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Chapter VI

Theoretical Estimation of Structural Parameters of Twist

Grain Boundary -A Liquid Crystals

6.1 Introduction

In the previous chapter we have described some experimental studies on twist

grain boundary liquid crystals. In this chapter we will t heoretically estimate the

structural parameters, namely the distance between two dislocations ( dl ) within a

grain boundary and that between two neighboring grain boundaries ( lb) in TGBA

liquid crystals.

In contrast to the Abrikosov lattice of f lux tubes in type-II superconductors, a

triangular lattice of screw dislocations which are parallel in the direct lattice of the

SmA does not lead to a tenable structure [1]. Renn and Lubensky estimated the lower

criti cal chiral strength (the analogue of the lower criti cal magnetic field in

superconductors) by comparing the energy gained by twisting the structure to the

energy cost of creating a single screw dislocation. This analysis is based on the

surmise that inter-dislocation spacing near the lower criti cal chiral strength is very

large compared to the twist penetration depth. In the extreme type–II limit (Ginzburg

parameter 
2

1
2 >>κ ) the lower criti cal strength ( ) ( )ξλπ /ln4/ 21 dDhc = , where D

is the coeff icient of the covariant term in the elastic free energy (see equation.(5.5)),

DK /2
2
2 =λ , and d is the magnitude of the Burgers vector of the screw dislocation.

However, if the interaction between dislocations is ignored, the structural parameters

lb and ld of the TGBA phase cannot be determined for chiral strengths intermediate

between the lower and the upper criti cal chiral strengths. From an analysis which is

valid close to the upper criti cal strength 2ch  (where the TGBA phase becomes unstable

to the cholesteric phase), Renn and Lubensky [1] estimated that the ratio lb/ld

increases from a minimum of about 0.96 to1.47 as the ratio K/K2 of the splay-bend

elastic constant to the twist elastic constant increases from zero to 104 for 8.02 =κ .

The structural parameters  lb and ld have been measured in the recent experiments of

Navaill es et al [2] on the compound 3-fluoro-4[(s)-1-methylheptyloxy]- 4′ -( 4′′ -
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alkoxy- 2′′ ,3′′ -difluorobenzoyloxy) tolane (10F2BTF01M7 for short) which  has the

following phase sequence: SmC*(99.70C) TGBA (102.850C) *
LN (106.710C)N* where

*
LN denotes the chiral li ne liquid phase. This TGBA phase has “commensurate”

structure in which the ratio of pitch (P) over bl is a rational number. A typical x-ray

diffraction pattern is reproduced in Fig.(6.1) from the reference [2]. The pitch value P

Figure 6.1: Xray diffraction pattern of an aligned TGBA sample. This pattern exhibits

46 spots equispaced along a ring and is the signature of a commensurate TGBA phase.

(adapted from ref. [2]), (Temperature:101.4 0C).

in the TGBA was measured as a function of temperature by optical experiments. The

ratio of P and the number of Bragg spots gives bl  at any temperature. The value of dl

was estimated using the relation dllP db /2π= . For example, the values of bl  and dl

at a temperature of 101.4 0C are 206
0

A  and 278 
0

A  respectively. The ratio db ll /  was

found to be ~1 at 99.8 0C and reduced to ~0.7 at 101.8 0C [2,3].

In this paper we account for dislocation interactions in a systematic way to

estimate lb and ld . While this work was in progress, Bluestein et al [3,4] presented an

independent calculation for determining structural parameters of the TGBA phase.

Their calculations were made in the Fourier space. On the other hand the work

presented in this chapter is a direct generalisation of the Read-Shockley method for

evaluating the energy of small -angle grain boundaries in solids [5]. We also present

results on the temperature dependences of the structural parameters. This was not

discussed by Bluestein et al [3,4].
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In what follows we first calculate the elastic free energy per unit area of a twist

grain boundary in type-II SmA using the linear elasticity theory. Next we calculate the

Gibbs free energy of the TGBA phase. For simplicity we consider the interactions

between nearest neighbour grain boundaries only and calculate the Gibbs free energy

and the structural parameters lb and ld.  We use the mean-field dependences of

ξ , 2λ and D to calculate the temperature dependences of the structural parameters of

the TGBA liquid crystal.

In order to facilit ate the evaluation of the Gibbs free energy of the TGBA

phase, we generalize the standard method of calculating the energy of topological

defects to a type-II SmA liquid crystal. We first demonstrate this method for a single

screw dislocation, and then use it for the energetics of pure twist grain boundaries. We

note that this treatment is quite general, and can be used for the energetics of edge- as

well as mixed dislocations.

6.2 Energetics of a Single Screw Dislocation

In a type–II SmA layer distortions are screened by the Frank director. For

small distortions the elastic free energy density is given by [6]

                               fxdF ∫= 3 ,

 and                            ( ) ( ) ( )22
2

1
2

2
.

22
n

K
n

K
nu

D
f δδδ ×∇+∇++∇=                              (6.1)

where u is the displacement field, nδ  is the deviation of the Frank director from its

undistorted equili brium value 0n̂  (parallel to the unit vector zê along the z- axis), and

D, K1, and K2 are elastic constants (here we have set the twist elastic constant equal to

the bend elastic constant). We write the free energy density f as
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and treat the continuous but multivalued displacement field u for a screw dislocation

as a single-valued field, which is discontinuous across a cut surface containing the

dislocation line. It is important to note that in this treatment there is no topological

constraint on the nδ  field. The nδ - field merely adjusts itself to lower the dislocation

(6.2)
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energy by screening the topologically constrained displacement field. Using the Euler-

Lagrange equations corresponding to the free energy in equation (6.1) we get,

( ) ,0. =+∇∇−= nuD
u

F δ
δ
δ

( ) ( ) 0. 21 =×∇×∇+∇∇−+∇= nKnKnuD
n

F δδδ
δ
δ

.                                 (6.3)

Applying Gauss’s theorem, and using equation (6.2) F can be recast in the following

form:

( ) unudS
D

F ii

S

i δ+∇= ∫2

    ( ) ( ) z

C

ii LuNuNnudl
D

∫ −−++ ++∇= δ
2

    ( ) ( ) ziii LuuNnudx
D −+ −+∇= ∫ δ
2

                                                         (6.4)

where C is the cut line, Ni represent the components of the normal vector on the lip of

the cut line (see Fig.(6.2)). d=(u+-u-) is the magnitude of the Burgers vector, and LZ  is

the length of the dislocation line.

Figure 6.2: A pictorial representation of the cut surface. The dislocation line is along

the z axis.

In particular, the energy per unit length for a single screw dislocation is then given by

( ) ,
2

dxnud
D

L

F
yy

z
∫
∞

+∇=






ξ

δ                                                         (6.5)

where ξ  is the smectic correlation length, the screw dislocation line is along the z-

axis and the cut line is along the x- axis. Here we have ignored the contribution from

the dislocation core energy, which arises from the destruction of smectic order within

a region of order of the smectic correlation length ξ . For a screw dislocation

(dislocation line along the z – axis) at the origin the displacement field and the Frank

director field are given by [6]

N +

N -
C

X

Y

.
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where ),/(tan 1 xy−=ϕ  ,22 yx +=ρ ϕê is the unit vector in the ϕ  direction, 2λ  is

the twist penetration depth and )/( 21 λρK  in the modified type-II Bessel function of

order one [7]. Note that the nδ - field is divergence-free. We now use these fields in

equation (6.5) to evaluate the energy per unit length of a single screw dislocation:

,
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                                            (6.8)

where )/( 20 λξK  is the modified type-II Bessel function of order zero. For small

arguments ( )220 /ln)/( λξλξ −≈K  and we regain the standard result for the energy

of a screw dislocation in strongly a type-II SmA [1, 6]
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                                                      (6.9)

6.3 Energetics of a Single Twist Grain Boundary

 The method described above can be extended to evaluate the energy per unit

area of a small -angle twist grain boundary [5]. In order to implement this we need to

calculate the u- and the nδ  fields for a planar array of equally spaced parallel screw

dislocation lines. Let us consider a grain boundary made up of screw dislocation lines

parallel to zê in the reference lattice, situated at x = 0, y = dlν , where ν  is an integer

and dl  is the spacing between successive dislocations. Instead of directly finding the

total displacement field ( )TGBu  due to the grain boundary, it is more convenient to find

the local slope ( )TGBu∇  of the smectic layers as a function of the coordinates. For the

linear elasticity theory (see equation (6.1)) the superposition principle is applicable

and we merely need to add the contributions from each dislocation in the array. The

displacement field is given by 




= −

x

yd
u 1tan

2π
. For a single dislocation the

components of the slope of the displacement fields are given by
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For the TGBA phase
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We evaluate the sum in equation (6.10) by using results from complex analysis [8]:

             ( )∑
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Similarly from equation (6.11) we obtain the sum of the residues as
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Using equations (6.10), (6.11) and (6.12a), (6.12b) we get

( ) ( )
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It is easy to check that the dislocation lines comprising the twist grain

boundary remain parallel to zê in the direct lattice. To calculate the energy per unit

area of a grain boundary we need to know the y- component of the nδ  field, so that

the generalized version of equation (6.4) for a grain boundary can be used (see

equation (6.18) below). We notice that the −nδ field for a twist grain boundary can be

obtained via the Euler-Lagrange equation 0=
n

F

δ
δ

, which implies

( ) ( ) ( )TGBTGBTGB unn ∇=−∇ −− 2
2

2
2

2 λδλδ                                           (6.15)

We take advantage of the fact that the displacement field ( )TGBu∇ satisfies the Laplace

equation and make the ansaz

( ) ( )( ) ( )
TGByTGBy uxgn ∇−= 1δ                                                                    (6.16)

for the particular integral of equation (6.15) to get 2/
)(

λx
exg

−= . The ( )TGBnδ  and

( ) ( ){ }TGBTGBy nuQ δ+∇= - fields have to satisfy the following boundary conditions:

(i) ( ) 0=TGBnδ  at the dislocation cores, i.e., at x=0, y= ν ld , where ν  is any

integer, and

(ii ) ( ) ( ){ } 0=+∇= TGBTGBy nuQ δ  at x= ∞± .

To satisfy these boundary conditions we add the appropriate solution to the

homogeneous version of the Euler-Langrange equation (6.15) to get

( ) ( ) .
2

1

2

2















−∇+∇= −

d
TGByTGBy

x

y l

xd
uxueQ

λ
λ

                                      (6.17)

It is now straightforward to generalise equation (6.5) to evaluate the twist grain

boundary energy per unit area. With planar cut surfaces parallel to the xz-plane

containing the dislocation lines (so that the normals to Cv are along yê± ), the energy

per unit area for the twist grain boundary is

,ˆ.
2

lim dxeQ
L

Dd
f

C

yy
y

Lgb y ∑ ∫∞→=
ν ν

          (6.18)

where Ly is the length of the grain boundary along yê , and we have ignored the

dislocation core energy per unit area of the grain boundary. Equation (6.18)

generalizes the Read-Shockley method for calculating the energy per unit area of

small -angle grain boundaries in crystals [5] to the case of small -angle grain

boundaries in type-II SmA.
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6.4 Interacting Twist Grain Boundaries

To estimate the structural parameters of the TGBA phase, it is necessary to

include the inter-grain boundary interactions. In what follows we numerically evaluate

the nearest neighbour grain boundary interaction. This is easily done within the

formulation developed above. We place parallel screw dislocations at

d
b lylx ν=±= ,2  in the reference lattice and superpose the layer displacement

field ( )
TGByu∇  as well as the director field component ( )

TGBynδ  for these two grain

boundaries. We emphasize that the superposed field has the correct symmetry in the

direct lattice: ( ) dTGBy ldu /±=∇−  at ±∞=x . The equation (6.18) for the energy per

unit area of a single grain boundary is also applicable to the case of two interacting

grain boundaries, with the modification that the cut lines Cv extend from

,dly ν= 2/blx =  to ∞+  and 2/blx −=  to ∞− . The energy density for two

interacting grain boundaries can be written as



















 −+


 += ∫∫
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bb l

b
y

l

b
y

db
gb

22
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22
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                     (6.19)

The chiral term favoring twist and the formation of grain boundaries in the SmA

phase is given by [6]

                                             ( )nnxdhFCh ˆ.ˆ3 ×∇−= ∫                                             (6.20)

where h is a pseudoscalar coeff icient which measures the chiral strength of the liquid

crystal molecules. The chiral energy per unit volume is given by

                           
bd

Ch
Ch ll

hd
hk

V

F
f −≈−== 0                                  (6.21)

where k0 is the wave vector corresponding to the twist. The total energy per unit

volume is obtained by using equations (6.19) and (6.21):

                                                    Chgb ffG += int                                                     (6.22)

We numerically minimize the Gibbs free energy G as functions of lb and ld for

different values of λ2, ξ and h/D.  A representative variation of the Gibbs free energy

for nearest neighbour interaction calculated for d =ξ =38
0

A  and λ2 =75
0

A

(i.e. 97.12 =κ ) is shown in Fig. (6.3).
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Figure 6.3: A three-dimensional plot of free energy density as a functions of lb and ld

for 97.12 =κ  (λ = 75 
0

A , d = ξ = 38
0

A ) and h/D = 6.5
0

A . The minimum of the energy

is situated at lb=183
0

A  and ld = 302
0

A .

We have calculated bl and dl  as functions of h/D for various values of 2κ . The

variations of bl and dl  as functions of h/D are shown for 2κ =1 in Fig.(6.4), and for

2κ =1.44 and 1.97 in Fig.(6.5) and Fig.(6.6) respectively. We find the lower criti cal

value of  ( Dhc /1 ) for different values of 2κ  at which the Gibbs free energy becomes

Figure 6.4: Variations of lb and ld as functions of h/D for 12 =κ  (λ2 = 38
0

A , ξ = 38
0

A

and d = 38
0

A ).   Vertical arrow denotes the lower criti cal value of Dhc /1 = 2.46.
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Figure 6.5: Variations of lb and ld as functions of h/D for 44.12 =κ  (λ2 = 55
0

A , ξ

=38
0

A  and d = 38
0

A ). Vertical arrow denotes the lower criti cal value of Dhc /1 = 4.0.

positive. In Fig.(6.4), (6.5) and (6.6) the lower criti cal values of Dhc /1  are indicated

by  vertical arrows. We note that in each figure near Dhc /1  the two curves intersect.

Further, bl  decreases more rapidly than ld with increasing values of h /D. With

increasing values of 2κ  the  values of  Dhc /1    also increase.  Fixing the value of bl ,

h /D also increases with 2κ (e.g. compare Fig.(6.4), (6.5) and (6.6)) .

Figure 6.6: Variations of lb and ld as functions of h/D for 97.12 =κ  (λ2 = 75
0

A ,

ξ =38
0

A  and d = 38
0

A ). Vertical arrow denotes the lower criti cal value of

Dhc /1 = 5.5.
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In order to find the temperature dependences of lb and ld we need to know the

temperature dependences of the input parameters λ2, ξ⊥, h, and D.  X-ray scattering

studies show that ξ⊥∝ ⊥−νt  where ( )
AN

AN
T

TTt −= . ⊥ν is system–dependent, and

varies between 0.45 to 0.6 [9]. In the above, ANT  is the SmA to TGBA transition

temperature. We have assumed that ξ  and other parameters have similar dependences

in the SmA and TGBA phases. Measurements on several systems show that the

compression modulus xtB ∝ , x ≈ 0.4, whereas mean field theory predicts that

tDB ∝∝ 2
, ψ , where ψ is the smectic order parameter. Further, K2 is temperature

independent, and 5.0
2 , −∝ tξλ  within the mean field theory. Assuming that h is

independent of temperature, calculations based on the mean field theory show that lb

decreases faster than ld with increasing temperature. The ratio lb/ ld as well as the pitch

d

ll
P dbπ2=  decrease with temperature (Table-I). All these results are in accordance

with the experimental trends. However, these calculations show that the stabili ty

range of the TGBA phase is about 10C which is relatively small . Several experimental

systems are known in which the TGBA phase is stable over a range of 10 0C or more.

Following the experimental results, even if we assume that 5.0tD ∝ there is no

significant increase in the stabili ty range of the TGBA phase. The wide range of TGBA

phase suggests that the Ginzburg parameter 2κ  may itself be temperature dependent.

                                                 Table-I

TAN -T
(0C) λ  (

0

A ) ξ   (
0

A )
κ2 h

(dynes/cm) lb (
0

A ) ld (
0

A )

1.66 75 38 1.97 0.1 345 345

1 96.5 49 1.97 0.1 70 335

In optical experiments on relatively short-pitch TGBA systems a selective

reflection band is observed [10], whereas in large-pitch systems no selective reflection

is seen [11]. These apparently conflicting observations can be explained by examining

the curvature of the Gibbs free energy (as a function of lb and ld) at its minimum. We
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find that 
2

2

dl

G

∂
∂

 is always greater than 
2

2

bl

G

∂
∂

. Further 
2

2

bl

G

∂
∂

 for h/D=7.1 (short-pitched

system) and 97.12 =κ  is about 30 times that for h/D =5.7 (large-pitched systems).

This indicates that the shallow nature of G as a function of lb near its minimum may

smear out the selective band for large pitched systems at finite temperatures.

6.5 Conclusions

We have used the linear elasticity theory of type-II SmA to calculate the

structural parameters of the TGBA phase. It is perhaps relevant to note that in contrast

to the case of superconductors, there are two distinct kinds of vortices (edge- and

screw dislocations) in the smectic-A phase. In our calculation we have ignored the

edge-like fluctuations of the screw dislocation lines. We speculate that these

fluctuations may give rise to long–range interactions needed to explain the possible

commensurate structure of the TGBA phase.

Further work to include interaction between all grain boundaries with a view

to criti cally compare and contrast our method with that of  Bluestein et al  is desirable.
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