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Chapter II

Effect of High Electr ic Fields on the N-I Phase Transition of a

Nematic L iquid Crystal Exhibiting Large Negative Dielectr ic

Anisotropy

2.1 Introduction

Studies on the effects of electric and magnetic fields on liquid crystals are

interesting both from fundamental and technological points of view. There have been

several reports on the effect of strong electric and magnetic fields on the isotropic to

nematic phase transition [1-7]. The electric field experiments were performed on systems

exhibiting positive dielectric anisotropy ( 0)( || >−=∆ ⊥εεε ), where the subscripts refer

to directions in relation to n̂ . The free energy density due to the electric field is given by
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where ||ε  and ⊥ε  are the principal dielectric constants, E the applied electric field and θ is

the angle between the director and the electric field (Fig.(2.1)). Equation (2.1) can be

rewritten as
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It is seen that for a material with ∆ε >0, the free energy density is reduced when the

director is parallel to the electric field while for a material with ∆ε < 0, the free energy

density is reduced when the director is perpendicular to the field. For a material with

0>∆ε , at high fields,
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Figure 2.1: Schematic diagram showing the direction of the field with respect to the

director.

The free energy density can be lowered with the field if ||ε  is enhanced. Consequently the

distribution function is enhanced near the director. Thus S is increased and ⊥ε is

decreased under field. Expressing ||ε  in terms of S we can write

                                                         S0|| 3

2 εεε ∆+=                                                     (2.4)

where ( ) 3/2|| ⊥+= εεε is the average dielectric constant and S is the orientational order

parameter, given by
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where 0ε∆  is the anisotropy in the fully aligned state (S=1) [8]. In the presence of f ield,

the order dependent part of equation (2.3) can be written as
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Thus application of a strong electric field to nematic liquid crystal with 0>∆ε  leads to

an enhancement of orientational order parameter [4]. A strong field also shifts the

paranematic-nematic transition temperature (TPN). For a field to shift TPN by a measurable

amount, the field energy should be comparable to the thermal energy kBT. Similar effects

on nematic liquid crystal can also be seen under a magnetic field. The volume
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diamagnetic anisotropy ( χ∆ ) of a typical nematic is ~10-7 cgs units and the molecular

diamagnetic anisotropy mχ∆ is given by

                                                              
Nm

χχ ∆=∆                                                         (2.7)

where N is the number of molecules per unit volume. The number density is given by

                                                              
M

N
N Aρ

=                                                          (2.8)

where ρ is the density of the medium, NA ≈ 6.02×1023 /mole is the Avogadro number and

M, the molecular weight. Assuming M = 300, ρ =1 gm/cc, we get mχ∆ ~10-29 cgs units.

The anisotropic part of the magnetic energy per molecule is given by
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The required field energy to be equal to the thermal energy ( at T = 300K), H should be

~ 107 gauss. So far only a magnetic field of ~105 gauss has been applied to thermotropic

liquid crystals producing a very small shift in the paranematic-nematic transition

temperature (~6mk) [7]. On the other hand the dielectric anisotropy (~20) can be much

larger than diamagnetic anisotropy. Making a similar calculation as above, but replacing

χ∆ by πε 4/∆ and H by E one finds that the required electric field is ~105 V/cm

(~300 esu). This electric field is practically attainable in the laboratory.

In this chapter we will describe the first experiment on the effect of strong electric

field on the paranematic-nematic transition on a system with negative dielectric

anisotropy to find some interesting results. First we give the theoretical background for

describing the nematic-isotropic phase transition in the absence as well as in the presence

of electric field.

2.2 Theoretical Background

2.2.1 Landau Theory of Phase Transitions

The Landau theory is a phenomenological theory, which was developed for

describing second order phase transitions. In such a phase transition the order parameter

increases continuously across the transition point, and close to the transition point the
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order parameter is very small . Therefore the free energy density F can be expanded in

powers of order parameter S which characterises the lower symmetry phase [9].
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where F0  is the free energy density of the disordered phase ( S = 0 ). The absence of the

linear term in S in equation (2.10) ensures the stabili ty of the higher temperature phase. In

the ordered phase (S ≠  0), the minimum in F is ensured by assuming A < 0 and in the

disordered phase ( S = 0 ) the minimum in F is ensured by assuming A > 0. Landau

assumed that A= a(T-T* ) where a is a constant and T*  is the transition temperature and

C (>0) is a constant which does not depend on temperature. Equation (2.10) is valid for a

system in which the free energy density is independent of the sign of order parameter S

(e.g. ferromagnetic system) i.e. F(S) = F(-S) and the cubic and the higher odd powers of

S are not allowed. Therefore the free energy density can be written as
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The equili brium value of the order parameter is found by using 0=′F  and 0>′′F  ( each

prime denotes a differentiation with respect to S )
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The order parameter profile is continuous with temperature for the second order phase

transition.

2.2.2 Landau-de Gennes Theory for the Nematic to Isotropic (N-I )

Phase Transition

As we have discussed in section 1.2.1 the orientational order parameter of nematic

liquid crystal is defined as 1cos3
2

1 2 −= θS  where θ is the angle between the long

axes of the molecules and the director. The order parameter S can take any value between

–1/2 to 1. The two extreme values of S describe two distinct physical situations of the

system. The first one corresponds to a situation with 2/πθ =  and second one to 0=θ .

The positive and negative values of S arise in general from different distribution
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functions, hence F(S) ≠ F(-S). Hence the free energy density of the nematic phase must

include the cubic power of S and is given by
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where T* is the temperature below which the isotropic phase can not be supercooled and

the negative sign of the cubic term has been assumed to get a lower free energy for

.0>S  Minimising the above equation with respect to S we get two solutions
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S= 0 corresponds to the isotropic phase. S+ corresponds to the lower minimum in the free

energy in the stable nematic phase. The nematic-isotropic transition temperature TNI can

be calculated by equating the free energy density in the nematic phase to that of the

isotropic phase i.e. ( ) 0,, FSTpF = , which gives
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where SNI  is the order parameter at the transition point. The equili brium condition yields

                                   ( ) 032* =+−− NINININI CSBSSTTa .                                         (2.16)

From equations (2.15) and (2.16), we get
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Equation (2.14) has a real solution only when ( ) 04 *2 >−− TTCaB , leading to an upper

temperature limit above which the nematic phase cannot exist. This temperature T**  is

given by
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The variation of the free energy density as a function of order parameter for

various  temperatures is  shown in  Fig.(2.2).  When T >T* *  there is only one minimum in
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Figure 2.2: Variation of the free energy density as a function of order parameter at

various temperatures near nematic–isotropic transition. For T<T* there is a second

minimum in F at S = -0.02 which is hardly visible.

the free energy curve corresponding to S=0, i.e. the isotropic phase. An inflection is

observed in the free energy density curve at T=T** . For TNI < T < T**  there are two

minima one of which corresponds to the isotropic phase (S=0) and other one corresponds

to the superheated nematic phase. At T=TNI there are two minima of equal energy

density. Therefore a first order phase transition takes place from S=0 to S=SNI. For T* < T

< TNI there are again two minima, the absolute minimum corresponds to the nematic

phase. Below T* the isotropic phase can not be supercooled. At T=T* there is only one

minimum corresponding to S  > SNI and an inflection point at S=0. For *
TT < , there is a

second minimum for a negative value of S, and the corresponding energy is higher than

that for S >0. The inclusion of third order term explains the first order phase transition

seen in all nematogens. The corresponding jump in the order parameter is ~0.3.

2.2.3 Nematic-Paranematic Phase Transition in the Presence of an

External Electr ic Field for a System with 0
���

>

As explained earlier (equation (2.6)) in the presence of an external field a linear

term in S has to be added in the Landau free energy expansion (equation (2.13)). This

prevents the existence of the isotropic phase. The field induces a weak orientational order

even in the higher temperature phase, as a result of which all the physical properties in
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the medium become weakly anisotropic (paranematic phase). The field-induced

birefringence in the paranematic phase due to the electric field is called the Kerr effect,

and the analogous effect due to a magnetic field is called the Cotton-Moutton effect. The

free energy density in the presence of the electric field can be written as
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                                                 ( ) 2* CSBS
S

h
TTa −+=− .                                          (2.20)

It is seen that when the field is switched on, a given value of S occurs at a higher

temperature. The variation of the free energy density in the presence as well as in the

absence of f ield is shown for a system with 0>∆ε  in Fig.(2.3) for NITT > . The electric

field phase diagram is shown in Fig.(2.4). It is seen that under an electric field the

paranematic to nematic transition temperature is shifted to the higher value and the order

parameter is increased in the nematic phase. At low fields the transition occurs with a

finite jump in the order parameter in a first order phase transition.

Figure 2.3: Variation of free energy density as a function of the order parameter in the

presence and absence of an electric field for T >TNI .

With increasing field the jump decreases and above a criti cal field there is a continuous

evolution of the order parameter from the paranematic to nematic phase. These
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phenomena resemble the classical gas to liquid transition under pressure. Since the

symmetries of the two phases are the same the possibili ty of a second order phase

transition can be ruled out except at the criti cal point. At the criti cal point

0=′′′=′′=′ FFF , where each prime denotes a differentiation with respect to S.

Differentiating equation (2.19) thrice with respect to S and equating to 0, we obtain the

following relations [10]
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where  Sc , Tc and Ec are the criti cal values of the order parameter, temperature and

corresponding electric field respectively. The shift in the transition temperature is given

by [1]
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where ρ  is the desnity, Q the latent heat of transition, given by 2

2
1

NINI SaT in

the Landau de Gennes theory.

Figure 2.4: Theoretical variation of the order parameter as a function of reduced

temperature at various electric fields. The dashed line indicates the coexistence region.
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2.2.4 Macroscopic Quenching of Thermal Fluctuations of the Director

 So far we have discussed the effect of a strong electric field on the N-I phase

transition. In the nematic phase there are thermal fluctuations of the director, which

introduce distortions of the director field. In chapter-I (Fig.(1.5)) the three types of

distortion are shown pictorially. These fluctuations cause strong light scattering (106

times larger than the scattering from an isotropic fluid). As a result the nematic is turbid

in appearance. It was pointed out by de Gennes [11] that a strong field could partially

quench the director fluctuations and hence the order parameter can be enhanced. Suppose

the average orientation of the director is along the z-axis. The fluctuation of the optic axis

at any point ‘ r’  will be described by small non-zero components nx(r), ny(r). To second

order in nx(r) and ny(r) the distortion energy density is given by [11]
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where K1, K2, K3 , are the splay ,twist and bend elastic constants respectively. For

simplicity, using the one constant approximation we can write the distortion energy

density as

                                                 ( )2

2

1
⊥∇= nKFd                                                        (2.23b)

where ⊥n  is the fluctuation in a direction perpendicular to the z- axis. It is convenient to

analyse ⊥n in Fourier components
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From equations (2.23b) and (2.24), we get
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where V is the volume. Using equipartition theorem i.e. equating the energy of each mode

with the thermal energy TkB2
1 , we get
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If 0→q , the fluctuation amplitude ( )2
qn⊥  is large. Let us assume that a stabili zing

electric field is applied along the z direction. Therefore the energy density is given by the

sum of the ⊥n - dependent part of the field energy plus the distortion energy
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where E is the applied electric field and ∆ε ( > 0 ) is the dielectric anisotropy. Using the

equipartition theorem the fluctuation amplitude can be expressed as
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ξ  is called the electric coherence length. It is seen from

equation (2.28) that due to the electric field the fluctuation amplitude is reduced. The

inverse Fourier transform of equation (2.28) gives
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where qc is the cut off wave vector, given by a/2π , where a is of the order of a

molecular dimension. Using 2222 211 ⊥−=−−= nnnn yxz  and 

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znS , the

enhancement of order parameter due to the quenching of the director fluctuations by

electric field is given by [4]
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It is noticed that the enhancement in the order parameter due to the electric field is

linearly proportional to the modulus of the applied electric field. This is in addition to the

quadratic dependence of 
�	�

on field arising from the Kerr effect (see equation (2.19)).

Similarly 
 � can be calculated due to the magnetic field. Some early experiments in late

70s [12] using a  magnetic field showed that HnnH ∝∆−∆ 0 .
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Durand et al performed high electric field experiments on 5CB[4]. They measured

the order parameter as a function of electric field at various temperatures (Fig.(2.5)) and

analysed the enhancement of S with field in terms of both the linear and quadratic effects.

We have obtained the shift in the paranematic–nematic transition temperature ( PNT ) from

the data of Fig.(2.5). It is plotted as a function of f ield in Fig.(2.6). It may be pointed out

that the shift is linearly proportional to the electric field unlike the prediction of the

Landau de Gennes theory, which gives a quadratic dependence (see equation (2.22)).

Figure 2.5: Variation of order parameter S(E) as a function of electric field ( nE ˆ|| ) in  the

nematic   liquid crystal   5CB at   various    temperatures near the    criti cal point C.

α : T=TNI+1.55K; β : Tc=TNI+0.65K; γ : T=TNI+0.25K; and δ : T=TNI-0.15K. The solid

lines are fit to the experimental data using the Landau-de Gennes model. The dashed line

is the spinodal. (adapted from ref.[4])

Figure 2.6: Variation of the shift in the paranematic–nematic transition temperature

( )0()( PNPNPN TETT −=∆ ) as a function of applied field. Data points (fill ed circles) are

derived from Fig.(2.5)
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It was reported by Geetha et al [5] that the shift in the nematic-smectic transition

temperature (TAN) is proportional to E2 and is consistent with the prediction of Landau

theory. The variation of TAN is shown in Fig.(2.7) as a function of electric field. In this

case the elastic constant K3 diverges as the N-SmA transition is approached and the

director fluctuations are quenched in the SmA phase. Therefore only the Kerr effect

contribution from dielectric anisotropy is important. On the other hand, the linear

variation of TPN  as a function of f ield indicates that the quenching of director fluctuations

are very important near the paranematic –nematic phase transition. The earlier workers

did not emphasise this aspect.

Figure 2.7: TAN as a function of applied electric field in 8OCB. The symbols are

experimental data. The calculated variation (continuous line) corresponds to the

prediction of the Landau theory that the shift in transition temperature is proportional to

E2.(adapted from ref.[5])

2.2.5 Nematic–Paranematic Phase Transition under an External

Electr ic Field for a System with 0
�

<


Studies on the effect of strong electric fields on liquid crystals with negative

dielectric anisotropy ( )0<∆ε  are interesting because the phase diagram is very different

in nature compared to that in a system with 0>∆ε [13]. In the former system a strong
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dipolar group makes a large angle with the long axis of the molecule. To study the

electric field effect, a nematic liquid crystal with 0<∆ε  is sandwiched between two ITO

(indium-tin oxide) coated glass plates, which are treated for planar alignment and the

field is applied between the plates (along the z -axis) as shown in Fig.(2.8).   In the

paranematic phase the dipoles of the molecules tend to align along the field direction. As

a result the long molecular axes tend to be perpendicular to the field direction. It should

be pointed out that in the paranematic phase the distribution of azimuthal angles of the

molecules in the (XY) plane perpendicular to the field is random. The projections of the

long axes of the molecules in the XY plane are shown in Fig.(2.8).

Figure 2.8: Schematic representation of the field induced paranematic (NU
-) and biaxial

nematic (NB) liquid crystals. The relative size of the molecules is exaggerated for clarity.
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In the paranematic phase the distribution function of the long axes around the

field direction shows a small peak at 2
π . With increasing field the peak height increases

in the paranematic phase as shown schematically in Fig.(2.9). Therefore the order

parameter (S) in the paranematic phase becomes negative giving rise to negative uniaxial

(NU
-) phase as depicted schematically in Fig.(2.8).

Figure 2.9: Schematic representation of the distribution function in the presence of

electric field ( 0<∆ε ) above TPN. Dotted line represents the distribution function without

field in the isotropic phase, and the continuous line represents the same with field in the

paranematic phase. The peak around π/2 is exaggerated for clarity.

When the system is cooled under the field below the paranematic–nematic

transition temperature the long axes of the molecules tend to align in a preferred direction

(x-axis) because of the surface interaction with the treated plates. In the nematic phase

there is a partial quenching of the director fluctuations due to electric fields in the ZX

plane (Fig.(2.8)), thus the fluctuations in the ZX plane are different from those in the XY

plane perpendicular to the field. Therefore the differential quenching of f luctuations leads

to an induced biaxiali ty under field [14-15]. Under the field the paranematic to nematic

transition corresponds to uniaxial nematic (NU
-) to biaxial nematic (NB) transition. With

increasing field NU
- to NB transition temperature is shifted to higher values and the order

parameter is increased in the NB phase. The jump in the order parameter reduces and
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finally the transition becomes continuous above the tricriti cal field, at which the first

order transition goes over to a second order phase transition as shown in Fig.(2.10). In

Table-I the field effect on the different phases is summarised.

Thus the application of an external electric field to a nematic liquid crystal with

negative dielectric anisotropy induces biaxial ordering. We use the tensor order parameter

αβQ  to be able to describe this. Considering up to the fourth order term in the expansion,

the Landau-de Gennes free energy density in the presence of an external electrical field

can be written as [10]
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where A (= a (T-T*  )), B, C are Landau coeff icients which will be numerically different

from those in equation (2.19). The tensor order parameter 
αβQ is defined as
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where x is analogous to S defined earlier ( Sx 3
2= ) and y is the biaxial order parameter

which distinguishes between two directions orthogonal to the director. Using equation

(2.33) we find

Tabl e-I

Phase  i n
zero  f i el d

∆ε> 0 ∆ε< 0

Phase  i n nonzero  f i el d

I

N U +

N U +

N U +

N U
-

N B

The  ef f ect of  an el ectr i c  f i el d on the  i sotropi c-  nemati c  phase  transi t i on
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Using equations (2.32), (2.34a) and (2.34b) the free energy density can be written in

terms of order parameters x, y as
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The solution (2.36b), which depends on x, and hence on h is real when ( ) 0<xβ  as 0>γ .

The free energies in the two phases are obtained by using equations (2.35), (2.36a) and

(2.36b) as

                      ( ) ( )xxFU α=   when ( ) 0≥xβ          (uniaxial),                                     (2.37a)

                      ( ) ( ) ( )
γ

βα 4

2 xxxFB −= .                (biaxial)                                        (2.37b)

Whenever the biaxial solution is allowed, ( ) ( )xFxF UB < . The equili brium order

parameters in the NB phase could be found by minimising the free energy density BF , and

are given by [10]

     ( )[ ]2
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ζη +−+=
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B
x  ,                                                            (2.38a)
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C

B
y                                        (2.38b)

with 2/6 BAC=η , 32 /12 BhC=ζ . For a second order uniaxial-biaxial phase transition

at x=x0, the following conditions are satisfied [10]:
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                                                             ( ) ,00 =xβ                                                       (2.39a)

                                                              ( ) ,00 =′′ xα                                     (2.39b)

                                                             
( )

0
0

2

2

≥






=xx

B

dx

xFd
.                                       (2.39c)

 Using these conditions uniaxial to biaxial transition is found to be first order

for TCPhh <  and second order for TCPhh > . The point TCPhh =  is a tricriti cal point.

The location of the tricriti cal point is given by equations (2.39a), (2.39b) with (2.39c)

holding as an equali ty,[10]:

                                             2

3

64

1

C

B
hTCP = .                                                              (2.40a)

The temperature and the orientational order parameter at the tricriti cal point are given by

                                             
aC

B
TT NITCP 864

31 2
0 +=                                                     (2.40b)

                                              
C

B
STCP 12

1=  .                                                              (2.40c)

The calculated phase diagram using this model for nematic liquid crystals with

negative dielectric anisotropy as a function of reduced temperature is shown in Fig.(2.10).

Figure 2.10: Composite h, T phase diagram of nematics with both 0>∆ε  and 0<∆ε .

Thick lines indicate first order transitions, dashed line the second order transition: CP and

TCP are criti cal and trictrical points. (adapted from ref.[10])
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The field-induced biaxiali ty in the system with 0<∆ε  arises due to the

quenching of the director fluctuations as well as the Kerr effect. The only electric field

experiment on system with 0<∆ε  was reported by Dunmur et al [14-15]. They found

that the induced biaxiality is linearly proportional to the modulus of the applied electric

field, which originates mainly from the quenching of director fluctuations. Using a

sensitive optical modulation technique they measured the field induced biaxial order

parameter in the nematic phase which is very small , ~10-3 at ~100 esu.

In this chapter we report the first experiment on the effect of strong electric field

(~550 esu) on the paranematic-nematic transition on a system with large negative

dielectric anisotropy.

The main diff iculty in conducting high electric field experiments on liquid

crystals is the heating of the sample due to ionic conductivity as well as dielectric

relaxation. There can also be hydrodynamic instabili ty [11] for the systems with 0<∆ε .

To minimise the heating effect Durand et al [3] applied an electric field of short pulse

duration (~10 to 100 µs) with long off  period  giving a small duty cycle. In this technique

it takes a long time (~ 40 minutes) to collect each data point. They measured

birefringence of the sample under the field and calculated the order parameter for

materials with 0>∆ε .

We have adapted the technique developed by Geetha et al [5]. In this technique,

the local temperature of the sample is measured under the field and the data points are

collected continuously. This technique enables us to perform optical as well as electrical

measurements simultaneously on materials with negative ε∆ .

In this chapter we report the following results on a material with 0<∆ε :

(a) electric field induced enhancement of birefringence (b) shift in the uniaxial to biaxial

nematic transition temperature (TPN) with field (c) evidence for surface transition

(d) divergence of order parameter susceptibili ty near the second order uniaxial to biaxial

nematic transition temperature as measured by third harmonic electrical signal

(e) detection of a small second harmonic electrical signal near uniaxial to biaxial nematic

transition under a strong field.
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2.3 Exper imental

The block diagram of the experimental setup is shown in Fig.(2.11). In order to

measure local temperature of the sample we use an evaporated nickel (Ni) film to design

a temperature sensor. Ni shows a high temperature coefficient of resistance

(~6200 ppm/K). A thin film (~0.2µm) of nickel is vacuum coated on a plane glass plate.

A zigzag pattern of nickel film which has a strip width of 200µm and total length of 5cm

is etched photolithographically. The resistance of the pattern is ~100 to 200Ω. The Ni

thermometer is calibrated in each cell to measure the local temperature. The thermometer

is covered with a thin insulating layer of SiO on which a circular aluminum electrode

(with 0.5cm diameter) is vacuum evaporated. In order to reduce the field gradient at the

edges a guard ring is designed just outside the Al electrode with a separation of 100µm as

Figure 2.11: Schematic diagram of the experimental setup.  Photodiodes (PD1, PD2).

Polariser ( POL), Analyser (ANL), Multimeter (MUL), Voltage Ampli fier (AMP) Lock

in ampli fier (LIA), Resistances (R1, R2), Computer (COM). The reflection angle of the

laser beam is exaggerated for clarity.
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shown in Fig.(2.12). The top electrode is an ITO coated glass plate. SiO is coated on both

the plates at a grazing angle of 300 using vacuum evaporation. On such a plate, the

director is aligned orthogonal to the incident direction of SiO beam. Mylar spacers are

used to obtain the required cell thickness. The sample thickness is measured outside the

electrode area by an interferometric technique described in chapter-I.

Figure 2.12: Schematic diagram of the lower electrode. There is an insulating SiO coating

between Ni thermometer and the Al electrode. Notice the zigzag pattern of the Ni

thermometer.

Figure 2.13: Schematic of the side view of the cell ( not to scale ).

Typical cell thickness used for the experiments is ~16µm. The electrical

connections to the two plates are made through copper wires which are soldered using an

ultrasonic soldering gun. The cross section of a typical cell i s schematically shown in

Fig.(2.13). The cell i s mounted in a hot stage (INSTEC HS1) which itself is placed on the

rotating stage of the microscope (model ORTHOPLAN). The temperature is controlled to
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an accuracy of 0.0080C. The cell i s fill ed with the sample in the isotropic phase and on

slow cooling to the nematic range, a well -aligned sample is obtained.

The output voltage of a lock-in ampli fier (LIA, model SRS 830) is connected to a

high gain voltage ampli fier (TREK, model 601-2). The output of the ampli fier is

connected to one of the two branches shown in Fig.(2.11). In one branch there is a

potential divider circuit, which is made of two resistors (R1=1MΩ and R2=100Ω)

connected in series. The potential divider circuit is used to measure the phase and

amplitude of the ampli fied voltage. In another branch the sample cell i s connected in

series with a capacitor Cm (~ 1µF ). A manual DPDT switch is used to switch between

the two branches. The phase and amplitude of the current flowing in the cell are

measured across the capacitor Cm. The LIA can be used to measure higher harmonic

signals also. Two zenor diodes with their opposite polarities interconnected as shown in

Fig.(2.14) was connected across the input of the LIA to protect it from accidental high

currents, (for eg if the cell shorted). Using impedance analysis, we measure the

capacitance (CS) and resistance (RS) of the sample.

Figure 2.14: A block diagram of the zenor diodes circuit to protect the lock-in ampli fier

from large currents.

If V0 and 0φ  are the amplitude and phase at the output of the ampli fier and Vm and

ϕm are the same measured across the capacitor Cm, it can be shown (see section 4.3 of

chapter-IV) that the capacitance and resistance of the sample are given by

                                           
αω sin

Y
RS = ,                                                                   (2.41)

L IA

Cm

Zenor D i odes

V m
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                                             ,
Y

X
CS =                                                              (2.42)

where ,cos QX −= α ,
sin 22

QC

X
Y

m

+= α
0V

V
Q m=  , mφφα −= 0  , and  fπω 2= , f  being

the frequency of the applied signal. The dielectric constant is given by the ratio CS  / C0,

where C0 is the capacitance of the empty cell . Using a set of standard capacitors and

resistors in parallel connected in place of the cell , the measuring system is calibrated. It is

found that the stray capacitance is ~ 2 pF. The accuracy of the measured capacitance is

~1% and that of the resistance is ~ 5 %.

The lower electrode is opaque due to the Al and Ni coatings, and it is not possible

to perform optical measurements in the transmission mode. We have used an ITO coated

glass plate as the top electrode which enables us to perform optical measurements in the

reflection mode of the microscope. A laser (He-Ne, λ= 632.8nm) beam is passed through

a polariser (POL) and made to be incident on the sample. The Al electrode reflects the

laser beam. The reflected beam is passed through an analyser (ANL), which is crossed

with respect to the polariser. A photodiode (PD1, model Centronics OSD-5) is used to

measure the reflected intensity. The stabili ty of the laser intensity is monitored by another

photodiode (PD2). A multimeter (MUL, Keithley model 2000) measures the output

voltages of both the photodiodes as well as the Ni resistance.

The temperature variation of the optical intensity is measured in the

homogeneously aligned sample. Transmitted intensity through a uniformly aligned

sample is given by

                          ( )ϕζ ∆−= cos1
2

2sin2

tI ,                                       (2.43)

where ζ  is the angle made by the polariser with the optic axis and the phase difference

                             ( )dn 2
2 ∆=∆
λ
πϕ                                                                 (2.44)

oe nnn −=∆ , where ne and no are the extraordinary and ordinary refractive indices of the

liquid crystal medium. Here d is the sample thickness and the factor 2 comes because the

light travels across the sample thickness twice in the reflection mode. The angle ζ  is set

at 450 to optimise the measurements. The birefringence is calculated from the measured
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intensity. The typical frequency and voltage ranges used in the experiments are 1111-

15111 Hz and 5 to 270 V respectively. The sample 4′ -butyl-4 heptyl-bicyclohexyl-4-

carbonitrile (CCN-47) was obtained from Merck and used in the experiment without

further purification. The chemical structure of the molecule is shown in Fig.(2.15). It has

the following phase transitions: Cr 28 SmA 30.6 N 59.7 I. This compound exhibits a

large negative dielectric anisotropy ( =∆ε -8.0 at 20 0C) and the smectic phase can be

supercooled to room temperature. The measurements are completely controlled by a

computer, using a suitable program. All the experiments are performed while cooling the

sample from the paranematic phase.

                                                    Cr 28 SmA 30.6 N 59.7 I

Figure 2.15: Chemical structure and the phase sequence of the compound used in the

experiments. Temperatures are given in degree Celsius.

2.3.1 Results and Discussion

A typical variation of  Ni resistance with the temperature is shown in Fig.(2.16).

Figure 2.16: Temperature calibration curve for the nickel resistance thermometer. Open

circles are the experimental data and the line is a polynomial (T = a+bR+cR2) fit to the

data.
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The birefringence (∆n) is calculated from the transmitted intensity using

equations (2.43) and (2.44). The variation of ∆n over a wide temperature range (~20 0C)

in the nematic phase is shown in Fig.(2.17).  It is noticed that ∆n is very small ~0.016 at

0.5 0C below TNI and increases to 0.031 at 20 0C below TNI in view of the saturated rings

of the molecules. The birefringence 0n∆ of a completely ordered sample is determined

from the temperature dependence of n∆ , which can be approximated well for nematic

liquid crystals by [16]

                                          
β







−∆=∆

1
0 1

T

T
nn                                                 (2.45)

where T1 and β are adjustable parameters. A least squares fit to the experimental data

with equation (2.45) is shown in Fig.(2.17). The value of the fitted parameters are

T1 = 333.0K, which is 0.3 0C higher than TNI, 0n∆ = 0.0576 and β = 0.23. The value of β

is typical for nematic liquid crystals [11].

Figure 2.17: Variation of ∆n as a function of temperature. Circles are the experimental

data and the continuous line is a theoretical fit to the to equation (2.45). Cell thickness:

16.8µm.

We have measured ⊥ε  in a homogeneously aligned sample and ||ε  in a

homeotropically aligned sample. The cell thicknesses used for the experiment are 8.5µm

and 7µm respectively in the two cases. Both the measurements are made at applied

voltage of 0.2 V and a frequency of 4111 Hz. The applied voltage (0.2V) is much lower
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than the threshold voltage for Freedericksz transition in the homeotropic cell . The

variations of dielectric constants ||ε  and ⊥ε  are shown as functions of the heater

temperature in Fig.(2.18). It is noticed that ⊥ε is larger than ||ε  in the nematic as well as

in the smectic phases, the N-SmA transition occurring at 30.6 0C. The variation of ||ε

across the N-SmA transition temperature is smooth whereas a small i ncrease is observed

in ⊥ε . The dielectric anisotropy ( )⊥−=∆ εεε ||  at the NI transition is ≈ -3 and increases to

≈ -6 at 30 0C below TNI. The mean dielectric constant ε  is calculated using the

formula ( ) 3/2|| ⊥+= εεε . At TNI, 2.7≈= isεε  and as the temperature is lowered down to

the N-SmA transition ε is increased to ≈ 8. The increase in ε  is ~4 % at TNI -150

(N phase) and ~10 % at TNI -300 ( in the SmA phase).

Figure 2.18: Variations of ||ε  and ⊥ε  as functions of heater temperature. Applied voltage:

0.2 V and frequency: 4111 Hz. isε  is the dielectric constant in the isotropic phase. The

mean value in the nematic phase is ( ) 3/2|| ⊥+= εεε , which is shown by a dotted line.

The vertical arrow denotes N-SmA transition temperature.

According to the Maier and Meier theory (see equation (1.13) in chapter-I)
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The second term in the bracket is due to the contribution of the orientational polarisation

of the dipole moments. In the nematic phase ε  can increase with decreasing temperature
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due to the increase in the density ( ρ ) and the contribution from orientation polarisation.

Experimentally it is reported in a nonpolar compound that ε  increases by ~2 % at 150

below NI transition temperature due to increase in density alone [17]. The excess

variation in the highly polar compound used by us is due to the contribution of the

orientation polarisation, which increases with decreasing temperature as seen in equation

(2.46).

We have also measured the threshold voltage for Freedericksz transition at several

temperatures. The measurement is made at a frequency 4111 Hz. The experimental

procedure is described in chapter-I. Since the dielectric anisotropy of the compound is

negative the experiment is performed in a homeotropically aligned sample. In this case

the threshold voltage is given by εεπ ∆= 03 /KVth  where K3 is the bend elastic constant

and 0ε is the dielectric constant of the free space. Using Vth and ε∆  we calculate K3 at

several temperatures. The variation of K3 as a function of heater temperature is shown in

Fig.(2.19). It is noted that K3 is ~0.2×10-6 dynes at a temperature of 1 0C below TNI and it

follows an S2-dependence near TNI, where S is the order parameter. As the nematic to

smectic transition (30.6 0C) is approached, K3 is expected to diverge and the curvature of

the variation changes sign around 40 0C. We could not measure Vth below 32 0C due to

the occurrence of hydrodynamic instabiliti es (EHD) in the sample under the electric field

Figure 2.19: Variation of the bend elastic constant K3 as a function of temperature. Points

are experimental data and the dotted line is drawn as a guide to the eye.
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at these temperatures. Surprisingly we did not find any EHD in the nematic phase of this

compound until we reach TAN . The only other experimental investigation on this

compound was by Lavrentovich et al [18] who studied the growth pattern under electric

fields in the SmA phase in the homeotropic geometry.

The variation of ∆n as functions of local temperature across the paranematic to

nematic transition at different fields are shown in Fig.(2.20). These data are collected in

temperature steps of 0.5 0C. It is observed that the individual curves at different fields are

clearly seen down to ~2 0C below the transition point. Our main interest is to study the

effect of strong fields on the paranematic-nematic transition. Therefore we have

conducted detailed measurements across the transition over a 0.50 temperature range with

temperature steps of 0.01 0C.

Figure 2.20: Variations of birefringence in the paranematic and nematic phases as

functions of local temperature at different fields. Points are experimental data and the

continuous lines are drawn as guides to the eye. Cell thickness: 16.8µm. Frequency of the

applied field: 15111 Hz (1esu = 300V/cm).

Variations of ∆n as well as ⊥ε are shown as functions of local temperature at

various fields in Fig.(2.21) and Fig.(2.22) respectively. The data shown in these two

figures are collected after several thermal cycles of the sample. The local temperature is

the temperature measured by the Ni resistance thermometer. The following important

features are noted from Fig.(2.21): (i) with increasing field (a) ∆n is enhanced in the
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nematic phase and (b) the paranematic to nematic (NU
- -NB) transition temperature (TPN)

is shifted toward higher values (ii ) ∆n sharply rises from the zero value as the temperature

is lowered in the phase transition region (iii ) separations among the curves are quite wide

close to the transition point and are reduced as the temperature is lowered in the nematic

phase.

Figure 2.21: Variation of birefringence across the paranematic-nematic transition region

as a function of local temperature at different fields. Cell thickness: 16.8µm. Frequency

of the applied field: 4111 Hz. Points are the experimental data and the dotted lines are

drawn as guides to the eye.

Figure 2.22: Variation of dielectric constant across the paranematic-nematic transition

region as a function of local temperature at different fields. This data and the data shown

in Fig.(2.21) were obtained simultaneously.

59.0 59.2 59.4 59.6

0.000

0.004

0.008

0.012

0.016

59.0 59.2 59.4 59.6

0.000

0.004

0.008

0.012

0.016

59.0 59.2 59.4 59.6

0.000

0.004

0.008

0.012

0.016

59.0 59.2 59.4 59.6

0.000

0.004

0.008

0.012

0.016

59.0 59.2 59.4 59.6

0.000

0.004

0.008

0.012

0.016

59.0 59.2 59.4 59.6

0.000

0.004

0.008

0.012

0.016

 317 esu

 

 

∆∆
n

 Local Temperature ( 0C)

 10.5 esu

 432 esu

 106 esu

 528 esu

 212 esu

59.0 59.2 59.4 59.6 59.8

7.2

7.5

7.8

8.1

59.0 59.2 59.4 59.6 59.8

7.2

7.5

7.8

8.1

59.0 59.2 59.4 59.6 59.8

7.2

7.5

7.8

8.1

59.0 59.2 59.4 59.6 59.8

7.2

7.5

7.8

8.1

59.0 59.2 59.4 59.6 59.8

7.2

7.5

7.8

8.1

59.0 59.2 59.4 59.6 59.8

7.2

7.5

7.8

8.1

 10.5 esu

εε ⊥⊥

 432 esu

 

 

 528 esu

 212 esu
 106 esu

Local Temperature ( 0
C)

 317 esu



51

An independent experiment was performed on a fresh sample. The overall response is

similar to that of the first sample except that the field free transition temperature is

slightly higher in the fresh sample. Variations of ∆n as well as ⊥ε on this sample are

shown as functions of local temperature at various fields in Fig.(2.23) and Fig.(2.24)

respectively.

Figure 2.23: Variation of birefringence across the paranematic-nematic transition region

as a function of local temperature at different fields on a fresh sample. Cell

thickness: 16.4µm. Frequency of the applied field: 4111 Hz.

Figure 2.24: Variation of dielectric constant across the paranematic-nematic transition

region as a function of local temperature at different fields. These data and the data

shown in Fig.(2.23)  were obtained simultaneously. Dotted line connects the temperatures

at which n∆  starts to rise from zero value.
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In order to see the influence of frequency of the applied field we made another

independent optical measurement on a fresh sample at a frequency of 15111 Hz.

Variations of ∆n up to 334 esu are shown in Fig.(2.25) as a function of local temperature.

It is noticed that the overall response is similar to that of the second sample.

Figure 2.25: Variation of n∆  across the paranematic-nematic transition region as a

function of local temperature at different fields. Cell thickness: 16.4µm. Frequency of the

applied field: 15111 Hz.

The temperature at which ∆n starts rising from zero value is a measure of the

paranematic to nematic transition temperature (TPN) (However, see later discussion). The

variations of TPN obtained from Fig.(2.21) and Fig.(2.23) are shown as functions of f ield

in Fig.(2.26). A large shift in TPN (~0.30) is measured between 5 to 550 esu. The

important result  is  that TPN  varies linearly  with  the  r.m.s field.  In the fresh sample TPN

is  about 0.4 0C higher than in the recycled one. However the slopes of the two curves

shown in Fig.(2.26) are the same. It may be mentioned that a quadratic variation of TPN is

predicted by the Landau de Gennes theory (only an E2 term occurs in the free energy).

The linear variation of TPN as a function of f ield indicates that the quenching of director

fluctuations not only increases the order parameter but it also has a strong influence on

the phase transition. This point was not recognised in earlier high electric field
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temperature of the sample under field by a nickel resistance thermometer. It enables us to

measure the transition temperature at various fields accurately.

Figure 2.26: Variation of paranematic-nematic transition temperature (TPN) as a function

of applied field. Data corresponding to the fill ed triangles and fill ed circles are obtained

from the data shown in Fig.(2.21) and Fig.(2.23) respectively.

We compare the birefringence and dielectric data shown in Fig.(2.23) and

Fig.(2.24). It is noticed from Fig.(2.23) that ∆n is zero in the paranematic phase. At TPN,

∆n rises sharply from zero value. As we have discussed in section 2.2.5, the field induced

paranematic phase is uniaxial negative with the optic axis lying along the field direction.

The direction of the laser beam is also parallel to the optic axis, and no optical path

difference is measured along this direction.(see Fig.(2.11)). In the NB phase, along with

the field direction there is another axis, which is the direction of alignment of rods

favored by the surface treatment. This is parallel to the glass plates and perpendicular to

the field direction (see Fig.(2.8)). This creates the biaxiali ty of the medium. However, the

principal director lies along the easy axis on the plates. Therefore when the transmitted

intensity is measured continuously across the paranematic-nematic transition region, it

shows a sharp rise from zero value. In the nematic phase, for example at 59.6 0C (see

Fig.(2.23)) the enhancement in ∆n is measurable up to ~325 esu. Beyond that the curves

in the nematic phase are crowded though they are well separated in the transition region.

Visual observations of the sample were made between crossed polarisers in the nematic

phase with the principal director oriented parallel to the lower polariser (see Fig.(2.11)).
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Up to a field of ~350 esu, the field of view is uniformly dark. Beyond ~350 esu some

birefringent regions are seen along with the motion of the some dust particles. In spite of

using a guard ring there may be a field gradient at the edges of the sample. The field may

also be nonuniform inside the cell due to slight variations of the local thickness or the

presence of the dust particles in the sample. Such field gradients across the sample can

cause physical motion of the medium. As a result the sample can get misaligned and lead

to light transmission. The merging of the curves beyond ~350 esu probably occurs due to

such a misalignment.

From the dielectric data (shown in Fig.(2.24)) several important points can be

noted: (i) with increasing field (a) ⊥ε is increased in the NU
- phase (for example at

60.1 0C) (b) the NU
--NB transition occurs at a higher temperature (c) the jump in ⊥ε

across the transition decreases and (d) just below the transition temperature (for example

at 59.65 0C) ⊥ε  increases but at a lower temperature, say 59.4 0C, the curves overlap

(ii ) variation of ⊥ε is not as sharp as that of  ∆n (iii ) at the immediate left of the dotted

line (which connects the temperatures where ∆n starts to rise from zero value) the data

points lie farther apart and the variation of ⊥ε is faster than that on the right side. With

increasing field in the paranematic phase the field induced order parameter increases and

hence ⊥ε is increased. We can calculate the uniaxial negative order parameter in the

paranematic phase from the dielectric data, which will be discussed later. The variation

of ⊥ε is not as sharp as that of ∆n in the transition region. This may be attributed to the

fact that ∆n is measured in the middle of the sample over a very small area ~10-3 cm2

(diameter of the laser beam < 0.5mm) whereas ⊥ε  is measured over an area of ~0.2cm2.

The field as well as temperature are more uniform over the smaller region sensed in the

optical study. Therefore the variations of ∆n as functions of f ield and temperature better

reflect the variation of order parameter than the dielectric data.

The orientational order parameter for uniaxial nematic liquid crystals can be well

approximated by [8,17]

                                                 
0n

n
S

∆
∆≈ .                                                         (2.47)
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 The compound used shows a very small ∆n, and hence the internal field corrections are

negligible. Thus it is a legitimate approximation to calculate the order parameter directly

from ∆n data.

Figure 2.27: Variation of order parameter calculated (using S=∆n/∆n0) from the data

shown in Fig.(2.23). Dashed line connects the temperatures below which the order

parameter varies smoothly.

In the nematic phase under an electric field (with 0<∆ε ) the director fluctuations

in the plane containing the field are reduced compared to those in the orthogonal plane.

As a result the system becomes biaxial, which is described by the order parameter S

( x5.1= , section 2.2.5) and the biaxial order parameter P. In our experiment we actually

measure the birefringence in the plane orthogonal to the electric field. This is a measure

of (S-P) rather than S. However, the field induced biaxial order parameter P ~ 10-3

(at ~100 esu) in a similar sample [14] whereas S ~ 0.2. Hence we use ∆n as a measure of

the order parameter S. The variations of calculated order parameter using the

equation (2.47) at various fields are shown in Fig.(2.27).

The Landau de Gennes theory (see equation (2.14)) gives rise to the following

form of the temperature dependence of the order parameter in the field free uniaxial

nematic liquid crystal:

                                                 
β

α 




 −=−

**0 1
T

T
SS                                                 (2.48)

where **T  is the absolute limit of superheating of the nematic phase, S0 is the order
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parameter at **T  and 5.0=β , and α is a proportionali ty constant. The experimental data

over the entire nematic range are fitted to the above form with 00 =S  gives 23.0≈β  (see

Fig.(2.17)). This value of β is obtained in several other nematics, and the origin of this

discrepancy from the measured value in not yet understood [11]. For example the

predicted value of the order parameter at *T  is equal to NIS5.1  but the experimentally

measured values are always much lower ( NIS1.1~ ).

According to the Landau de Gennes theory (using equations (2.17) and (2.18))

                            
aC

B
TT NI 36

2
** +=  and  

aC

B
TT NI 9

2 2
* −= .                           (2.49)

It is seen that **T  is much closer to NIT  than *T . Experiments show that 0* 1~ −NITT .

Thus **T  is ~0.10 above NIT , according to equation (2.49).

In order to estimate the paranematic to nematic transition temperatures from the

temperature variation of the order parameter, we assume that equation (2.48) also holds

good even in the presence of the field. We use the data in the nematic phase within only

0.15 0C from the transition point in this analysis.

As we have mentioned there is some misalignment of the sample beyond ~350

esu and hence we will consider the order parameter data only up to 325 esu. In Fig.(2.28)

experimental values of the order parameter in the nematic phase within 0.150C from the

transition point as well as the calculated variations using equation(2.48) are shown. The

comparison between the two is reasonably good up to 217 esu, and not so good for 325

esu. The fitted values of S0, α, β and **T are shown in table-II. **T  is also indicated in

Fig.(2.28) by vertical dotted lines. The values of PNT which are defined as the temperature

below which the birefringence becomes nonzero (see Fig.(2.27)) are also shown in

table-II to compare with **T . From table-II it is seen that at all fields **T  is ~0.05 0C

lower than PNT . This small difference between **T  and PNT  probably arises due to the

surface induced order, which will be discussed in the next section.
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Figure 2.28: Variation of order parameter in the nematic phase within 0.15 0C of the

transition point. Data points are those below the temperatures limited by the dashed line

shown in Fig.(2.27). Continuous lines are the theoretical fits to the equation (2.48).

Dotted vertical li nes indicate the temperatures corresponding to calculated values of **T

(Table-II).

 Table-II

Field in
esu

0S α β T 
** (0C) TPN (

0C)

5 0.12 0.37 0.17 59.68 59.75
109 0.11 0.40 0.17 59.73 59.78
217 0.09 0.47 0.17 59.80 59.86
325 0.08 0.52 0.16 59.88 59.92

Figure 2.29: Variation of T**  (taken from Table-II) is shown as a function of f ield. Dotted

line is drawn as a guide to the eye.
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It is noticed (Table-II) that when the field is increased from 5 to 325 esu, S0

decreases from 0.12 to 0.08 as expected and  β  decreases slightly from 0.17 to 0.16. **T

is plotted in Fig.(2.29) as a function of f ield. The amount of shift in **T is ~ 0.2 0C which

is similar to the shift of TPN when the field is increased from 5 to 325 esu. The variation

of **T  has both linear and quadratic dependences on the field as seen from Fig.(2.29).

2.3.2 Sur face Induced Order

It is noticed from Table-II that **T  is ~0.05 0C lower than PNT  at all fields, which

is defined as the temperature below which the birefringence becomes non zero. Several

data points have been obtained between **T  and PNT  at 5 esu, which is practically a

negligible field. At higher fields (Fig.(2.27)) the data points become more scarce as 0S

decreases. Therefore we will only discuss the order parameter data between **T  and PNT

for sample under 5 esu. In Fig.(2.30) the variation of  S  between **T  and PNT  is shown

on an expanded scale.

Figure 2.30: Variation of order parameter at a field of 5 esu. Here a small portion

(59.67 0C to 59.78 0C) of the curve (shown in Fig.(2.27)) is expanded. Vertical up and

down arrows denote T**  and PNT  respectively (Table-II). Note the curvature of the solid

line below T**  is opposite to the curvature of the dotted line above T** .
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It is noticed that below 59.68 0C, the order parameter S follows the temperature

variation given by equation (2.48) and above this temperature the curvature changes sign.

The change of curvature is better seen at the lowest field (~5esu) than at higher fields and

is also seen in independent experiments (see Fig.(2.25)). The measurements are made on

cooling the sample from the higher temperature phase. The SiO coating provides a strong

anchoring at the surface, aligning the molecules along the easy direction. The surface

alignment is expected to be retained even in the higher temperature phase.

There are several experimental and theoretical studies on the influence of the

surface order on the nematic –isotropic transition [19-23]. Using the Landau de Gennes

theory Ping Sheng [20] showed that if the order parameter at the surface is higher than

that in the bulk, the transition at the surface occurs at a higher temperature than in the

bulk. A higher order parameter at the surface is expected to arise from the interactions

between confining surfaces and the liquid crystal molecules. Experimentally Miyano [21]

measured the wall -induced birefringence above the isotropic-nematic phase transition

point. He showed that the pretransitional birefringence measured in the homeotropic

geometry of the sample diverges as NIT  is approached from the isotropic phase. In a light

scattering experiment Mada et al [22] reported that the bulk isotropic –nematic transition

occurs at ~0.10C below that at the surface. Using a density functional theory of nematic

liquid crystals Selinger et al [23] predicted a complete wetting near the free surfaces of a

nematic arising from a strong surface field (VS =10V0 , where V0 is the Maier-Saupe

orientation potential between the molecules). The profile of the calculated order

parameter is reproduced in Fig.(2.31).  Because of the assumed strong surface field,

( )θcos2P  is saturated at the surface. At temperatures above NIT , away from the surface

it quickly decays to a value close to the Maier-Saupe bulk nematic value of 0.429 at the

N-I transition point. This value is retained for a certain length before the order parameter

decays to the bulk isotropic value of 0. The distance over which ( )θcos2P = 0.429

increases as tln  as +→ 0t , where ( ) NINI TTTt /−=  is the reduced temperature. This

increase is reflected in the effective nematic order parameter, integrated over the

thickness, ( )tΓ , which also diverges logarithmically with t (Fig.(2.32)). Though these

calculations have been made for homeoptropic alignment, the results for homogeneous
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alignment are expected to be similar, as has been found on the basis of the Landau- de

Gennes theory by Ping Sheng [20].

Figure 2.31: Profile of order parameter ( )θcos2P  showing nematic order near a free

surface for reduced temperature ( ) 5.65.00 10,....,10,10/ −−=−= NINI TTTt . (adapted from

ref.[23]). (r0 is approximately the radius of the cylindrical molecule)

Figure 2.32: The calculated integrated nematic order parameter ( ) dzP∫
∞

=Γ
0

2 cosθ  as a

function of the reduced temperature ( ) NINI TTTt /−=  (adapted from ref.[23])

In Fig.(2.33) we show the variation of measured order parameter ( S ) with the

reduced temperature τ  ( )**** /)( TTT −=  between **T  and PNT . In this small temperature

range S diverges logarithmically. Therefore we believe that this part of the curve

( ) 0/ rtΓ

( )θcos2P

    z/r0

t
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represents the surface induced order before the bulk transition takes place at T** , which is

practically indistinguishable from the bulk transition temperature.

Figure 2.33: Variation of order parameter as a function of reduced temperature (τ ).

Dotted line is drawn as a guide to the eye.

2.3.3 Order Parameter Enhancement by the Field

In this section we compare the enhancement of order parameter with the

theoretical predictions described in sections 2.2.4 and 2.2.5. It is convenient to use the

birefringence data shown in Fig.(2.25) because the data points are available down to

~59.4 0C. Analysis is carried out up to 334 esu because beyond that the sample gets

misaligned as discussed in the last section. The variation of enhanced order parameter as

a function of f ield at several temperatures is shown in Fig.(2.34).

The increase in order parameter due to the application of electric field arises

because of two physical mechanisms. One mechanism is the macroscopic quenching of

thermal fluctuations of the director as discussed in section 2.2.4 (equation (2.31)).  The

enhancement of order parameter for a system with 0<∆ε  due to this effect alone can be

written as [15]
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where K is the average curvature elastic constant, ( )TES ,  is order parameter in the

presence of  field and ( )TS ,0 is the same in the absence of f ield. The subscript l indicates

a linear variation with E .

Another mechanism for the enhancement of order parameter under the application

of field is the Kerr effect, which is microscopic in origin as discussed in section 2.2.5.

The increase in order parameter due to this effect alone can be written as

                                       2
Ec

�	�
qq =                                                   (2.51)

where cq is an appropriate susceptibili ty. This effect is quadratic in E, indicated by the

subscript q. The enhancement in the order parameter due to both the effects can be

written as

                                    ( ) 2
EcEc

�	��	�
E

�	�
qlql +=+= .                                            (2.52)

The variation of measured ( ))0()( SES
�	�

−=  at different temperatures is shown in

Fig.(2.34). Using a least squares fitting procedure, the enhancement of the order

parameter is fitted with the equation (2.52).

Figure 2.34: Variation of enhancement of the order parameter ( �	� ) as a function of f ield

at different local temperatures. Continuous lines are fit to the functional form of

2
EcEc

�	�
ql += .

It is noticed from Fig.(2.34) that at higher temperatures (closer to the transition

point, for example at 59.65 0C) the variation of �	�  is nearly linear and the quadratic
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effect is seen at higher fields as the temperature is lowered. The temperature variation of

the fitted parameters cl and cq are shown in Fig.(2.35). cl decreases and cq increases as the

temperature is lowered in the nematic phase. In a mean-field model 2SK ∝  and S∝∆ε ,

Figure 2.35: Variations of the fitted parameters lc and cq are shown as functions of local

temperature. Dotted lines are drawn as guides to the eye.

therefore the susceptibilit y cl decreases rapidly ( 5.2~ −Scl ) as the temperature is lowered

in the nematic phase. On the other hand cq is proportional to the ε∆ , which increases as

the temperature is lowered in the nematic phase.

We have also calculated the uniaxial negative order parameter ( SU
- ) from the

dielectric constant data taken from Fig.(2.24). In the paranematic phase the field-induced

director i.e the symmetry axis is parallel to the field. Thus the measurement yields P
||ε

which is given by −∆+=
U

P S0|| 3

2 εεε where −U
S  is the negative uniaxial order parameter

as 0ε∆  is negative. In the nematic phase the principal director is perpendicular to the field

and we measure N
⊥ε which is given by SN

03

1 εεε ∆−=⊥  (ignoring biaxiali ty which is very

small ). We have used the value of S obtained by optical measurement at (TPN -2)0C to

evaluate 0ε∆ (= -9.97). Above the tricriti cal point the paranematic-nematic transition is

second order and, NP
⊥= εε ||  and hence it is expected that SS

U 2
1−=−  at TPN.
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Figure 2.36: Variation of uniaxial negative order parameter (SU
-) in the paranematic phase

as a function of applied field at a temperature 60.1 0C. Points are experimental data.

Continuous line is the fit to the functional form 2EcS qU
=− , where cq=2.5×10-7 cgs units.

The variation of uniaxial order parameter SU- is shown as a function of the applied

field in Fig.(2.36). A least squares fitting procedure is used to fit the data with the

equation 2EcS qU
=− . The agreement with the measured data is not very good. As we

discussed earlier the dielectric data is measured over a large area (0.2cm2) and the field

and temperature may not be uniform in the cell .

The enhancement of order parameter near the surface, which was discussed in the

last section, also contributes to P
||ε . However it is expected that P

||ε mainly arises from the

field-induced order in the bulk in the paranematic phase.

2.3.4 Var iation of PNT  with Field: Inclusion of Director Fluctuations

The paranematic-nematic transition temperature (TPN) in Fig.(2.26) shows a linear

dependence on the r.m.s value of the field. According to the prediction of the Landau de

Gennes theory, TPN varies quadratically with the field. The linear variation of TPN with

field indicates that the quenching of director fluctuations also influences the paranematic–

nematic (P-N) transition. Below the tricriti cal point P-N is a first order transition with a

finite jump in the order parameter at the transition point, and the fluctuations of the order

parameter can be expected to be relatively small . In order to take into account the
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director fluctuations on the P-N transition it is simpler to consider a system with ∆ε  > 0.

The systems with    ∆ε >0 remain uniaxial under the field and the calculation is easier.

Indeed even in the systems with ∆ε  > 0, ∆TPN  appears to vary linearly with field (see

Fig.(2.6)).

The entropy of the system is reduced due to the quenching of the director

fluctuations by the field and as a result the free energy increases. We may point out an

analogous problem of the undulation interaction, which arises in lamellar systems. In this

case, the layer fluctuations are restricted due to the presence of the neighboring layers and

the corresponding increase in the free energy was calculated by Helfrich [24]. In the case

of nematic liquid crystals the director fluctuation amplitude is reduced in the presence of

the field but the number of f luctuation modes remains unaltered. We can use a

dimensional analysis to estimate the corresponding increase in the free energy density. As

we have mentioned in section 2.2.4, there are two length scales in this problem. One is

the electric coherence length ( )
E

K
E

1

4/

2
1








∆
=

πε
ξ , and the other is the cut off wave

vector qc (≈2π/a, where a is a typical molecular dimension). As the additional

contribution arises from an entropic origin, we write the free energy density with the

following combinations of thermal energy TkB and the above two lengths:

                                          
2
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ξξ
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B
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q
Tk

q
TkF +=∆ .                                                     (2.53)

As 2
0SKK = and 0εε ∆=∆ S , we can write ( )

E

S
CE =ξ , where the constant

2

1

0

04 



∆= ε

πKC . Substituting ( )Eξ  in equation (2.53) we get

                                             2
E

S

T
E

S

T
F

βα
+=∆                                     (2.54)

where C
qk cB

2

=α ,  and  2C
qk cB=β  are constants and β << α. It is noticed that the

above expression is non-analytic in S. However, this contribution to ∆F is zero when

.0=E



66

We can justify the above form of F∆ by the following physical argument: We can

treat the director fluctuation as a random variable [11]. The fluctuation amplitude can be

assumed to have the Gaussian distribution

                                         ( ) 











−

′
=

⊥

⊥

⊥
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2 22
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n
Exp

nC
nW

π
                                   (2.55)

where C′ is a normalizing constant and it can be found by normalizing ( )⊥nW  i.e

                                             ( ) 1
1

0

=⊥⊥∫ dnnW .                                                             (2.56)

It should be pointed out that the limit of the integration is taken from 0 to 1 instead of 0 to

infinity as for a usual Gaussian distribution. In the absence of the field the fluctuation

amplitude is given by ( ) cB qKTkn 2

0

2 2/ π=⊥  (equation (2.29)). We estimated

0

2
⊥n ~0.14 in the nematic phase at 50 0C, assuming the cut off wave vector qc ≈ 2π/a,

where a ~ 10 
0

A , and elastic constant K~5×10-7 dynes. For this value of 
0

2
⊥n , 95% of

the area of the variation of ( )⊥nW  is covered within ~⊥n 0.8 and hence the upper limit of

integration can be taken to be infinity and the normalising constant is then C′ ≈1. With

increasing field 
E

n2
⊥  decreases and hence the approximation is more justifiable. The

entropy due to this distribution is given by

                                    ( ) ( )( )∫ ⊥⊥⊥−=
1

0

ln dnnWnWkBζ .                                           (2.57)

Which can be simpli fied as
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The difference in entropies in the presence of f ield and in the absence of f ield is given by
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where Eζ and 0ζ  are the entropies and 
E

n2
⊥  and 

0

2
⊥n are the mean square director

fluctuations in the presence and in the absence of electric field respectively. From

equation (2.28),

                                      











−−=⊥ ξ

π
ξπ c

c
B

E q
q

K

Tk
n

1

2

1

2 2
2                                     (2.60a)

and                             c
B q

K

Tk
n

20

2

2π
=⊥ .                                                                (2.60b)

The excess free energy is given by ζ∆−=∆ TF . Using equations (2.59), (260a) and

(2.60b) the simpli fied form of the free energy can be written as

                                       2E
S

T
E

S

T
F

βα ′
+

′
=∆                                                        (2.61)

where α ′and β ′are two constants and related to the cut off wave vector qc. The form of

equation (2.61) is similar to that of equation (2.54).

Now the total free energy density in the nematic phase can be written as

( ) ( ) ( )








+++−−+−=

S

E

S

E
TS

C
S

B
S

TTa
GSETpFSTpFN

2
432

*
2

0 432
,,,

βα
        (2.62)

where π
ε

12
0∆=G . Close to the criti cal point 2

⊥n  can be large and the above

approximation is no more valid and further the order parameter fluctuation should be

taken into account. In the paranematic phase there is no director in the absence of f ield

and hence the free energy density in the paranematic phase is given by

( ) ( ) ( ) 432
*

2
0 432

,,, S
C

S
B

S
TTa

GSETpFSTpFP +−−+−= .                                    (2.63)

The paranematic to nematic transition temperature is found numerically by comparing the

above two energies (FN and FP). For ill ustration we use the Landau coeff icients which are

known for 5CB [3] a = 0.13 J/cm3-K, B = 1.6 J/cm3, C = 3.9 J/cm3, KTNI 8.306=  and

G = 0.55. The parameters α and β are estimated to be ~0.01 and 0.00001 respectively.

We find that the paranematic-nematic transition temperature shows practically a linear

variation up to 100 esu and beyond that the influence of the quadratic component is seen.

(Fig.(2.37)). In the case of a system with 0<∆ε , the biaxial order has to be taken in to
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account, which is not considered in the present calculation. However from dimensional

argument the basic form of the contribution to free energy density should be the same.

This variation can be compared with the variation of **T  under the field which was found

by fitting the order parameter at various fields (Fig.(2.29)).

The field dependence of the order parameter in the nematic phase is calculated by

minimising the free energy NF  given by equation (2.62). The variation of order

parameter as a function of f ield at 1.0−PNT 0 is shown in Fig.(2.38). We see that the

calculated variation of order parameter in the nematic phase has a trend similar to that of

the measured variation as shown in Fig.(2.34).

Figure 2.37: Variation of calculated TPN as a function of electric field.

Figure 2.38: Variation of order parameter in the nematic phase at TPN-0.10 as a function

of field.
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2.3.5 Order Parameter Susceptibility: Generation of third harmonic

component of the electr ical signal

In this section we discuss the order parameter susceptibili ty. In the case of

magnetism, the susceptibili ty is defined as HM ∂∂= /χ , where the magnetic field H is

conjugate to the magnetisation. Similarly the order parameter S which is a second rank

tensor, is conjugate to E2. The orientation dependent part of dielectric energy denoted by

( )2.ˆ
8

En
�

π
ε∆

−  and S∝∆ε . The order parameter susceptibili ty can be defined as

                                                      
2E

S
q ∂

∂=χ                                                                (2.64)

where ( ) ( ) ( )0SESE
�	�

−= . In order to get an experimental measurement of qχ , we

calculate the current flowing through the cell . The sample capacitance is given by

                                                      ⊥= ε0CCS                                                               (2.65)

where C0 is the capacitance of the empty cell and ( )ES03

1 εεε ∆−=⊥ . Using equation

(2.64) and (2.65) we get

                                            ( )




 ∆−= ESCCS 00 3

1 εε    2
1 ECC q−=                          (2.66)

where                                  ( )




 ∆−= 0

3

1
001 SCC εε  ,

 and                                     qq CC χε 003

1∆= .                                                              (2.67)

From qC  we can measure qχ . The applied voltage to the cell i s given by tVV ωsin0=

where fπω 2= ,  f  being the frequency. The corresponding field is given by dVE /= ,

where d is the cell thickness. Considering only the capacitive response the current

through the cell i s given by

                                               [ ] [ ]EdC
dt

d
VC

dt

d
I SS == .                                             (2.68)

Using equations (2.66) and (2.67) we get

                                              ( )[ ] dEECC
dt

d
I q

2
1 −=
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                                   ( )
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The magnitude of third harmonic component of the current is given by

                                                 ωω 









= 2

3
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3 4

3

d

VC
I q  .                                                      (2.70)

Using this equation we can measure qC . From measured qC  we can get qχ  using

equation (2.67) .

Thus, the quadratic dependence of the enhancement of order parameter on the

electric field leads to generation of third harmonic signal [6]. The measured voltage

across the capacitor Cm (see Fig.(2.11) corresponding to the third harmonic current is

given by

                                          
mC

I
ZIV

ω
ω

ωω
3

33 ==                                                              (2.71)

                                                 
m

q
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2

3
0

4

3
= .                                                                    (2.72)

 Therefore qχ  is given by

                                       ωε
χ 33

000

24
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dCm
q 
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
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


∆

= .                                                           (2.73)

By measuring the third harmonic component of electric signal we can measure electric

susceptibili ty of the order parameter.

As we discussed earlier an important contribution to ( )E
�	�

 in the nematic phase

comes from the quenching of director fluctuations. This enhancement is proportional to

E  and the relevant order parameter susceptibili ty can be defined as

                                                    
E

S
l ∂

∂=χ .                                                                 (2.74)

The Fourier components of E  are given by

                               




 +−−== ....4cos

15

2
2cos

3

2
1

2
sin 00 ttEtEE ωω

π
ω .

The component at ω2  in E  gives rise to the susceptibilit y
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∆
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Thus, in the nematic phase the measured third harmonic signal V3ω  has contributions

from both the quenching of director fluctuations as well as from Kerr effect. It is noticed

from equations (2.73) and (2.75) that 3
0

3

V
V

q
ωχ ∝  and 2

0

3

V
V

l
ωχ ∝ , where V0 is the

amplitude of the applied voltage.

We have simultaneously measured the first ( f ), second ( 2f ) and third ( 3f )

harmonic electrical signals as well as the transmitted intensity as functions of local

temperature near the paranematic-nematic transition point at relatively high fields.

Variations of the third harmonic electrical signals ( 3f ) as functions of local temperature,

measured at two different fields namely 430 esu and 537 esu at a frequency of 1111 Hz

are shown in Fig.(2.39).  As we mentioned earlier, there is some misalignment of the

director above 350 esu. However, this does not affect the electrical measurements which

essentially sense only ⊥ε at even high fields. The 3f signal at 430 esu shows a nearly

symmetric narrow peak at 59.89 0C. Its value at the peak (~2.8×10-4V) is ~ 6 times larger

than that of the background signal. The temperature at which the peak occurs corresponds

to the paranematic-nematic  transition temperature (TPN).  At 537 esu the peak  occurs at a

Figure 2.39: Variations of the third harmonic electrical (3f) signals as functions of local

temperature. Cell thickness: 15.5 µm, applied field: 537 esu (open circles) and 430 esu

(open squares), Frequency: 1111 Hz.
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higher temperature (60.08 0C). The signal at the peak (~ 4×10-4 V) measured at 537 esu is

~ 8 times larger than the background signal.

We have evaluated 2
0

3

V
V ω and 3

0

3

V
V ω  at two temperatures (Table-III). When the

temperature is below 59.6 0C i.e suff iciently far away from TPN (see Fig.(2.39)) it is easier

to measure the relevant parts, and the former ratio is a constant while the latter is not. It

indicates that at the temperatures near PNT  the main contribution to the order parameter

susceptibili ty comes from the quenching of director fluctuations.

  Table-II I

Temperature
(0C)              3

0

3

V
V ω               2

0

3

V
V ω

2000 =V V    2500 =V V 2000 =V  V    2500 =V V

59.4 4.3×10-12   3.4×10-12 8.5×10-10 8.4×10-10

59.6 5.5   ×10-12        4.1×10-12 1.1 ×10-9          1.0×10-9

We show the variations of the 3f signal as well as the transmitted intensity in Fig.(2.40)

as functions of local temperature.

Figure 2.40: Variations of transmitted intensity as well as the third harmonic electrical

signal as functions of local temperature: Dotted vertical li ne denotes the P-N transition

temperature corresponding to the peak in the 3f signal. Cell thickness: 15.5 µm, applied

field: 537esu, Frequency: 1111 Hz.
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The temperature at which 3f signal shows a peak (60.08 0C) is indicated by a dotted line

(see Fig.(2.40)). It occurs at a slightly lower temperature (~ 0.05 0C) than the temperature

(60.13 0C) at which the transmitted intensity rises from zero value.

Under a strong electric field the P-N transition becomes second order. In the case

of strongly polar compounds it is possible that the dipole moments of the molecules may

get correlated over large domains. Due to the slow dynamics near the tricriti cal point the

domains may not be able to reorient at the frequency of the applied field. As a result a

second harmonic electrical signal ( 2f ) can be generated [6]. Since the compound used by

us is also highly polar we looked for 2f electrical signal under strong field. The variation

of measured 2f component of the electrical signal across the paranematic-nematic

transition is shown in Fig.(2.41). It has some background due to the nonlinearity of the

voltage ampli fier. However near the P-N transition point a small peak in 2f signal which

is ~20% higher than the background is seen and it occurs at the same temperature as that

of the peak in the 3f component (Fig.(2.41)). It may indicate the presence of polarized

domains that do not reorient with the field [6].

Figure 2.41: Variations of third ( 3f ) and second ( 2f ) harmonic electrical signals across

the paranematic-nematic transition region as a function of local temperature.  Cell

thickness: 15.5 µm, applied field: 430 esu, frequency: 1111 Hz.

2.4 Conclusions

We have performed the first high electric field experiment on a nematic liquid

crystal with 0<∆ε . The local temperature measurement clearly shows that the
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paranematic to nematic transition temperature ( PNT ) varies linearly with E  which

indicates that the director fluctuations contribute to the thermodynamics of the phase

transition. As we could not perform optical measurements beyond 350 esu, we are unable

to precisely locate the tricriti cal point. However, the electrical measurements shows a

peak in the third harmonic signal which clearly indicates that the transition has become

second order beyond about 350 esu.
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