic phase). The field-induced
birefringence in the paranematic phase due to the dectric field is called the Kerr effect,
and the analogous eff ect due to a magnetic field is call ed the Cotton-Moutton effect. The
free eergy density in the presenceof the dectric field can be written as

F(p.T,S)=F,(p,T)-hS+ Msz —233 +%s4 (2.19
where h = fgo E?. Minimising equation (2.19 with resped Swe get

a(T —T*)=g+BS—CSZ. (2.20

It is e that when the field is switched on, a given value of S occurs a a higher
temperature. The variation d the free aergy density in the presence @& well as in the

absence of field is $hown for a system with Ae >0 in Fig.(2.3) for T >T,,. The dedric
field phese diagram is dhown in Fig.(2.4). It is sen that under an electric field the

paranematic to nematic transition temperature is sifted to the higher value and the order
parameter is increased in the nematic phase. At low fields the transition accurs with a
finite jump in the order parameter in afirst order phase transiti on.

E=0
14 E>0

F(a.u)

-0.05 0.00 0.05 0.10
S

Figure 2.3 Variation d free aergy density as a function d the order parameter in the

presence and absence of an eledricfield for T >Ty; .

With increasing field the jJump decreases and abowve acriticd field there is a continuous

evolution d the order parameter from the paranematic to nematic phase. These
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phenomena resemble the dasscd gas to liquid transition undr presaure. Since the
symmetries of the two pheses are the same the posshility of a secnd order phase
transition can be ruled ou except at the aiticd point. At the criticd point
F'=F"'=F" =0, where eab prime denotes a differentiation with respect to S
Differentiating equation (2.19 thrice with resped to S and equating to 0, we obtain the
following relations [10]

T, =T +
3aC

g2 = 4B
© Ag,

(2.21)

where &, T. and E. are the aiticd values of the order parameter, temperature and
correspondng eledric field respedively. The shift in the transition temperature is given

by [1]

_ Ag
Ton (E) — Ty (0 - Q 127_[@5 (2.22

where p isthe desnity, Q the latent heat of transition, given by %aTN,S,i, in

the Landau de Gennes theory.

0.4+

0.3

0.1+

0.0

0.4 0.8 12 1.6 20
(T-TH(T,-T)

Figure 2.4 Theoreticd variation d the order parameter as a function d reduced

temperature & various eledric fields. The dashed line indicaes the mexistenceregion.
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2.2.4 Macroscopic Quenching of Thermal Fluctuations of the Director

So far we have discussd the dfed of a strong electric field onthe N-1 phase
transition. In the nematic phase there ae thermal fluctuations of the diredor, which
introduce distortions of the diredor field. In chapter-1 (Fig.(1.5) the three types of
distortion are shown pictorially. These fluctuations cause strong light scattering (10°
times larger than the scatering from an isotropic fluid). As a result the nematic is turbid
in appeaance It was pointed ou by de Gennes [11] that a strong field could partially
guench the director fluctuations and hence the order parameter can be enhanced. Suppae
the average orientation d the director is along the z-axis. The fluctuation d the optic axis
at any point ‘r’ will be described by small non-zero components ny(r), ny(r). To secnd
order in ny(r) and ny(r) the distortion energy density is given by [11]

0
F, =K +ﬂ§+r<2 N _ % g %D;é (2.22)
ZE oy dy 0x @GZD 0z

where K;, Ky, K3 , are the splay ,twist and bend elastic constants respectively. For
simplicity, using the one constant approximation we can write the distortion energy
density as

H

F, ==K(0On,) (2.239

I\J

where n, is the fluctuation in a diredion perpendicular to the z- axis. It is convenient to

analyse n.in Fourier components
-1 2\ aidf g
nD(q)=\7J'nD(r) e dr (2.29
From equations (2.23h and (2.24), we get
1
Fla)=5K ans"(a)v. 2.25

where V is the volume. Using equipartition theorem i.e. equating the energy of each mode

with the thermal energy % koT , we get

2 kgT
(no(a))= E (2.26
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If q - 0, the fluctuation amplitude <|nD(q]2> is large. Let us asuume that a stabili zing

eledric field is applied along the z direction. Therefore the energy density is given by the
sum of the n - dependent part of the field energy plus the distortion energy

1 Ae >
F=F, +F ==K(On,) +=n’E’ 2.2
o+ Fe= KON, f + o (227

where E is the gplied electric field and A ( > 0) is the dieledric anisotropy. Using the

equipartition theorem the fluctuation amplitude can be expressd as

KT 1 _keT 1
n(a)) =-g = (2.28
< . >E v Kq2+A£E2 v K(q +&° )
an
where E K B‘/ is cdled the dectric ooherence length. It is sen from
DA£/471

equation (2.28 that due to the dedric field the fluctuation amplitude is reduced. The
inverse Fourier transform of equation (2.29 gives

2 Kg
(n?) = 2n"’TK i _Z_IZ‘E (2.29

where ¢ is the ait off wave vedor, given by 2m/a, where a is of the order of a

X

, . . 1
moleaular dimension. Using <n22> :1—<n2>—<n§> :1—2<n§> and S= §<n5>—§§ the

enhancement of order parameter due to the quenching of the diredor fluctuations by
eledric field isgiven by [4]

s :g<ng>E-<ng>o]:3[<n;>o_<n;>E] 230

os = el E[V|E| (2.3))

It is noticed that the enhancement in the order parameter due to the dectric field is
linealy propartional to the moduus of the gplied eledric field. Thisisin addition to the
quadratic dependence of 6S on field arising from the Kerr effed (see guetion (2.19).
Similarly 0S can be cdculated dwe to the magnetic field. Some early experiments in late
70s[12] using a magnetic field showed thatAn, —An, 0O H .
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Durand et a performed high electric field experiments on SCB[4]. They measured
the order parameter as a function d eledric field at various temperatures (Fig.(2.5)) and
analysed the enhancement of Swith field in terms of both the linear and quadratic efeds.
We have obtained the shift in the paranematic—nematic transition temperature (T, ) from
the data of Fig.(2.5). It is plotted as a function o field in Fig.(2.6). It may be pointed ou

that the shift is linealy proportional to the dedric field urike the prediction d the
Landau de Gennes theory, which gives a quadratic dependence (see equation (2.22)).

S
04 r‘f"’*‘1_ﬁrpr: e
g p
0.2 -
L
0 0 20

E (104 Viem)
Figure 2.5 Variation d order parameter S E) as afunction o eectric field (E ||n) in the
nematic liquid crystal 5CB at various temperatures near the  criticd point C.
a:T=Ty+1.5%; B: T=Tny+0.6XK; y: T=Ty+0.25%; and o : T=Ty-0.1XK. The solid
lines are fit to the experimental data using the Landau-de Gennes model. The dashed line
isthe spinodal. (adapted from ref.[4])

0.6 5CB

0.4+

T PN(E)-TFN(O)

0.2

0.0

; ; ; ; ; ;
0 100 200 300 400 500
Field (esu)

Figure 2.6. Variation d the shift in the paranematic—nematic transition temperature
(AT, =Ten (E) = Toy (0)) as afunction d applied field. Data points (fill ed circles) are
derived from Fig.(2.5)
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It was reported by Geetha @ a [5] that the shift in the nematic-smedic transition
temperature (Tay) iS propational to E? and is consistent with the prediction d Landau
theory. The variation d Tay is $own in Fig.(2.7) as a function d eledric field. In this
case the dastic constant K3 diverges as the N-SmA transition is approached and the
diredor fluctuations are quenched in the SmA phase. Therefore only the Kerr effect
contribution from dieledric anisotropy is important. On the other hand, the linea
variation d Tpy asafunction d field indicaes that the quenching of diredor fluctuations
are very important near the paranematic —nematic phase transition. The earlier workers
did na emphasise this asped.

66.2 |

66

Tan (°C)

658

656

0 100 200 300 400
V(volt)

Figure 2.7. Tay as a function d applied eledric field in 80CB. The symbds are
experimental data. The alculated variation (continuows ling) corresponds to the
prediction d the Landau theory that the shift in transition temperature is proportional to
E2.(adapted from ref.[5])

2.25 Nematic—Paranematic Phase Transition under an External
Eledric Field for a System with Ag <0

Studies on the dfed of strong electric fields on liquid crystals with negative
dieledric anisotropy (Ae < O) are interesting because the phase diagram is very different

in nature compared to that in a system with Ag >0[13]. In the former system a strong
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dipdar group makes a large angle with the long axis of the moleaule. To study the
eledric field effed, anematic liquid crystal with Ae <0 is sandwiched between two ITO
(indium-tin oxide) coated glass plates, which are treated for planar aignment and the
field is applied between the plates (along the z -axis) as sown in Fig.(2.8). In the
paranematic phase the dipales of the moleaules tend to align along the field drection. As
aresult the long moleaular axes tend to be perpendicular to the field dredion. It shoud
be pointed ou that in the paranematic phase the distribution d azimuthal angles of the
moleaules in the (XY) plane perpendicular to the field is randam. The projections of the

long axes of the moleaulesin the XY plane ae showninFig.(2.9).

Y
Y
A je—=
Z O S
> X
Isotropic Paranematic (N XY plane (N
Y
A je=
- P - &:D
- ~ —
Qg)o -_
> X
Biaxial Nematic (Np) XY plane (Ng)

Figure 2.8 Schematic representation d the field induced paranematic (Ny’) and Haxia

nematic (Ng) liquid crystals. The relative size of the moleaules is exaggerated for clarity.
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In the paranematic phase the distribution function d the long axes around the
field dredion shows a small peak at % With increasing field the peak height increases
in the paranematic phase as down schematicdly in Fig.(2.9. Therefore the order
parameter (S) in the paranematic phase bemmes negative giving rise to negative uniaxial
(Ny") phase & depicted schematicdly in Fig.(2.8).

E,>E;

E;

|
0 T2 T

Polar angle 6

Figure 2.9 Schematic representation d the distribution function in the presence of
eledric field (Ae < 0) above Tpy. Dotted line represents the distribution function without
field in the isotropic phase, and the continuous line represents the same with field in the

paranematic phase. The peak aroundT1v2 is exaggerated for clarity.

When the system is cooled under the field below the paranematic—nematic
transition temperature the long axes of the moleaules tend to align in a preferred diredion
(x-axis) because of the surface interadion with the treated plates. In the nematic phase
there is a partial quenching of the diredor fluctuations due to electric fields in the ZX
plane (Fig.(2.9)), thus the fluctuations in the ZX plane ae different from those in the XY
plane perpendicular to the field. Therefore the differential quenching of fluctuations leals
to an induwced hiaxiality under field [14-15]. Under the field the paranematic to nematic
transition corresponds to unaxia nematic (Ny) to biaxia nematic (Ng) transition. With
increasing field Ny~ to Np transition temperature is shifted to higher values and the order

parameter is increased in the Ng phase. The jump in the order parameter reduces and
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finally the transition becomes continuows above the tricriticd field, at which the first
order transition goes over to a second ader phase transition as siown in Fig.(2.10. In
Table-1 the field effed onthe diff erent phases is summarised.

Table-|
The effect of an electric field on the isotropic- nematic phase transition
Phase in Phase in nonzero field
zero field
As>0 Ns<0
Ny+ .
I U Ny
Ny+ Ny+ Ng

Thus the gplicaion d an external eledric field to a nematic liquid crystal with
negative dieledric anisotropy induces biaxial ordering. We use the tensor order parameter

QGB to be aleto describe this. Considering up to the fourth arder term in the expansion,

the Landau-de Gennes free energy density in the presence of an external eledricd field
can bewritten as[10]

1 1

, 1
o DEELEQy + - ATIQ +

3
where A (= a (T-T')), B, C are Landau coefficients which will be numericdly different

F=- BTrQ’ + %C(Ter)z (2.32

from those in equation (2.19. The tensor order parameter QGB is defined as

%(X+y) 0 OE

1
-Sk=y) ¢ (2.33
0 0 xL

-

where x is analogous to S defined earlier (x = %S) andy is the biaxial order parameter

Qup =

N W

which dstinguishes between two drections orthogonal to the diredor. Using equation
(2.33 wefind
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TIQZ = E@(ZJE (2.34)

1 =3 ).

Using equations (2.32), (2.34a) and (2.34b the free aergy density can be written in
terms of order parameters x, y as

F(xy)=alx)+y*Bx)+y'y (2.39
with a(x)= “hx+ S AR + 1B+ Cx,
4 4 16
1A leys3cx -1
,8(x)—4A , BrroCx, and  y=.C

where h = 8iAsOEa E, . Minimising F(x, y) with resped to y, we get
s

y =0 (uniaxial), (2.361)
v =-PX) piaia) (2.36h

The solution (2.36H), which depends onx, and henceonhisred when 8(x)<0 as y >0.

The free energies in the two pheses are obtained by using equations (2.35), (2.36) and
(2.36h as

F, (x)=a(x) when B(x)=0 (uniaxial), (2.37)
Fo (x)=a(x)- ﬁz(x%y. (biaxial) 2,879

Whenever the biaxia solution is alowed, F,(x)<F,(x). The eguilibrium order

parametersin the Ng phase culd be foundby minimising the free aergy density F, , and

aregiven by [10]
B
_ B Q5 1, . 0
R L+ n+ZVE, (2.381

with n =6AC/B?, =12C*h/B’. For a second ader uniaxial-biaxial phase transition
at X=X, the following condtions are satisfied [10]:
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B(x,)=0, (2.3%)
a"(x,)=0, (2.39H

EHLZ(X)E >0. (2.3%)
dx .

Using these ondtions uniaxial to biaxial transition is found to be first order
for |h < |hcp| and second ader for || > |hyo,|. The point |h| = |hc,| isatricritica point.
The locdion d the tricriticd point is given by equations (2.3%), (2.39H with (2.39¢c)
hading as an equdity,[10]:
1 B°
=— -, 2.4
Mreel = G2 2 (2.408)

The temperature and the orientational order parameter at the tricriticd point are given by

31B®
Tiee =Ta + 864aC (2.40H
1B
=——. 2.40c
NPT (2.40)

The cdculated phese diagram using this model for nematic liquid crystals with
negative dieledric anisotropy as afunction d reduced temperatureis shown in Fig.(2.10).

hih,,
N

Ae <0

05 £0 £5 io £5
(T-T)(T,-T*)
Figure 2.10 Composite h, T phase diagram of nematics with bah As >0 and Ae <O0.
Thick linesindicae first order transitions, dashed line the seaond ader transition: CP and

TCP are aiticd andtrictrica points. (adapted from ref.[10])
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The field-induced biaxiadity in the system with Ae <0 arises due to the
quenching of the diredor fluctuations as well as the Kerr effed. The only eledric field
experiment on system with Age <0 was reported by Dunmur et a [14-15]. They found
that the induced hiaxidity is linearly propational to the moduus of the gplied eledric
field, which ariginates mainly from the quenching of diredor fluctuations. Using a
sensitive opticd moduation technique they measured the field induced biaxial order
parameter in the nematic phase which is very small, ~10° at ~100esu.

In this chapter we report the first experiment on the dfect of strong electric field
(~550 esu) on the paranematic-nematic transition on a system with large negative
dieledric anisotropy.

The main dfficulty in conduwting high electric field experiments on liquid
crystals is the heaing of the sample due to ionic condwctivity as well as dieedric
relaxation. There can also be hydrodynamic instability [11] for the systems with Ae <0.
To minimise the heding effect Durand et a [3] applied an eledric field of short pulse
duration (~10to 100us) with long off period giving asmall duty cycle. In thistednique
it takes a long time (~ 40 minutes) to colled each data point. They measured
birefringence of the sample under the field and cdculated the order parameter for
materialswith Ag > 0.

We have alapted the technique developed by Gedha @ a [5]. In this technique,
the locd temperature of the sample is measured under the field and the data points are
colleded continuowsly. This technique enables us to perform opticd as well as electricd

measurements smultaneously on materials with negative Ac .

In this chapter we report the following results on a materia with Ag <0 :
(a) eledric field induced enhancement of birefringence (b) shift in the uniaxial to biaxial
nematic transition temperature (Tpy) with field (c) evidence for surface transition
(d) divergence of order parameter susceptibili ty near the second ader uniaxial to hiaxial
nematic transition temperature & measured by third harmonic dectricd signd
(e) detedion d asmall second harmonic dedrical signal near uniaxial to biaxial nematic

transition unar astrong field.
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2.3 Experimental

The block diagram of the experimental setup is shown in Fig.(2.11). In order to
measure local temperature of the sample we use an evaporated nickel (Ni) film to design
a temperature sensor. Ni shows a high temperature efficient of resistance
(~6200ppm/K). A thin film (~0.2um) of nickel is vacuum coated ona plane glassplate.
A zigzag pattern of nickel film which has a strip width of 200um and total length of 5cm
is etched phaolithographicdly. The resistance of the pattern is ~100 to 20@2. The Ni
thermometer is cdibrated in each cell to measure the locd temperature. The thermometer
is covered with a thin insulating layer of SIO on which a drcular aluminum eledrode
(with 0.5cm diameter) is vaauum evaporated. In arder to reduce the field gradient at the
edges aguard ring is designed just outside the Al electrode with a separation d 100um as

PD2 PD1 Q
ANL &=
A POL j MUL
LASER ‘
S \ |
N
r A4
2 F—
CELL HEATER
Cn
Ayl
1
Lit—oSit—
AMP H— LIA COoM

Figure 2.11 Schematic diagram of the experimental setup. Phatodiodes (PD1, PD2).
Polariser ( POL), Anayser (ANL), Multimeter (MUL), Voltage Amplifier (AMP) Lock
in amplifier (L1A), Resistances (R;, Ry), Computer (COM). The refledion angle of the

laser beam is exaggerated for clarity.
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shownin Fig.(2.12. Thetop eledrode is an ITO coated glassplate. SiO is coated on bah
the plates a a grazing ange of 30° using vacuum evaporation. On such a plate, the
diredor is aigned orthogonal to the incident diredion d SIO beam. Mylar spacers are
used to oltain the required cdl thickness The sample thicknessis measured ouside the
eledrode aeaby an interferometric technique described in chapter-I.

Guard ring
v
/] % A\
K BN
I
L §
\J N 7
\ V )
<— SiO

Al

Figure 2.12 Schematic diagram of the lower eledrode. Thereis an insulating SIO coating
between Ni thermometer and the Al electrode. Notice the zigzag pattern of the Ni

thermometer.
Glass
Spacer é;
Sample ::> SiO (alignment
Al (electrode) . coating)
Ni thermometer o——SiO(insulator)
Glass

Figure 2.13 Schematic of the side view of the cell ( not to scde).

Typica cdl thickness used for the eperiments is ~16um. The dedrica
conredions to the two plates are made through copper wires which are soldered using an
ultrasonic soldering gun. The cross ®dion d a typicd cdl is shematicdly shown in
Fig.(2.13. The cdl ismourted in ahot stage (INSTEC HS1) which itself is placed onthe
rotating stage of the microscope (model ORTHOPLAN). The temperature is controll ed to
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an accuracy of 0.008C. The cdl is fill ed with the sample in the isotropic phase and on
slow codling to the nematic range, awell -aligned sampleis obtained.

The output voltage of alock-in amplifier (LIA, model SRS 830) is conneded to a
high gain vdtage amplifier (TREK, model 601-2). The output of the amplifier is
conreded to one of the two branches $iown in Fig.(2.11). In ore branch there is a
potential divider circuit, which is made of two resistors (R;=IMQ and R,=100Q)
conreded in series. The potential divider circuit is used to measure the phase and
amplitude of the amplified vdtage. In ancother branch the sample cell is conreded in
series with a capaator C, (~ 1uF ). A manual DPDT switch is used to switch between
the two branches. The phase and amplitude of the arrent flowing in the cel are
measured aaoss the cgacitor Cy,. The LIA can be used to measure higher harmonic
signals also. Two zenor diodes with their oppasite polarities interconneded as gown in
Fig.(2.14 was conrected acrossthe inpu of the LIA to proted it from acddental high
currents, (for eg if the cdl shorted). Using impedance analysis, we measure the

cgpacitance (Cs) and resistance (Rg) of the sample.

Zenor Diodes

LIA

Figure 2.14 A block diagram of the zenor diodes circuit to proted the lock-in amplifier

from large arrents.

If Vo and ¢, arethe anplitude and plese d the output of the anplifier and Vi, and

¢m are the same measured aaossthe cgadtor Cp, it can be shown (see sedion 4.3 @
chapter-1V) that the cgpadtance and resistance of the sample ae given by

Y
wsina

R, = (2.4
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X

Cs:Y’ (2.42
sina + X? V, .
where X =cor-Q,Y=——,Q="" ,0=¢ —-@, ,and w=2rrf ,f being
CmQ VO

the frequency of the gplied signal. The dieledric constant is given by the ratio Cs / Cy,
where Cy is the cgacitance of the empty cell. Using a set of standard capadtors and
resistorsin parallel conrected in place of the cdl, the measuring system is cdibrated. It is
foundthat the stray capadtanceis ~ 2 pF. The accuracy of the measured capacitance is
~1% and that of the resistanceis~ 5 %.

The lower eledrode is opaque due to the Al and Ni coatings, and it is not possble
to perform opticd measurements in the transmisson mode. We have used an ITO coated
glassplate as the top electrode which enables us to perform optical measurements in the
reflection mode of the microscope. A laser (He-Ne, A= 632.81m) bean is passed through
a podariser (POL) and made to be incident on the sample. The Al eledrode refleds the
laser beam. The refleded beam is passed through an analyser (ANL), which is crossd
with resped to the pdariser. A phaodiode (PD1, model Centronics OSD-5) is used to
measure the refleded intensity. The stabili ty of the laser intensity is monitored by another
phaodiode (PD2). A multimeter (MUL, Keithley model 2000 measures the output
voltages of both the phaiodiodes as well as the Ni resistance.

The temperature variation d the opticd intensity is measured in the
homogeneously aligned sample. Transmitted intensity through a uniformly aligned
sampleisgiven by

_sinf 2

I, (1-coshg), (2.43

where { isthe angle made by the padlariser with the optic ais and the phase difference
A = ZTHAn(Zd) (2.44

An=n, —n,, where neand n, are the extraordinary and adinary refractive indices of the

liquid crystal medium. Here d is the sample thicknessand the fador 2 comes because the

light travels acrossthe sample thicknesstwicein the reflection mode. The angle ¢ is st

a 45° to optimise the measurements. The birefringence is cdculated from the measured



45

intensity. The typicd frequency and vdtage ranges used in the experiments are 1111
15111 Hz and 5to 270V respedively. The sample 4 -butyl-4 heptyl-bicyclohexyl-4-
cabontrile (CCN-47) was obtained from Merck and wsed in the experiment withou
further purification. The chemica structure of the molecule is sown in Fig.(2.15). It has
the following phase transitions: Cr 28 SmA 30.6 N 59.7 |. This compound exhibits a
large negative dieledric anisotropy (Ae =-8.0 at 20 °C) and the smedic phase can be
supercooled to room temperature. The measurements are completely controlled by a
computer, using a suitable program. All the experiments are performed while wadling the

sample from the paranematic phase.

H Cql 1t gH17

Cr 28 SmA 30.6N 59.71
Figure 2.15 Chemicd structure and the phase sequence of the cmpound ed in the
experiments. Temperatures are given in degreeCelsius.

2.3.1 Resultsand Discusson
A typical variation of Ni resistancewith the temperatureis shownin Fig.(2.16).

Temperature (°C)

40

0 @ 9 % 9% 100
Ni Resistance (R)

Figure 2.16 Temperature clibration curve for the nickel resistance thermometer. Open

circles are the experimental data and the line is a paynomial (T = a+bR+cR?) fit to the
data.
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The birefringence (An) is calculated from the transmitted intensity using
equations (2.43 and (2.44). The variation d An over a wide temperature range (~20 °C)
in the nematic phaseis siown in Fig.(2.17). It isnoticed that An is very small ~0.016at
0.5°C below Ty and increases to 0.031at 20 °C below Ty, in view of the saturated rings

of the moleaules. The birefringence An,of a completely ordered sample is determined

from the temperature dependence of An, which can be gproximated well for nematic

liquid crystals by [16]
AnzAnoé—lg (2.4H
Tl

where T; and 8 are ajustable parameters. A least squares fit to the experimental data
with equation (2.45 is shown in Fig.(2.17). The value of the fitted parameters are
T, =333.KK, which is0.3°C higher than Ty, An,= 0.0576and 3 = 0.23.The value of 3

istypicd for nematic liquid crystals[11].

0.032+

An=0.576
p=0.23
T =600

0.028+

0.024+

An

0.020+

0.016+

3;5 4IO 4IS 5IO 5IS 60
Heater Temperature (°C)
Figure 2.17 Variation d An as a function d temperature. Circles are the experimenta
data and the mntinuows line is a theoreticd fit to the to equation (2.45. Cell thickness
16.8um.

We have measured &, in a homogeneously aligned sample ad ¢, in a

homeotropicdly aligned sample. The cdl thicknesses used for the experiment are 8.5um
and 7um respectively in the two cases. Both the measurements are made & applied

voltage of 0.2V and a frequency of 4111Hz. The gplied vdtage (0.2V) is much lower
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than the threshold vdtage for Frealericksz transition in the homeotropic cdl. The

variations of dieledric constants ¢, and &, are shown as functions of the heaer
temperature in Fig.(2.18). It is noticed that £ is larger than ¢, in the nematic & well as
in the smedic phases, the N-SmA transition cccurring at 30.6 °C. The variation d &

aaossthe N-SmA transition temperature is snooth whereas a small increase is observed

ing, . Thedieledric anisotropy Ag = (8” —¢,,) a the NI transitionis = -3 and increases to

= -6 a 30 °C below Ty. The mean deledric constant £ is cdculated using the

formulag = (g, +2¢,)/3. At Tw, € =€, =7.2 and as the temperature is lowered down to

the N-SmA transition £ is increased to = 8. The increase in £ is ~4 % at Ty -15°
(N phase) and ~10% at Ty, -30° (in the SmA phase).

104

Dielectric constant

T T T T
30 40 50 60
Heater Temperature (°C)

Figure 2.18 Variations of ¢, and € asfunctions of heater temperature. Applied vdtage:
0.2V and frequency: 4111Hz. ¢, isthe dieledric constant in the isotropic phase. The
mean value in the nematic phase is € = (5” +2¢,,)/3, which is shown by a datted line.

The vertical arrow denotes N-SmA transiti on temperature.

Acoording to the Maier and Meier theory (see eguation (1.13) in chapter-I)

N,p hF 2
£=1+472P %+ FU E (2.46

M 3Kk, T

The seaondterm in the bracket is due to the contribution d the orientational polarisation

of the dipde moments. In the nematic phase € can increase with decreasing temperature
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due to the increase in the density ( p ) and the contribution from orientation polarisation.
Experimentally it is reported in a nonpdar compoundthat £ increases by ~2 % at 15°
below NI transition temperature due to increase in density alone [17]. The excess
variation in the highly poar compound sed by us is due to the cntribution d the
orientation polarisation, which increases with deaeasing temperature & fe in equation
(2.46.

We have dso measured the threshold vdtage for Freedericksz transition at severa
temperatures. The measurement is made & a frequency 4111 Hz. The eperimental
procedure is described in chapter-1. Since the dieledric anisotropy of the cmmpoundis

negative the experiment is performed in a homeotropicdly aligned sample. In this case

the threshold vdtageis given by V,, =m,/K,/&,Ae whereKj; is the bend elastic constant

and g,is the dieledric constant of the free space. Using Vi, andAe we cdculate K3 at

severa temperatures. The variation d K3 as afunction d heder temperature is own in
Fig.(2.19. It is noted that K3 is ~0.2x10° dynes at a temperature of 1 °C below Ty, and it
follows an S*-dependence near Ty, where S is the order parameter. As the nematic to
smedic transition (30.6°C) is approached, K3 is expeded to diverge and the arrvature of
the variation changes sgn around 40°C. We oould na measure Vi, below 32 °C due to

the occurrence of hydrodynamic instabiliti es (EHD) in the sample under the dedric field

1.20
0.90

0.60 o

-6
K, (10” dynes)

0.30- )

T T T T T T
35 40 45 50 55 60
Heater Temperature ( °C)

Figure 2.19 Variation d the bend elastic constant K3 as afunction d temperature. Points
are experimental data and the dotted line is drawn as a guide to the eye.



49

at these temperatures. Surprisingly we did na find any EHD in the nematic phase of this
compound umil we reach Tay . The only other experimenta investigation on this
compoundwas by Lavrentovich et al [18] who studied the growth pattern urder electric
fields in the SmA phase in the homeotropic geometry.

The variation d An as functions of local temperature acoss the paranematic to
nematic transition at different fields are shown in Fig.(2.20). These data ae colleded in
temperature steps of 0.5°C. It is observed that the individual curves at different fields are
clealy seen down to ~2 °C below the transition pant. Our main interest is to study the
effect of strong fields on the paranematic-nematic transition. Therefore we have
conducted detail ed measurements acrossthe transition ower a 0.5’ temperature range with

temperature steps of 0.01°C.

0.020{"*

0.015

5 0.0104

0.005+

0.0001
55 56 57 58 59 60
Local Temperature (°C)

Figure 2.20 Variations of birefringence in the paranematic and rematic phases as
functions of locd temperature & different fields. Points are experimental data and the
corntinuots lines are drawn as guides to the eye. Cell thickness 16.8um. Frequency of the
applied field: 15111Hz (1esu = 300V/cm).

Variations of An as well as ¢ are shown as functions of |ocal temperature at

various fields in Fig.(2.21) and Fig.(2.22 respedively. The data shown in these two
figures are ollected after several thermal cycles of the sample. The locd temperature is
the temperature measured by the Ni resistance thermometer. The following important
fedures are noted from Fig.(2.21): (i) with increasing field () An is enhanced in the



50

nematic phase and (b) the paranematic to nematic (Ny™ -Ng) transition temperature (Tpy)
is shifted toward higher values (ii) An sharply rises from the zero value & the temperature
is lowered in the phase transition region (iii ) separations among the arves are quite wide

close to the transition pant and are reduced as the temperature is lowered in the nematic
phase.

0.016-

B
Vit Srang 005sy Q&W%@%
o O a0 B
i (=u] 0.5 Sy & i
0.012 th% 2, Qg%%
- o o A Qo?{
< 0.008- +- 528esu a0
#o 432esU [
o 317esu 9 ks
A 212esu
0.004- o 1066 ° % 4
o 10.5 esu a ;
ma
0.000- b ercms
T T T T T T
59.0 59.2 59.4 59.6

Local Temperature ( °C)

Figure 2.21 Variation d birefringence acrossthe paranematic-nematic transition region
as afunction o local temperature & different fields. Cell thickness 16.8um. Frequency

of the gplied field: 4111 Hz. Points are the experimental data and the dotted lines are
drawn as guides to the eye.

o
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Figure 2.22 Variation d dielectric constant aaoss the paranematic-nematic transition

region as afunction d locd temperature & different fields. This data and the data shown
in Fig.(2.21) were obtained simultaneously.
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An independent experiment was performed on a fresh sample. The overal resporse is
similar to that of the first sample except that the field free transition temperature is

dightly higher in the fresh sample. Variations of An as well as £,0n this smple ae

shown as functions of locd temperature & various fields in Fig.(2.23 and Fig.(2.29
respedively.

0.016

0.012

0.008 1

An

0.004

0.0004

504 506 508 600
Local Temperature ( 0C)

Figure 2.23 Variation d birefringence acrossthe paranematic-nematic transition region
as a function d local temperature a different fields on a fresh sample. Cell

thickness 16.4um. Frequency of the gplied field: 4111Hz.

542 esu
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325 esu
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Figure 2.24 Variation d dielectric constant aaoss the paranematic-nematic transition
region as a function d locd temperature & different fields. These data and the data
shown in Fig.(2.23 were obtained simultaneously. Dotted line cnrects the temperatures

at which An startsto rise from zero value.
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In order to see the influence of frequency of the gplied field we made another
independent opticd measurement on a fresh sample & a frequency of 15111 Hz.
Variations of An upto 334esu are shown in Fig.(2.25 as afunction d locd temperature.

It isnaticed that the overall resporseis smilar to that of the second sample.

PN AN .
Rl R
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Figure 2.25 Variation d An aaoss the paranematic-nematic transition region as a
function d locd temperature & different fields. Cell thickness 16.4um. Frequency of the
applied field: 15111Hz.

The temperature & which An starts rising from zero value is a measure of the
paranematic to nematic transition temperature (Tpy) (However, seelater discusson). The
variations of Tpy obtained from Fig.(2.21) and Fig.(2.23) are shown as functions of field
in Fig.(2.26. A large shift in Tey (~0.3) is measured between 5 to 550 esu. The
important result is that Tey varieslinealy with the r.m.sfield. Inthe fresh sample Tpy
is abou 0.4 °C higher than in the recycled one. However the slopes of the two curves
shown in Fig.(2.26) are the same. It may be mentioned that a quadratic variation o Tpy iS
predicted by the Landau de Gennes theory (only an E® term occurs in the free @ergy).
The linea variation d Tpy as afunction d field indicates that the quenching of director
fluctuations not only increases the order parameter but it also has a strong influence on
the phase transition. This point was not recognised in ealier high eedric field

experiment on systems with Ae > 0[3]. In our experiment we predsely measure the locd
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temperature of the sample under field by a nickel resistancethermometer. It enables us to

measure the transition temperature & various fields acarately.

)
60.0+ ®  secondsample N .
@ 5984 e
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Figure 2.26 Variation d paranematic-nematic transition temperature (Tpy) as a function
of applied field. Data correspondng to the fill ed triangles and fill ed circles are obtained
from the data shown in Fig.(2.21) and Fig.(2.23) respedively.

We mpare the birefringence and deledric data shown in Fig.(2.23 and
Fig.(2.29. It is naticed from Fig.(2.23) that An is zero in the paranematic phase. At Tpy,
An rises dharply from zero value. As we have discussed in sedion 2.2.5the field induced
paranematic phase is uniaxia negative with the optic ais lying along the field diredion.
The diredion d the laser beam is also perallel to the optic axis, and no opicd path
difference is measured along this direction.(see Fig.(2.11)). In the Ng phase, along with
the field dredion there is anather axis, which is the diredion o aignment of rods
favored by the surfacetreament. This is parallel to the glassplates and perpendicular to
thefield dredion (seeFig.(2.8)). This creates the biaxiality of the medium. However, the
principal diredor lies aong the eay axis on the plates. Therefore when the transmitted
intensity is measured continuously across the paranematic-nematic transition region, it
shows a sharp rise from zero value. In the nematic phase, for example & 59.6 °C (see
Fig.(2.23) the enhancement in An is measurable up to ~325 esu. Beyond that the arves
in the nematic phase ae crowded though they are well separated in the transition region.
Visual observations of the sample were made between crossed poarisers in the nematic
phase with the principal diredor oriented parallel to the lower polariser (seeFig.(2.11)).
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Up to afield of ~350 esu, the field of view is uniformly dark. Beyond ~350 esu some
birefringent regions are seen along with the motion d the some dust particles. In spite of
using a guard ring there may be afield gradient at the alges of the sample. The field may
also be nonunform inside the cell due to dlight variations of the locd thickness or the
presence of the dust particles in the sample. Such field gradients acrossthe sample can
cause physical motion d the medium. As a result the sample can get misaligned and lead
to light transmisgon. The merging of the airves beyond ~350esu probably occurs due to
such amisalignment.

From the dielectric data (shown in Fig.(2.24)) severa important points can be
noted: (i) with increasing field (a) €.is incressed in the Ny phase (for example &
60.1 °C) (b) the Ny-Ng transition accurs at a higher temperature (c) the jump in £,
aaossthe transition deaeases and (d) just below the transition temperature (for example

at 59.65°C) ¢, increases but at a lower temperature, say 59.4 °C, the arves overlap
(i) variation d € isnot as sarp as that of An (iii) at the immediate |eft of the dotted

line (which conrects the temperatures where An starts to rise from zero value) the data
points lie farther apart and the variation o & is faster than that on the right side. With
increasing field in the paranematic phase the field induced order parameter increases and
hence &, is increased. We can calculate the uniaxial negative order parameter in the
paranematic phase from the dielectric data, which will be discussed later. The variation
of e isnot as darp as that of An in the transition region. This may be étributed to the

fad that An is measured in the midde of the sample over a very small area~10° cn?
(diameter of the laser bean < 0.5mm) whereas ¢, is measured over an areaof ~0.2cn?.

The field as well as temperature are more uniform over the smaller region sensed in the
optica study. Therefore the variations of An as functions of field and temperature better
reflect the variation d order parameter than the dieledric data.

The orientational order parameter for uniaxial nematic liquid crystals can be well
approximated by [8,17]

An
S=—, 2.4
o, (2.47)
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The compound sed shows a very small An, and hence the internal field corredions are
negligible. Thusit is alegitimate gproximation to cdculate the order parameter directly
from An data.

0.28
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Figure 2.27 Variation d order parameter cdculated (using S=An/Ang) from the data
shown in Fig.(2.23. Dashed line @mnneds the temperatures below which the order

parameter varies smoothly.

In the nematic phase under an electric field (with Ae < 0) the director fluctuations
in the plane containing the field are reduced compared to those in the orthogona plane.
As a result the system becomes biaxial, which is described by the order parameter S
(=1.5x, sedion 2.2.5 and the biaxial order parameter P. In our experiment we adually
measure the birefringence in the plane orthogonal to the dedric field. This is a measure
of (SP) rather than S However, the field induwed hiaxial order parameter P ~ 10°
(at ~100esu) in asimilar sample [14] whereas S~ 0.2. Hence we use An as a measure of
the order parameter S The variations of calculated order parameter using the
equation (2.47) at variousfields are shown in Fig.(2.27).

The Landau de Gennes theory (see euation (2.14)) gives rise to the following
form of the temperature dependence of the order parameter in the field free uniaxial
nematic liquid crystal:

—aH-T
S SO—GQ- T**g (2.49

where T is the @solute limit of superheding of the nematic phase, & is the order
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parameter at T~ and B = 0.5, and a is a proportionality constant. The experimental data
over the entire nematic range ae fitted to the ébove form with S, =0 gives3 = 0.23 (see

Fig.(2.17). This value of B is obtained in severa other nematics, and the origin of this

discrepancy from the measured value in na yet understood [11]. For example the

predicted value of the order parameter at T~ isequa to 1.5 S, bu the experimentally

measured values are dways much lower (~1.1 S, ).
Acoording to the Landau de Gennes theory (using equations (2.17) and (2.18))

_2B?
9aC’

2
T =T, +368ac and T =T, (2.49

It is senthat T is much closer to T, than T'. Experiments ow that T~ ~T,, —1°.
Thus T is~0.1° abowve T,, , acording to equation (2.49).

In order to estimate the paranematic to nematic transition temperatures from the
temperature variation d the order parameter, we aume that equation (2.48 aso hdds
good even in the presence of the field. We use the data in the nematic phase within orly
0.15°C from the transition pant in this analysis.

As we have mentioned there is some misalignment of the sample beyond ~350
esu and hence we will consider the order parameter data only up to 325esu. In Fig.(2.28)
experimental values of the order parameter in the nematic phase within 0.15C from the
transition pant as well as the cdculated variations using equation(2.48 are shown. The
comparison ketween the two is reasonably good upto 217esu, and nd so good for 325
esu. The fitted values of §, a, B and T are shown in table-ll. T™ is also indicated in
Fig.(2.28 by verticd dotted lines. The values of T, which are defined as the temperature

below which the birefringence becomes norzero (see Fig.(2.27) are dso shown in
table-1l to compare with T™. From table-ll it is ®en that at all fidds T™ is ~0.05°C

lower than T, . This snal difference between T~ and T, probably arises due to the

surface induced order, which will be discussd in the next sedion.
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Figure 2.28 Variation o order parameter in the nematic phase within 0.15°C of the
transition pant. Data points are those below the temperatures limited by the dashed line
shown in Fig.(2.27). Continuows lines are the theoretical fits to the eguation (2.48).
Dotted verticd lines indicate the temperatures correspondng to calculated values of T
(Table-).

Table-11
Fiddin | 5 a B T7(C) Ten (°C)
esu
5 0.12 0.37 0.17 59.68 59.75
109 0.11 0.40 0.17 59.73 59.78
217 0.09 0.47 0.17 59.80 59.86
325 0.08 0.52 0.16 59.88 59.92
59.884
50.82 .
f 59.76-
.
59704
0 100 200 300
Field (esu)

lineis drawn as aguide to the eye.

Figure 2.29 Variation d T (taken from Table-11) is shown as afunction o field. Dotted
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It is noticed (Table-11) that when the field is increased from 5 to 325esu, &
deaeases from 0.12to 0.08as expeded and 3 deaeases dightly from 0.17t0 0.16. T

is plotted in Fig.(2.29 as afunction o field. The amourt of shiftin T is~ 0.2°C which
is gmilar to the shift of Ty when the field is incressed from 5 to 325esu. The variation

of T” hasboth linear and quedratic dependences on the field as sen from Fig.(2.29.

2.3.2 SurfaceInduced Order
It is noticed from Table-Il that T™ is~0.05°C lower than T, at all fields, which
is defined as the temperature below which the birefringence becomes non zero. Severd

data points have been oltained between T~ and T, a 5 esu, which is pradicaly a
negligible field. At higher fields (Fig.(2.27)) the data points become more scarce & S,
deaeases. Therefore we will only discussthe order parameter data between T~ and T,

for sample under 5 esu. In Fig.(2.30 the variation S between T~ and T, is sown

onan expanded scde.

0.20

0.154
0.104

0.051 o

0.00 S S

50.68 59.72 50.76

Local Temperature (°C)

Figure 2.30 Variation d order parameter at a field of 5 esu. Here a small portion
(59.67°C to 59.78°C) of the arve (shown in Fig.(2.27) is expanded. Vertical up and
down arrows denote T~ and T,,, respedively (Table-11). Note the aurvature of the solid

linebelow T~ isoppasite to the arvature of the dotted line @ove T .
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It is noticed that below 59.68°C, the order parameter S follows the temperature
variation given by equation (2.48) and above this temperature the airvature changes sgn.
The dhange of curvature is better seen at the lowest field (~5esu) than at higher fields and
Is also seen in independent experiments (see Fig.(2.25). The measurements are made on
coaling the sample from the higher temperature phase. The SIO coating provides a strong
anchoring at the surface, aligning the moleaules aong the eay diredion. The surface
alignment is expeded to be retained even in the higher temperature phase.

There ae several experimental and theoreticd studies on the influence of the
surface order on the nematic —isotropic transition [19-23]. Using the Landau de Gennes
theory Ping Sheng [20] showed that if the order parameter at the surface is higher than
that in the bulk, the transition at the surface occurs at a higher temperature than in the
bulk. A higher order parameter at the surfaceis expeded to arise from the interactions
between confining surfaces and the liquid crystal moleaules. Experimentally Miyano [21]
measured the wall-induced hirefringence dowve the isotropic-nematic phase transition
point. He showed that the pretransitional birefringence measured in the homeotropic
geometry of the sample diverges as T, is approadhed from the isotropic phase. In alight
scatering experiment Mada d al [22] reported that the bulk isotropic —nematic transition
ocaurs a ~0.1°C below that at the surface. Using a density functional theory of nematic
liquid crystals Selinger et al [23] predicted a complete wetting near the free surfaces of a
nematic aising from a strong surface field (Vs =10V, , where V, is the Maier-Saupe
orientation pdential between the moleaules). The profile of the calculated order

parameter is reproduced in Fig.(2.31). Because of the aumed strong surface field,

<P2 (cos@)} Is sturated at the surface. At temperatures above T,, , away from the surface

it quickly decays to a value dose to the Maier-Saupe bulk nematic value of 0.429at the

N-I transition pant. This value is retained for a cetain length before the order parameter
decays to the bulk isotropic value of 0. The distance over which <P2(c039)>= 0.429
increases as |Int| as t - 0*, where t=(T -T,, )/T,, is the reduced temperature. This

increase is reflected in the effective nematic order parameter, integrated ower the
thickness T (t), which also dverges logarithmicaly with t (Fig.(2.32). Though these

cdculations have been made for homeoptropic dignment, the results for homogeneous
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alignment are expeded to be similar, as has been found onthe basis of the Landau- de
Gennes theory by Ping Sheng [20].

(P, (cosd))

o
e

Z/ro

Figure 2.31: Profile of order parameter (P, (cos@)} showing nematic order near a free

surface for reduced temperature t=(T -T,, )/T,, =10°107°%,....10°°. (adapted from
ref.[23)]). (ro Is approximately the radius of the cylindricd moleaule)

_rm
ap
fl
P
E
Al

Figure 2.32 The cdculated integrated nematic order parameter I' = ‘!’ <P2 (cose) zasa

function d the reduced temperature t = (T -Ty )/TNI (adapted from ref.[23)])

In Fig.(2.33 we show the variation d measured order parameter ( S) with the
reduced temperature T (: (T —T**)/T**) between T~ and Ty, . In this snall temperature

range S diverges logarithmicdly. Therefore we believe that this part of the arve
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represents the surfaceinduced order before the bulk transitiontakes place 4T, which is
pradicdly indistinguishable from the bulk transition temperature.

0.12

0.08+

0.04+

0.00- o

0.0 1.0x10* 2.0x10*
T=(T-T 1"

Figure 2.33 Variation d order parameter as a function d reduced temperature (7).

Dotted lineisdrawn as aguide to the eye.

2.3.3 Order Parameter Enhancement by the Field

In this sction we ompare the enhancement of order parameter with the
theoreticd predictions described in sedions 2.2.4and 2.2.5.It is convenient to use the
birefringence data shown in Fig.(2.25) because the data points are available down to
~59.4°C. Analysis is carried out up to 334 esu because beyond that the sample gets
misaligned as discussd in the last sedion. The variation d enhanced order parameter as
afunction d field at several temperaturesis iownin Fig.(2.34).

The increase in order parameter due to the gplication d electric field arises
because of two physicd mechanisms. One mechanism is the maaoscopic quenching of
thermal fluctuations of the diredor as discussed in sedion 2.2.4(equation (2.31). The
enhancement of order parameter for a system with As <0 dueto this effect alone an be
written as [15]

_ 3kgT £ 2|E|

ss, =S(E.T)-s(0.T) 8r(K )’z CAT O

(2.50

=¢ ||
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where K is the average arvature dastic constant, S(E,T) is order parameter in the
presence of field and S(0,T)is the same in the absence of field. The subscript | indicates
alinea variationwith |E] .

Another mechanism for the enhancement of order parameter under the gplicaion

of field is the Kerr effed, which is microscopic in arigin as discussd in sedion 2.2.5.

Theincrease in order parameter due to this effed alone can be written as
_ 2
oS, =¢c,E (2.5
where cq is an appropriate susceptibility. This effed is quadatic in E, indicated by the
subscript g. The enhancement in the order parameter due to bah the effects can be

written as
0S(E) =68, +0S, = ¢|E[ +c,E”. (2.52
The variation d measured 6S (: S(E) —S(O)) a different temperatures is iown in

Fig.(2.34. Using a least squares fitting procedure, the enhancement of the order
parameter is fitted with the equation (2.52).

0.04

0.03

3S=S(E)-S(0)
o
B

0.01

0.00-

0 50 100 150 200 250 300 350
Field (esu)

Figure 2.34 Variation d enhancement of the order parameter (6S) as a function d field

at different locd temperatures. Continuows lines are fit to the functional form of

oS =¢|E[+c,E” .

It is noticed from Fig.(2.34) that at higher temperatures (closer to the transition
paint, for example & 59.65°C) the variation d &S is nealy linear and the quadratic
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effect is e at higher fields as the temperature is lowered. The temperature variation d

the fitted parameters ¢, and ¢, are shown in Fig.(2.35). ¢ decreases and ¢, increases as the

temperature is lowered in the nematic phase. In amean-field model K 0 S? and As O S,

100- _ s
°
..
& e L1000
~ 80- LoD 8
B —
= 75 &
o~ 6.0
; 50
[m] [ )
O C‘
40 - A
.U+ [m} [m} Lo5
5952 5958 5064

Local Temperature (°C)

Figure 2.35 Variations of the fitted parameters ¢ and ¢, are shown as functions of locd

temperature. Dotted lines are drawn as guides to the eye.

therefore the susceptibility ¢ deaeases rapidly (¢, ~ S™°) as the temperature is lowered

in the nematic phase. On the other hand cq is propartional to the Ae , which increases as
the temperature is lowered in the nematic phase.

We have dso cdculated the uniaxial negative order parameter ( S,”) from the
dieledric constant data taken from Fig.(2.24). In the paranematic phase the field-induced

diredor i.e the symmetry axis is parallel to the field. Thus the measurement yields &,
which is given bye”P =£ +§AeOSU_ where S, is the negative uniaxial order parameter
as Ag, isnegative. In the nematic phase the principal diredor is perpendicular to the field
and we measure € whichisgivenbye]l =& —%AEOS (ignoring biaxiality which is very

small). We have used the value of S obtained by optical measurement at (Tpy -2)°C to

evaluate Ag,(= -9.97). Abowe the tricriticd point the paranematic-nematic transition is

second ader and, g’ = &[] and tenceit isexpeded that S - = —%S at Ten.
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Field(esu)
Figure 2.36 Variation d uniaxial negative order parameter (S,) in the paranematic phase

as a function o applied field a a temperature 60.1 °C. Points are experimenta data

Continuots lineisthefit to the functional form S,- = ¢ E?*, where cq=2.5x10" cgs urnits.

The variation d uniaxial order parameter Sy- is 1own as afunction d the gplied
field in Fig.(2.36. A least squares fitting procedure is used to fit the data with the

. — 2 . .
equation ;. =c,E". The agreement with the measured data is not very good. As we

discussed ealier the dielectric data is measured over a large aea (0.2cn) and the field
and temperature may not be uniform in the cdl.
The enhancement of order parameter near the surface, which was discussd in the

last sedion, also contributes to snp . However it is expeded that sHP mainly arises from the

field-induced arder in the bulk in the paranematic phase.

2.3.4 Variation of T, with Field: Inclusion of Director Fluctuations

The paranematic-nematic transition temperature (Tpy) in Fig.(2.26) shows a linear
dependence on the r.m.s value of the field. According to the prediction d the Landau de
Gennes theory, Tpy varies quadraticdly with the field. The linea variation d Tpy with
field indicaes that the quenching of director fluctuations also influences the paranematic—
nematic (P-N) transition. Below the tricriticd point P-N is a first order transition with a
finite jJump in the order parameter at the transition pant, and the fluctuations of the order

parameter can be epeded to be relatively small. In order to take into accourt the



65

diredor fluctuations onthe P-N transition it is sSmpler to consider a system with Ae > 0.

The systems with ~ Ae >0 remain uniaxial under the field and the calculation is easier.
Indeed even in the systems with Ae > 0, ATpy appeas to vary linealy with field (see
Fig.(2.6)).

The etropy of the system is reduced due to the quenching of the director
fluctuations by the field and as a result the free @ergy increases. We may point out an
analogous problem of the unduation interadion, which arises in lamellar systems. In this
case, the layer fluctuations are restricted due to the presence of the neighboring layers and
the correspondng increase in the free eergy was calculated by Helfrich [24]. In the cae
of nematic liquid crystals the director fluctuation amplitude is reduced in the presence of
the field bu the number of fluctuation modes remains unatered. We can use a
dimensiona analysis to estimate the arrespondng increase in the free eergy density. As
we have mentioned in sedion 2.2.4there ae two length scdes in this problem. One is

the dedric coherence length E K By and the other is the aut off wave
DA£/4er E|’

vedor q. (=2ma, where a is a typicd molealar dimension). As the alditional
contribution arises from an entropic origin, we write the free energy density with the

following combinations of thermal energy kT andthe @&owve two lengths:

kg7 % g 7 e 2.5
AF =keT F+kT (2.53

As K=K,S*and Ae=SAg,, we can write E(E):CE where the nstant

El

1
= ﬁdnl(% ﬁ . Substituting E(E) in equation (2.53 we get
80

AF ——|E| ﬁST (2.59

2
where a = kBq%, and B= kBq%z are mnstants and B << a. It is naticed that the

above epresgon is nonanaytic in S, However, this contribution to AF is zero when
E=0.
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We can justify the @ove form of AF by the following physicd argument: We can
tred the director fluctuation as a randam variable [11]. The fluctuation amplitude can be
asaumed to have the Gausgan dstribution

2 2 F
= = E o 2.5
o oo %l 22 (259

where C'isanormalizing constant and it can be foundby normalizing W(n, ) i.e

1

J’\N(nD) dn, =1. (2.56

0

It shoud be pointed ou that the limit of the integrationistaken from Oto linstead of O to
infinity as for a usual Gaussan dstribution. In the absence of the field the fluctuation

amplitude is given by (n?) =(k,T/2m°K), (equation (2.29). We estimated

(nZ),~0.14in the nematic phase & 50 °C, assuming the art off wave vedor g = 2i7a,

0
where a ~ 10 A, and elastic constant K~5x10" dynes. For this value of <n§>0, 9%% of

the aea of the variation d W(n, ) is covered within n_, ~0.8and hencethe upper limit of
integration can be taken to be infinity and the normalising constant is then C'=1. With

increasing field <n§>E deaeases and hence the gproximation is more justifiable. The

entropy due to thisdistributionis given by
1
{ = ks fW(n;) In(W(n,)) dn, . (2.57
0

Which can be simplified as

¢ =- Eri
Hz D/ZIT %

The difference in entropies in the presence of field and in the dsence of field is given by

A =70 -, =k, QnME— |n§/@% 2.59

(2.59
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where . and , are the entropies and (n?) and (n?) are the mean square diredor

fluctuations in the presence and in the dsence of eledric field respedively. From
equation (2.28),

k. T 1 1
AP LI = L 2.608
e ZHZKE% £ 2 QCE% (269
k. T
and <né>0 = ﬁqc . (260b

The excessfree energy is given by AF = -TA{ . Using equations (2.59, (260a) and
(2.60D the simplified form of the free energy can be written as
AF = %|E| +B?TE2 (2.60)
where a'and ' are two constants and related to the aut off wave vedor g.. The form of
equation (2.61) is smilar to that of equation (2.54).
Now the total free energy density in the nematic phase can be written as

2
CoorPELEEL 6

47 G/s st

2

Lo Close to the aiticd point <nD> can be large and the &ove

F.(p.T,S)=F,(p,T)-GSE +a(T+T)

SZ—§S3+

where G = Ag,

approximation is no more valid and further the order parameter fluctuation shoud be
taken into acourt. In the paranematic phase there is no dredor in the @sence of field

and hence the free eergy density in the paranematic phaseis given by

Fo(p,T,S)=F,(p,T)-GSF +a(T+T)s2 —233 +%s“. (2.63
The paranematic to nematic transition temperature is found numerically by comparing the

above two energies (Fy and Fp). For ill ustration we use the Landau coefficients which are
known for 5CB [3] a = 0.13J/cm®K, B = 1.6 Jien®, C = 3.9 Jem?, T,, =3068 K and
G = 0.55.The parameters a and 8 are estimated to be ~0.01 and 0.00001respectively.

We find that the paranematic-nematic transition temperature shows pradicdly a linear
variation upto 100esu and beyondthat the influence of the quadratic comporent is sen.
(Fig.(2.37). In the cae of a system with Ae <0, the biaxial order has to be taken in to
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acournt, which is not considered in the present calculation. However from dimensional
argument the basic form of the cntribution to free eergy density shoud be the same.
This variation can be compared with the variation o T~ uncer the field which was found
by fitting the order parameter at various fields (Fig.(2.29).

The field dependence of the order parameter in the nematic phase is calculated by
minimising the free eergy F, given by equation (2.62. The variation o order

parameter as a function o field at T,, —0.1% is sown in Fig.(2.38. We seethat the

cdculated variation d order parameter in the nematic phase has a trend simil ar to that of

the measured variation as sxown in Fig.(2.34).
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Figure 2.37 Variation d calculated Tpy asafunction d eledric field.
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Figure 2.38 Variation o order parameter in the nematic phase & Tpn-0.1° as a function
of field.
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2.3.5 Order Parameter Susceptibility: Generation of third harmonic

component of the eledrical signal

In this sction we discuss the order parameter susceptibility. In the cae of
magnetism, the susceptibility is defined as x =dM /0H , where the magnetic field H is
conjugate to the magnetisation. Similarly the order parameter S which is a second rank
tensor, is conjugate to E2. The orientation dependent part of dieledric energy denoted by

Ag ~
“ e (ﬁ.E)2 and Ae O S. The order parameter susceptibili ty can be defined as
7T

9S
0E?

where 6S(E) = S(E)- S(0). In order to get an experimental measurement of x,, we

Xq= (269

cdculate the aurrent flowing through the cell. The sample caacitanceis given by
CS = COSD (263

where C; is the cgacitance of the anpty cell and £, = E—%AeOS(E). Using equation

(2.64) and (2.65) we get

1
C, :Cogg—gAeos(E)E =C,-C,E’ (2.66
1
where C, :Cogf—éAsos(O)E ,
1
and C, :éAeocoxq. (2.67)

From C, we can measure x,. The gplied vdtage to the cdl is given by V =V sinat

where w =2t f, f being the frequency. The crrespondng field isgivenby E=V /d,
where d is the cdl thickness Considering only the cgpadtive resporse the airrent

through the cdl is given by
d d
| =—|C.V[=—|C.Ed|. 2.6
S (Cv]=[CEd] (269

Using equations (2.66) and (2.67) we get

_d

= . —chz)E] d
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O3 [
©0 (cosat - cos3at ). (2.69
E

The magnitude of third harmonic comporent of the arrent is given by

Vs
R 219

Using this equation we can measure C,. From measured C, we can get x, using

W
= wWCV, Coswt —
B

equation (2.67) .
Thus, the quadratic dependence of the enhancement of order parameter on the
eledric field leads to generation d third harmonic signal [6]. The measured vdtage

aaoss the capacitor Cy, (see Fig.(2.11) correspondng to the third harmonic aurrent is

given by
Vi = 13,2 = alg’ (2.70)
3C.V,
= 4dgC° . (2.72
Therefore x, isgiven by
04c d? O
Xq EAE V3 |j/3w (273)
0

By measuring the third harmonic component of eledric signal we can measure dedric

susceptibili ty of the order parameter.
As we discussd earlier an important contribution to 6S(E) in the nematic phase
comes from the quenching d director fluctuations. This enhancement is propartional to

|E| andthe relevant order parameter susceptibili ty can be defined as

0S

Xi :ﬁ- (2.79

The Fourier comporents of |E| are given by
E|=|E, S|nax|-—E EL §c032a1—1—25cos4m+....E

C

The comporent at 2w in |E| givesriseto the susceptibility
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3rrd C
= m . 2.7
X | 2 EAEO C0V02 ﬁ/&u ( 3

Thus, in the nematic phase the measured third harmonic signal V3, has contributions

from both the quenching of diredor fluctuations as well as from Kerr effect. It is noticed

from equations (2.73 and (2.79 that x| DV3wV3 and x, DV%Z, where V, is the
0 0

amplitude of the gplied vdtage.

We have simultaneously measured the first ( f ), second ( 2f ) and third ( 3f )
harmonic dectricd signals as well as the transmitted intensity as functions of loca
temperature near the paranematic-nematic transition pant at relatively high fields.
Variations of the third harmonic dectricd signals ( 3f ) as functions of locd temperature,
measured at two dfferent fields namely 430 esu and 537esu at a frequency of 1111 Hz
are shown in Fig.(2.39. As we mentioned earlier, there is ©me misalignment of the
diredor above 350 esu. However, this does not affect the dedrical measurements which

esentially sense only & at even high fields. The 3f signal at 430 esu shows a nearly
symmetric narrow pe&k at 59.89°C. Its value a the peak (~2.8x10*V) is ~ 6 times larger
than that of the badkgroundsignal. The temperature at which the peg occurs corresponds

to the paranematic-nematic transition temperature (Tpy). At 537 esu the pe&k occursat a

4.0

w
o
1

3(f)(x10*y v
N
o

1.0

T T T
59.2 59.6 60.0 60.4

Local Temperature (°C)

Figure 2.39 Variations of the third harmonic dedrica (3f) signals as functions of locd
temperature. Cell thickness 15.5 um, applied field: 537 esu (open circles) and 430esu
(open squares), Frequency: 1111Hz.
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higher temperature (60.08°C). The signal at the peak (~ 4x10*V) measured at 537 esu is
~ 8 timeslarger than the badgroundsignal.

We have evaluated V%Z and V%3 at two temperatures (Table-111). When the
0 0

temperature is below 59.6°C i.e sufficiently far away from Tey (seeFig.(2.39)) it is easier

to measure the relevant parts, and the former ratio is a cnstant whil e the latter is naot. It
indicaes that at the temperatures nea T, the main contribution to the order parameter

susceptibili ty comes from the quenching of diredor fluctuations.

Table-ll1
Temperature V,, Vao
(OC) ﬁos %02
V, =200V : V, =250V |V,=200V: V, =250V
59.4 4.3x10%? 3.4x10*% | 8.5x10%° 8.4x10%°
59.6 55 x10%2 4.%10%? | 1.1x10° 1.6:10°

We show the variations of the 3f signal as well as the transmitted intensity in Fig.(2.40
as functions of locd temperature.
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Figure 2.4Q Variations of transmitted intensity as well as the third harmonic dectricd
signa as functions of locd temperature: Dotted vertical line denates the P-N transition

temperature correspondng to the pe&k in the 3f signal. Cell thickness 15.5 um, applied
field: 537esu, Frequency: 1111Hz.
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The temperature & which 3 signal shows a pea (60.08°C) is indicated by a dotted line
(seeFig.(2.40). It ocaurs at a slightly lower temperature (~ 0.05°C) than the temperature
(60.13°C) at which the transmitted intensity rises from zero value.

Under a strong eledric field the P-N transition becomes smnd order. In the case
of strongly polar compounds it is passble that the dipole moments of the moleaules may
get correlated over large domains. Due to the slow dynamics nea the tricriticd point the
domains may not be ale to reorient at the frequency of the gplied field. As a result a
second rermonic dedricd signal ( 2f ) can be generated [6]. Sincethe compound sed by
usisalso highly poar we looked for 2f eledricd signal under strong field. The variation
of measured 2f comporent of the dectricd signal across the paranematic-nematic
transition is down in Fig.(2.41). It has sme background d to the norlinearity of the
voltage amplifier. However near the P-N transition pant a small peg in 2f signal which
Is ~20% higher than the backgroundis e and it occurs at the same temperature & that
of the pe& in the 3f comporent (Fig.(2.41). It may indicae the presence of pdarized
domainsthat do nd reorient with the field [6].

10.54
£
Fgox .
10.04 o 2fsignal .8 0, *  3f signal
’ L L% L2 >
> (e} qr-\
< bk g
% 9.5 o s%( X
= &
S o %W%
1
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o
o
85 B oocapcoaro
T T 0
59.2 59.6 60.0 60.4

L ocal Temperature (°C)

Figure 2.41 Variations of third ( 3f ) and second ( 2f ) harmonic dedricd signals across
the paranematic-nematic transition region as a function d loca temperature. Cell
thickness 15.5um, applied field: 430esu, frequency: 1111Hz.

24 Conclusions
We have performed the first high eledric field experiment on a nematic liquid

crystal with Ae <0. The locd temperature measurement clearly shows that the
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paranematic to nematic transition temperature (T,,) varies linealy with |E| which

indicates that the diredor fluctuations contribute to the thermodynamics of the phase
transition. Aswe could na perform opticd measurements beyond 350esu, we ae unable
to predsely locate the tricriticd point. However, the dedricd measurements sows a
pe&k in the third harmonic signal which clearly indicaes that the transition hes becme
second ader beyondabou 350esu.
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