THE DETECTION AND PROCESSING OF PULSAR SIGNALS AT DECAMETRIC WAVELENGTHS

Thesis .

/

,

Submitted in partial fulfilment of the requirement for the degree of

DOCTOR OF PHILOSOPHY

by

AVINASH ANANT DESHPANDE

ELECTRICAL ENGINEERING DEPARTMENT

INDIAN INSTITUTE OF TECHNOLOGY , BOMBAY

THESIS APPROVAL SHEET

Thesis entitled : THE DETECTION AND PROCESSING OF PULSAR SIGNALS AT DECAMETRIC WAVELENGTHS by AVINASH ANANT DESHPANDE is approved for the degree of DOCTOR OF PHILOSOPHY.

Examiners

8. H. Pam

Supervisor(s)

Chairman

CONTENTS

		LIST OF FIGURES	•••	iv
		LIST OF TABLES		viii
		NOMENCLATURE		ix
CHAPTER	1	INTRODUCTION AND HISTORICAL REVIEW		
	1.1	Introduction	•••	1
	1.2	Radio Emission from Pulsars	• • •	2
	1.3	Observational Properties of Pulsars		7
	1.4	Pulsar Signal Processing Techniques		11
	1.5	Pulsar Observations at Decametric		
		Wavelengths	•••	15
CHAPTER	2	THE DECAMETER-WAVE RADIO-TELESCOPE		
		AT GAURIBIDANUR AND THE NEW		
		TRACKING SYSTEM		
	2.1	Introduction	• • •	25
	2.2	The Decameter-wave Radio-telescope		
		at Gauribidanur		26
	2.3	System Capabilities		39
	2.4	The Tracking System	•••	43
CHAPTER	3	PULSAR OBSERVATIONS WITH THE		
		SINGLE FREQUENCY-CHANNEL RECEIVER		
	3.1	Introduction	• • •	70
	3.2	Observations of Low Dispersion		
		Measure Pulsars		

	3.3	Flux Calibration	• • •	92
	3.4	Estimation of the Average Pulse		
		Energy and the Amount of		
		Interstellar Scattering	• • •	95
	3.5	Fluctuation Spectra	• • •	96
	3.6	Low Frequency Variability	• • •	100
CHAPTER	4	OBSERVATIONS OF HIGHLY DISPERSED		
		PULSAR SIGNALS		
	4.1	Introduction	• • •	104
	4.2	Basic Scheme : Swept-frequency		
		Dcdispersion	• • •	105
	4.3	The Sweeping Local Oscillator		
		System (SLOS)	• • •	108
	4.4	New Scheme for Gain Calibration	•••	130
	4.5	Procedures for Observations		
		and Data 'Acquisition	• • •	140
	4.6	Data Processing and Detection	•••	144
	4.7	Conclusion	• • •	149
CHAPTER	5	RESULTS AND DISCUSSION		
	5.1	Introduction	•••	151
	5.2	PSR 0628-28	• • •	152
	5.3	PSR 0809+74	•••	156
	5.4	PSR 0834+06	• • •	156
	5.5	PSR 0942-13	•••	160
	5.6	PSR 0943+10	• • •	160
	5.7	PSR 0950+08	• • •	167

	5.8	PSR 1133+16	•••	167
	5.9	PSR 1919+21	• • •	171
	5.10	Scattering in the		
		Interstellar Medium	•••	171
	5.11	Summary	• • •	178
CHAPTER	6	CONCLUSIONS	•••	180
APPENDIX	I	APPARENT PERIODS OF PULSARS	•••	186
APPENDIX	II	PROPAGATION EFFECTS IN THE		
		INTERSTELLAR MEDIUM	•••	189
APPENDIX	III	DEFINITIONS	• '• •	198
APPENDIX	IV	THE SIGNAL-TO-NOISE RATIO		
		OBTAINABLE WHEN COS AND SIN		
		CORRELATIONS ARE SQUARED,		
		ADDED AND SQUARE ROOTED	•••	200
APPENDIX	v	OPTIMUM COMBINATION OF TWO		
		INDEPENDENT ESTIMATES	•••	207
		REFERENCES	•••	210
		ACKNOWLEDGEMENTS		
		SUMMARY		

_					
- L-	п.	\sim	11	r	\sim
т.	ᆂ	ч	u	ㅗ	⊂
		_			

1.1	Number of pulsars observed Vs. the	
	frequency of observation.	16
2.1	Schematic of the dipole.	27
2.2	The basic array element.	28
2.3	The "T" array.	29
2.4	(a) Configuration within each EW group.	30
	(b) Combination of the groups in	
	the EW array.	32
2.5	Configuration in the South array.	33
2.6	Block diagram of the analog receiver.	36
2.7	Block diagram of the Autocorrelation	
	Receiver [Udayashankar,N.,1986][87].	38
2.8	(a) Introduction of new phase	
	shifters $\psi_{1,\psi_{2}}$.	50
	(b) Introduction of new phase	
	shifters $\phi_{3}, \phi_{4}, \phi_{5}$.	51
2.9	Phase gradients and the required	
	compensation.	52
2.10	The phase shifter module.	54
2.11	Location of the pre-amplifier.	57
2.12	Block diagram of the timing controller.	61

	A scheme to obtain 4-bit			
	representations for $\phi_{1}\phi_5$	63		
2.14	Generation of all the required control			
	sets from the output of the Beam Counter.	65		
2.15	The driver/display module : circuit diagram.	67		
2.16	A point source observation with			
	the tracking system.	69		
3.1	A flow chart of the data			
	logger operations.	73		
3.2	Block diagram of the data logging system.	75		
3.3	Arrangement for the receiver gain			
	calibration.	78		
3.4	Average profile in the COS and			
	the SIN channels.	86		
3.5	An average profile obtained by combining			
	the COS and the SIN channel outputs			
	using the new procedure.	93		
3.6	Fluctuation spectra Vs. longitude			
	for PSR 0834+06 at 34.5 MHz	101		
4.1	Time to frequency mapping of			
	dispersed pulsar signals.	106		
4.2	The swept-frequency dedispersion scheme.	109		
4.3	A plot of pulsar periods Vs. DMs.	110		
4.4	(a) The required sweep frequency f_{3} (t).			
	(b) A simplifying approximation			
	for sweep frequency.	114		
4.5	A basic design for the SLOS.	116		

4.6	Design of the sweep controller.	118
4.7	A design for the controlled oscillator	
	using a DAC and a VCO.	120
4.8	The basic divide-and-add scheme for	
	a controlled oscillator.	122
4.9	A four stage divide-and-add scheme	
	for the controlled oscillator.	124
4.10	Design of the programmable divider.	127
4.11	Design of the frequency adder module.	129
4.12	The distribution of errors in the	
	final output frequency of the SLOS.	131
4.13	The basic receiver set-up used for	
	observations of highly dispersed	
	pulsar signals.	141
4.14	Average profile of PSR 1919+21 using the	
	swept-frequency dedispersion scheme,	150
5.1	(a) Average profile of PSR 0628-28 using	
	the swept-frequency dedispersion scheme.	153
	(b) Average profile of PSN 0628-28 using	
	the single frequency channel scheme.	154
5.2	Energy spectrum of PSR 0628-28.	155
5.3	Average profile of PSH 0809+74 using the	
	single frequency channel scheme.	157
5.4	Energy spectrum of PSR 0809+74.	158
5.5	(a) Average profile of PSR 0834+06 using	
	the single frequency channel scheme.	159
	(b) Average profile of PSR 0834+06 using	

	the swept-frequency dedispersion scheme.	•••	1 61
5.6	Energy spectrum of PSR 0834+06.	•••	162
5.7	Average profile of PSR 0942-13 using the		
	single frequency channel scheme.	• • •	163
5.8	Average profile of PSR 0943+10 using the		
	single frequency channel scheme.	• • •	165
5.9	Average profile of PSH 0943+10 using the		
	swept-frequency dedispersion scheme.	• • •	166
5.10	Average profile of PSR 0950+08 using the		
	single frequency channel scheme.	•••	168
5.11	Energy spectrum of PSR 0950+08.	•••	169
5.12	Average profile of PSR 1133+16 using the		
	single frequency channel scheme.	•••	170
5.13	Energy spectrum of PSR 1133+16.	•••	172
5.14	Average profile of PSR 1919+21 using the		
	swept-frequency dedispersion scheme.	• • •	173
5.15	Energy spectrum of PSR 1919+21.	• • •	174

× 4 +

LIST OF TABLES

TUDIC

page

2.1	OPERATING MODES OF THE GAURIBIDANUR	
	TELESCOPE WITH THE CORRESPONDING	
	BEAM WIDTHS AND EFFECTIVE COLLECTING	
	AREA	34
3.1	RELEVANT PARAMETERS OF 20 PULSARS	79
3.2	LIST OF CALIBRATION SOURCES AND	
	THEIR ASSUMED FLUXES	94
3.3	ESTIMATES FOR THE AVERAGE FULSE	
	ENERGY AND THE AMOUNT OF SCATTERING	97

NOMENCLATURE

.

ALPHABETS

a	Characteristic scale size of electron density	
	fluctuations.	
al	$= \langle A1 \rangle$	
a2	= <a2></a2>	
a(t)	Calibrated profile.	
Ampl,Amp2	Best fit amplitudes.	
A3,A4	Random variables.	
Ае	Effective aperture size.	
Ао	New estimate using Al and A2.	
Aol,Ao2	Two independent estimates of a quantity.	
A(I)	Bin contribution in Ith bin.	
Ao(t)	COS channel output when $\triangle \theta = 0$.	
Ac(t)	Average profile in COS channel.	
As(t)	Average profile in SIN channel.	
Ave(I)	Average profile over 2-period stretch.	
b	$=(a1^{2}+a2^{2})^{1/2}$	
bl>b8	8-bit binary number corresponding to ϕ_1	
В	Predetection bandwidth.	
B _o	Magentic flux density.	
В5>ВО	6-bit output of the beam counter.	
BFT	"Beam flipping time" in tracking.	

٠

Bopt	Optimum	bandwidth,
_	_	

B(t) Sample value at time t. The velocity of light.

Mean number of samples averaged.

- Cji 1-bit control signal for phase shifter.
- C(I) Effective number of samples averaged in Ith bin. Distance to a pulsar.
- d' Constant to account for average gain of the EW beam over 30' arc.
- d1 Distance between two basic array elements in E-W direction.
- d(t) The receiver bandpass converted into time function by the dispersion law.
- $(df/dt)_{\downarrow}$ Drift rate due to AP $\frac{1}{2}0$.
- $(df/dt)_{sul}$ Sweep rate of the SLOS.
- Do Calibrator deflection corrected for collimation error.
- Dc Calibrator deflection in COS channel.
- DM Dispersion Measure.
- Dn Deflection due to calibration noise.
- Ds Calibrator deflection in SIN channel.
- e Charge of an electron.
- f,fl,f2 Radio frequencies in Hz.
- f Centre frequency of observation.
- f_{clk} Sampling clock frequency.
- fs,fe Start and end frequency of the sweep.

 f_{in}, f_{γ} First and second input frequency. Frequency of low frequency signal. f f_{RF} Frequency of RE' signal. Staircase function as an approximation to $f_{t}(t)$. f(t) $f_{out}(t)$ Output frequency of the sweeping LO system. $f_{g}(t)$ Required frequency. F(t) Best fit profile. Gain factor due to collimation error. ď q Average gain. Actual gain function in the frequency domain.* g(n) Best fit function to an observed profile. g(t) Crude estimate of g(n). g (n) ql(n) Modified gain function. g'(n) Effective gain function in the frequency domain. Gain function of the telescope upto mixer stage. G Gb Gain of the baseband filter. Gain of the correlation beam. G_C Ge,Gw Phase gradients for East and West arrays. Maximum value of the phase gradient, |G|max Running index. i(t) Function representing intrinsic pulse profile. Integral number of **bins** in the fraction of the Np-period stretch. Τ_ρ Average intensity of the background radiation.

ICH Channel index.

 \tilde{I}'_{g} Background noise intensity off the source.

- $\overline{I}(n)$ Average intensity pattern in frequency domain.
- I_B(f_{KF},t) spectral desnity of background radiation at the antenna input.
- $I_{off}(n)$ Measured intensities off the source.
- $\overline{\mathrm{Ip}}(\phi_{\varsigma}(n))$ Average intensity of a pulsar signal at longitude $\phi_{\varsigma}(n)$.
- k Boltzman's constant.
- k_o,k' Constants.
- K System gain normalization factor.
- K_o A constant.
- L Lower sideband intensity.
- L_o Integer number.
- Length of a phase cable.
- Length of the EW array.
- m Mass of an electron.
- m' Receiver dependent constant.
- m Modulation index.
- n,n' Bin index.
- no Number of observations.
- nl,n2 Zero mean random noise processes.
- n_b Beam position.
- n_e Electron density.

'n	Step	number	corresponding	to	the	SLOS	frequency.	

 $\boldsymbol{\hat{n}}_{\varsigma}$. Step number corresponding to $\boldsymbol{f}_{\varsigma}$.

nsamp Number of independent samples averaged after post-detection integration.

n_d(t) Number of bins by which pattern drifts in time t. N Divisor value.

NB Number of output bins.

NCH Number of channels.

N_d Number of drift cycles.

Nj Divisor value for jth stage.

Np Number of periods over which data is averaged.

Nrec Number of records used for averaging.

N_S Integral number of Np-period stretches.

P Apparent period of a pulsar,

P' Sweep reset interval.

P First derivative of pulsar period.

P Second derivative of pulsar period.

Po,Pl Pulsar period as would be observed at the Barycentre of the Solar System (BSS) at epochs t_o,tl.

Pnoise Average power due to background noise.

Q Level of detection.

r

r_o The classical radius of electron.

r_ρ Spatial scale of a diffraction pattern at the Earth.

Unit vector along the line of sight to a pulsar.

- r(t) Impulse response of the pust-detection filter.
- R("x") Beam pattern in "x" mode.
- RA Right Ascension.
- Rcal Calibration factor (Jansky/count of deflection).
- RM Rotation measure.
- $R(\theta_m)$ Ratio of the secondary response to the main response of the EW array.
- **ReE** 3 Real part.
- s(t) Impulse response due to interstellar scattering.
- **S** Average of Si.
- **S** Source strength in Jansky.
- (S/N),. Signal-to-noise ratio for Ai.
- SINC(Y) = SIN(Y)/Y
- Si Pulse energy estimate in ith observation.
- SLOS · Sweeping Local Oscillator System.
- t Time co-ordinate.
- t₀,tl Epochs.

۲.,

- tl,t2 Pulse arrival times.
- t' = t-iP (for i=0,1,...), such that $0 \le t \le P$
- t'' = t'/DM
- t_{off} Duration of off-source observation.
- **t**_{on} Duration of on-source observation.
- ts,te Start and end time for tracking.
- Ts Sampling interval.
- Tsys. System noise temperature.
- U Upper sideband intensity.

v _d	Projected velocity of an observatory in the
	direction of a pulsar.
V V	A velocity vector representing the velocity of
	the geocentre with respect to the BSS.
Vg	Group velocity.
V obs	Velocity of an observatory with respect to the
	geocentre.
V _s	Velocity of the earth-pulsar line across the
	scattering screen.
V_x , V_y , V_z	Components of \vec{v}_{E} .
V(t)	Complex envelope associated with X(t).
	Undispersed pulse width.
W1,W2	Weightages.
	A constant with value close to unity.
X(t)	Varying voltage due to a pulsar signal.
Y	$(Amp'l^2 + Amp2^2)^{\frac{1}{2}}/g_c$
	Zenith angle.

Greek Symbols

P	Velocity factor of the cable.
Y	Increase in time resolution.
ծ	Declination.
δf	Spectral resolution or binwidth.
δf(t)	Error in fout .

)t	Additional	smearing	in	tinie.
----	------------	----------	----	--------

δΨ Difference between Faraday rotation angles at the extreme frequencies within a band $\triangle F$. \triangle BFT Absolute quantization error in representing BFT. Αf Bandwidth over which a pulsar profile over one period gets mapped in frequency. ΔF f2 - f1 ∆g(n) Error in the estimation of g(n). Fraction of the bin. ΔI $\Delta I_{off}(n)$ Error in the estimation of $I_{off}(n)$. ∆Ip Uncertainity in estimation of Ip() . Electron density fluctuations. Δn_{ρ} ΔΡ Deviation of reset interval(P') from P. Δ RA Absolute quantization error in representing RA. Δt Step width in f(t). Δt t2-t1 Δt_{bin} Binwidth in time. ∆t_q Worst case error in ts, te due to \triangle RA and \triangle BFT. Δ Tsamp Sampling interval. Effective collirnation error in N-S direction. $\Delta \theta$ $\Delta \Psi$ Faraday rotation angle. $\Delta \mathcal{V}$ Decorrelation bandwidth for interstellar scintillation. $\Delta \phi$ r.m.s. phase deviation due to scattering. Delay decorrelation factor. n Angle between the line of sight and the θ

direction of interstellar magnetic field.

- 00 Apparent angular semidiameter of a source due to scattering.
- θ_b Peak to first null separation of the basic array element beam in EW direction.

 θ_m Angular tilt from the meridian.

 $\boldsymbol{\theta}_{\mathsf{NS}}$ Peak to first null separation of the S arm beam in NS direction.

 θ_{s} Scattering angle.

 λ Wavelength.

- ρ a Normalized analog correlation.
- $ho_{\rm c}$ Normalized one-bit correlation.
- σ₁ Estimate of the standard deviation of noise in the profiles Ac(t),As(t).
- **6** Standard deviation due to noise.
- 61,62 r.m.s. noise in the estimates Aol and Ao2.

δi Standard deviation of data in ith

record before averaging.

60 r.m.s. noise deviation in the Ao.

 $\mathbf{6}_{N}$ Standard deviation of A4 from its true value b.

- 6 Standard deviation of noise in output profile.
- au Post-detection integration time.

 $\overline{\mathcal{T}}$ Mean uncompensated delay.

Cmax Maximum delay.

 au_{on} On-line integration time.

 $au_{,}$ Decorrelation time for interstellar

scintillations.

τ_{s}	Characteristic width of the impulse response
	due to scattering.
φ	Phase shift.
1 -	Phase shifts required for tracking.
$\phi_{S}(n)$	Longitude of a pulsar signal at frequency
-	$(f_{s} + n\delta f)$ and time $t = 0$.
ω	Frequency in radians per second.
	Plasma frequency in radians per second.

Suffix

r.m.s.	Root mean squares.
min	Minimum value.
max	Maximum value.

Other Symbols

Frac()	Fraction.
Int()	Interger part.
\sum	Summation.
1.1	Magnitude.
*	Convolution.
	Dot product.
$\langle \rangle$	Ensemble mean.