
Chapter 1 

Introduction. 

In this thesis we study some aspects of gravitational instability in an expanding universe. 

The universe is modeled as a system of nonrelativistic particles interacting only through 

Newtonian gravity. In the unperturbed universe these particles are uniformly distributed 

and they move according to Nubble's law. We want to study the evolution of disturbances 

in such a universe. 
t We first briefly discuss the relevance of this problem in the context of cosmology. 

1.1 Why Study Gravitational Instability ? 

It is believed from many lines of observational evidence that on very large scales the universe 

is homogeneous and isotropic and most models of the universe are based on this assump- 

tion. Combined with general relativity this assumption provides a model which explains the 

observed expanding universe. It also provides a background for understanding the observed 

light element abundances and the isotropic 3deg K microwave background. References 

[24],[27], [31] and [33] discuss the different cosmological models in detail. It is observed that 

the large scale distribution of matter in the universe exhibits structures. (see for example 

section 3 of Peebles (1993) and references given there). One then has to explain the ob- 

served large scale structure of the universe id a manner consistent with the homogeneous 

and isotropic models of the universe. 

It is believed that the observed large scale structure in the universe is the result of 

the growth of some initially small disturbance in the uniform background universe. This 

growth is supposed to be due to the process of gravitational instability. Thus the reason for 
studying the growth of gravitational instability in an expanding universe is to understand 

the formation of the observed large scale structure in the universe. Newtonian dynamics 

gives a good description of cosmology on scales much smaller than the horizon in the matter 

dominated era (see for example Peebles 1980). It is during this epoch that the analysis 



discussed in this thesis is valid. Also, all non-gravitational forces have been ignored. This 

is primarily because it is expected that at large scales the gravitational force will dominate. 

Observations on various scales show that the mass inferred from the observed light is much 

smaller than the mass inferred from dynamics. This indicates that dynamics on various 

scales may be dominated by matter that cannot be seen. This matter component is often 

modeled as weakly interacting particles which in the matter dominated era may be treated 

as particles interacting only gravitationally. 

1.2 Linear Evolution. 

Any particle in the system described earlier will move under the gravitational force of all the 

other particles. Thus to solve the evolution of the system we have to simultaneously solve 

for the motion of all the particles. This is not possible in general. 
! 

We may simplify matters a little by treating the distribution of particles as a continuum. 

, In this description the force on any particle is due to a smooth distribution of matter and 

the residual direct particle-particle scattering is not taken into account. If we consider the 

phase space of one particle, the state of this system can now be described by a function 

(the distribution function) on this space. The distribution functi0.n is the number density 

of particles in phase space and its evolution is governed by the coupled Liouville-Poisson 

equations. 

When the particles are uniformly distributed and they move according to Hubble's law, 

the equations are much simpler and they reduce to a scalar equation for the Hubble constant 

(or equivalently the scale factor). This can be solved. 

One next studies disturbances where the deviations from the background universe are 

small. This is characterised by a small number e. It is assumed that the fractional change 

in the density (relative to the background) is of the order of e and it is assumed that the 

deviations from Hubble flow are of this order too. - 
In addition we only consider situations where initially the velocity dispersion at any point 

is zero (i.e. all the particles at any point have the same velocity, a single streamed flow). 

With these assumptions the state of the system can be described by the density and velocity 

at every point, and the evolution is given by the hydrodynamic equations without pressure 

(HD equation) i.e. 1.continuity equation 2. Euler equation and 3. Poisson equation. This 

approach may be described as the single stream approximation. 

The equations for the evolution are both non-linear and nonlocal. If we linearize the 

equations keeping only terms which are linear in e, we obtain a set of linear equations that 

can be easily solved. As a result of this analysis it is found that the fractional density 



i.e. the fractional density contrast at any point can be broken up into two parts each of which 

evolves independently. There is a growing part with subscript 1 and an decreasing part with 

subscript 2. The linear analysis also tells us that any initial vorticity decays because of the 

expansion and if the initial vorticity is zero it remains so. The vorticity remains zero as long 

as the flow is single streamed, even in the non-linear regime. 

Based on this one reaches the conclusion that the decaying mode of the density per- 

turbation and the initial vorticity may be neglected in the study of large scale structure 

formation. The resulting picture is that one only deals with the part of the initial distur- 

bance that grows. At any point this density perturbation just gets .scaled as a function of 

time and the overdense regions get more overdense and the underdense regions get more 

underdense. If one tries to extrapolate this picture for arbitrarily long periods of evolution 

one finds that the results cease to have any physical significance. This is because at places 

where the density is less than the background density the density keeps on decreasing and 

becomes negative and it is not possible to physically interpret this negative density. One 

expects the linear theory of qerturbations to give results which correctly describe the pro- 

cess of gravitational instability in the regime when the higher order perturbations are much 

smaller than the linear terms. 

References [24],[27], [27], [31] and [33] discuss the linear evolution of cosmological per- 

turbation in detail. 

1.3 Zel'dovich approximation 

Zel'dovich (1970) suggested a different way of looking at linear perturbation. He suggested 

that, instead of considering the evolution of the density, we should consider the trajectories 

of the particles. If one does a linear perturbation in the trajectories of the particles one gets a 

map from the initial position of the particles to their position after a time t. This map turns 

out to be such that in suitable coordinates it corresponds to the free motion of the particles 

where they keep on moving with their initial velocity. In thid map time is replaced by the 

growing mode Dl(t) and in the initial stages of the evolution it reproduces the results of the 

linear theory for the evolution of the density. This has the advantage that the density never 

becomes negative and one can physically interpret the results even at arbitrarily late times. 

Following the evolution of the particles t'o later times one finds that the trajectories of the 

'particles intersect. When this happens the flow becomes multi-streamed (i.e., many particles 



, with different velocities at the same point) and the density at the points where this occurs 

becomes infinite. These particles then pass through one another and the multi-streamed 

region increases. As a result vorticity and pressure develop and the single strem equations 

are no longer valid. 

Based on this picture Zel'dovich suggested that the regions where this singularity first 

develops will be the places where the first structures form. He also predicted that the first 

structures to form will result from a one dimensional collapse and the resulting structures 
\ 

will be like pancakes i.e. two dimensional. 

If one relaxes the assumptions made and allows for the presence of, multi streamed initial 

conditions one finds that it does not change the outcome very much. The initial velocity 

dispersion will dampen the growth of the linear perturbations on small scales but it will 

have no effect on the large scales. Also the picture of the evolution that one gets from the 

Zel'dovich approximation will still hold and the effect of the initial velocity dispersion will 
I be to thicken the pancakes that are formed. 

I 
For a comprehensive discussion on the Zel'dovich approximation the reader is referred to 

a review by Shandarin and Zel'dovich (1989). 

1.4 Pert urbat ive non-linear evolution, 

The linear theory gives a good description of the early stages of the evolution of the initially 

small disturbances. As the evolution proceeds the disturbances grow and they become non- 

linear and the whole perturbative approach is no longer applicable. We expect that there 

will be an intermediate epoch when the disturbances are weakly no&-linear and they may 

be adequately described by taking into account the higher order terms of the perturbative 

expansion. We next discuss some issues that may be studied in the weakly non-linear regime. 

As discussed earlier the results of linear evolution are local, but as Newtonian gravity 

is non-local we expect the quasilinear evolution of the disturbance to be non-local. The 

streaming of the particles will also result in non-local effects. These non-local effects can be 

studied by going to higher orders in the perturbative expansion. 

The large scale structure in the universe may be described by the statistical properties 

of the matter distribution and the peculiar velocities. In the linear theory the evolution of 

these statistical properties is rather simple and the evolution can be described by scaling the 

initial statistical properties with appropriate powers of the growing mode. Initial conditions 

where the density fluctuation is a random Gaussian field are of particular interest. In such 

cases the initial st atistical properties are fully described by the two point correlation function 

and all the higher correlations are zero. These are the simplest possible initial conditions 



and most models of inflation predict such initial conditions (see chapter 17, Peebles 1993 

and references therein). In the linear evolution all the higher correlations (e.g. three point 

correlation function) remain zero. But as the evolution proceeds the density field is no 
longer Gaussian and one expects the higher correlations to develop. It is possible to study 

this perturbatively in the weakly non-linear regime. 

If the initial conditions are such that the flow is single streamed, it remains single streamed 
I 

in the linear evolution. But it is known that as the evolution proceeds the flow becomes multi- 

streamed. This is another effect that motivates the study of the higher order terms in the 

perturbative expansion. 

It is also required to investigate the higher order terms in the perturbative expansion to 

determine the regime when the linear results are valid. It also tells us about the validity of 

the whole perturbative approach. 

Many of these issues have been extensively studied and there exists a considerable amount 

of literature on this subject. Peebles (1980) discusses the lowest order non-linear term for 

the evolution of the density. This is based on the HD equations and as expected the result 

is non-local. Peebles used this to calculate the skewness induced in the density distribution 

for the situation when the initial density fluctuation is Gaussian. The induced three point 

correlation function has been calculated at the lowest order of non-linearity by Fry (1984). 

His calculations were based on the HD equations and he concluded that the three point 

correlation function has the hierarchical form i.e. it can be expressed in terms of products 

of the two point correlation function. Fry (1984) has also studied the trispectrum which is 

the Fourier transform of the four point correlation function. Inagaki (1991) has used the 

BBGKY hierarchy equations to study &he bispectrum which is the Fourier transform of the 

three point correlation function. He has calculated the bispectrum at the lowest order of 

non-linearity for Gaussian initial conditions. There has been a lot of interest in studying the 

evolution of the moments of the density field using the HD equation. For Gaussian initial 

conditions all moments except for the second moment are initially zero. These moments 

become non-zero due to the non-linear evolution. Goroff et. al. (1986) have investigated 

the evolution of the first five moments of the density field averaged over a Gaussian ball. 

Bernardeau (1992) has found a general method for calculating any moment of the ,density 

field. Bernardeau (1994) has also discussed the evolution of the skewness of the density field 

averaged with a top hat filter. The evolution of the moments of the smoothed density field 

has also been studied by Bouchet et. al. (1992). 

The non-linear corrections to the two point correlation function has also been widely 

studied. The lowest order non-linear correction to the two point correlation function has 

been calculated by Juszkewicz (1981), Vishniac (1983), and Makino, Sasaki and Suto (1992). 



Fry (1994) has calculated the higher order non-linear corrections to the two point correlation 

function. All these calculations have been done using the single stream approximation. 

Unlike the linear'eiolution, the non-linear evolution exhibits coupling of the various 

scales. This has been examined analytically by Suto and Sasaki (1991) and Makino et al. 

(1992). This issue has also been studied by Juszkewicz, Sonoda and Barrow (1984) and 

Hansel et. al. (1985), and for the particular case of the CDM initial condition it has been 

studied by Coles (1990), Jain and Bertschinger (1994), and Baugh and Efstathiou (1994). 

The non-linear evolution can also be studied by considering a perturbative expansion of 

the trajectories of the particles, This leads to the calculation of non-linear modifications of 

the Zel'dovich approximation. This alternative approach (Lagrangian perturbation theory) 

has been discussed by Moutarde et. al. (1991), Bouchet et. al. (1992) and Buchert (1994). 

1.5 Relation with other methods. 

, Foremost amongst the methods used for studying gravitational instability in an expanding 

universe is N-body simulations. In most of these simulations the matter content of the part of 

the universe that is being modeled is in the form of N representative particles. These particles 

are supposed to represent the fluid elements at the various points. In the N body simulation 

the motion of these particles is studied. There are various methods for calculating the 

force on each particle. For example in the particle-mesh (PM) code the matter distribution 

is smoothened by associating all the mass with a grid and then using this to calculate the 

force. This removes the effect of direct particle-particle interaction and makes the calculation 

faster. Although N-body simulations allow one to follow the evolution of the disturbances 

to the strongly non-linear regime they have their restrictions. 

In any particular simulation there will be an upper length scale associated with the size of 

the part of the universe being simulated. At the other end of the spatial scales the limitation 

will come from the resolution of the grid being used. There will also be a limitation on 

the resolution in mass because the total mass of the universe will be associated with N 

representative particles. \ 

The gravitational evolution is non-local and hence it is necessary to study the effects of 

these various spatial cut-offs discussed above. It is also necessary to study the effect of the 

limited mass resolution. 

Also, when dealing with statistical quantities, one has to do an average over a sufficiently 

large number of realisations to obtain a good estimate of the actual quantity. N-body sim- 

ulations require intensive computing and one may not have that many realisations available 

resulting in uncertainties in the values of statistical quantities. This is particularly true at 



scales comparable to the largest scale being considered in the simulation. In many cases 
it may be possible to complement the information obtained from N-body simulations with 

i 

perturbative results. In addition the perturbative results caa also be used to analyze and 

understand the results of N-body simulations. (For a discussion on N-body simulations the 

reader is referred to section 8.10 of Padmanabhim (1993) and references given there.) 

There are many other models for the process of gravitational instability. These are mostly 

based on the results of linear theory, and unlike linear theory, they give results that can be 

physically interpreted even in the late stages of evolution. These models include the adhesion 

model (Gurbatov, Saichev and Shandarin 1989), the frozen flow approximation (Matarrese 

et. al. 1992) and the frozen potential approximation (Bagla & Padmanabhan 1994; Bernard, 

Sherrer and Villumsen 1993). 
I 

1.6 The scope of this thesis 

In this thesis we address some of the issues involved in gravitational clustering in the weakly 

non-linear regime. This study is based on the BBGKY hierarchy. These equations govern 

the evolution of the ensemble averaged distribution functions. These are functions in phase 

space which have the statistical information about the disturbances. This hierarchy has an 

infinite sequence of equations, the first one being coupled to the secbnd, the second to the 

third, etc. If one wants to deal with this hierarchy one usually has to use some assumptions 

so that one can deal with only a finite number of equations. Here we treat the BBGKY 

hierarchy perturbatively. This allows us to keep only a finite number of the equations in a 

self-consistent manner. 

We use the velocity moments of the equations of the BBGKY hierarchy to perturbatively 

study the evolution of the two and three point correlation functions in a universe with In = 1. 

We consider initial conditions where the density field is a r y d o m  Gaussian variable and we 

also assume that the flow is initially single streamed. We first calculate, at the lowegt order 

of non-linearity, the induced three point correlation function. 

The BBGKY hierarchy is also valid in the highly non-linear regime. In this regime one has 

to assume some truncation scheme. Davis and Peebles (1977) have considered a particular 

truncation scheme to close the hierarchy. Their scheme is based on the assumption that the 

three point correlation function has the 'hierarchical' form where it can be expressed 9s a 

product of the two point correlation functions. One of the issues we investigate in this thesis 

is the validity of such an assumption where the three point correlation function is supposed 

to have a local dependence on the two point correlation function. 

The evolution of the two point correlation function is influenced by the three point 



' correlation function through the tidal force. We use the lowest order induced three point 

correlation function to calculate the lowest order non-linear correction to the two point 

correlation function. Although we initially have a single streamed flow it will become multi- 

streamed as the evolution proceeds. Unlike the other calculations, the equations we use 

are valid even in the multistreamed regime and our results would include effects of multi- 

streaming, if any, at the lowest order of non-linearity. We also investigate how the various 

scales affect each other because of the non-local nature of the terms. We investigate the 

evolution of the pair velocity in the weakly non-linear regime. 

Hamilton et. al. (1991) have proposed that the process of gravitational instability in 

a R = 1 universe has certain scaling properties. This is based on the results of N-body 

simulations. Nityananda and Padmanabhan (1994) have examined the possible origin of this 

scaling relation. These arguments are based on an interpolation between the evolution in 

the linear regime and in the stable clustering regime. Similar scaling relations have also been 

studied by Peacock a id  Dodds (1994) and Mo, Jain and White (1995). In this thesis we use 

the perturbative calculations to investigate whether the proposed scaling relations are valid 
I 

in the weakly non-linear regime. 

The Zel'dovich approximation (ZA) is a good model for gravitational dynamics in the 

weakly non-linear regime and it has the advantage that the equations for the evolution are 

much simpler compared to the full gravitational dynamics. This allows us to calculate the 

correlation functions at any order of perturbation without any great difficulty. In chapter 

VI of this thesis we use ZA to study the evolution of the two and three point correlation 

functions. We compare the results obtained using ZA to those obtained using perturbative 

gravitational dynamics and we use ZA to study the limitations of the perturbative approach 

itself. 
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Chapter 2 

Formalism. 

2.1 The system and the evolution parameter. 

Consider a system of a large number (N) of collisionless particles interacting through New- 

tonian gravity. The Lagrangian for such a system is 

where r; refers to the 'p'  Cartesian component of the 'a' particle. When there is no subscript 

it refers to the vector ra . We transform to a time dependent co-ordinate system with new 

co-ordinate 'x', with 

.; (t) = S (t) x; (t) , (2.2) 

where S(t)  is a function of time. The Lagrangian becomes 

The extra potential can be interpreted as arising from the change to an accelerating co- 

ofdinate system. The change to the expanding co-ordinate system also introduces a term 

which is a total time derivative of some quantity and can be dropped from the Lagrangian. 

The function S(t) (scale factor) is dimensionless and is chosen such that it satisfies the well 

known equation of Newtonian cosmology 

d2S 4nGp - = -- 
dt2 3S2 (2.4) 

where pd3x is the mass that would be in the volume d3x if all the particles were uniformly 

distributed. 

The Lagrangian then becomes 



If the particles are all uniformly distributed, the attractive force of gravity is exactly 

canceled by the repulsive harmonic oscillator force described by the last term in equation 

(2.5). In this case, if all the particles start with 3 = 0 then the solution is x; ( t)  = x; (to) 

i.e. the co-ordinate system moves with the particles. Hence we see that 'x' is a comoving 

co-ordinate system and 'p' is the comoving density which remains a constant. In this case the 

system corresponds to a part of a homogeneous and isotropic universe where all the dynamical 

information is in S(t). We now consider how a system with an initial configuration slightly 

different from the above mentioned one evolves. 

For convenience time is replaced by a parameter X ,where 

The use of this parameter instead of the cosmic time was first introduced by Doroshkevich 

, et. al. (1980). The condition that the action should be invariant 

A = J Ldt = J L I ~ X  (2.7) 

defines the new Lagrangian 

For evolution in X the Hamiltonian is . 
1 Srn2G 

H = - C ( p a ) 2  - - - 21rSGpm 1 

2m a a f b  c > 
3 a 

(2.9) 

where 

is the momentum conjugate to x; . The main advantage of using X instead of the cosmic 

time is that no S( t )  appears explicitly in (2.10). As a result the equation of motion for a 

particle, which is 
d2 a x - x 4 3 = S G ~ C  
dX2 

+ -~rSGpxz,  
b l x a - x b l  3 

(2.11) 

resembles the equation of motion of a particle in an inertial reference frame with a time 

dependent force. If instead we use cosmic time as the evolution parameter, a term with the 

product of the momentum and the derivative of the scale factor appears in the equation 

of motion. This term which looks like the frictional force has been avoided by using the 

parameter A.  



The relation between this momentum and the peculiar velocity is 

p; = msv;. (2.12) 

In terms of X equation (2.4) becomes 

Any solution of this equation is given by a parabola 

Since the range of X can be chosen arbitrarily, we set XI = 0. There are three possibilities 

K < 0, K = 0 and K > 0. Figure 2.1 shows a plot of & a m  function of X for the different 

cases. For the case with K = 0 we have 

with X going from -m to 0. In the case with K < 0 the allowed range for X is -m to -a. 
In both these case we find that the universe keeps on expanding and $ -t 0 , or S + oo as 

X -, -a. The case K = 0 corresponds to a univers6 with fl = 1 and K < 1 corresponds 

to a universe with R < 1. For the case where K > 0 the allowed range of X is -m to oo. 

We find that the universe expands to a maximum value of the scale factor. 

3 
&la, = (2.16) 271-GpK 

when X has the value zero and then starts to contract when X goes over to the positive side. 

This corresponds to the case where R > 1. In this thesis for all calculations we assume R = 1 

and equation (2.15) is used for S(X). 

2.2 The BBGKY hierarchy and evolution of reduced 
distribution functions. 

It is assumed that : 

(1)There is a large spatial scale on which the universe is homogeneous and isotropic. 

(2)Volumes of this size located at different parts of the universe are independent realisa- 

tions of the same physical processes with different initial conditions. Such volumes can be 

'assembled' to form an ensemble. 

The system defined in the previous section is a model for one member of such an ensemble. 

We treat the system in the continuum (or fluid) limit where we ignore the direct residual two 
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body forces between the particles. This system can be described by a distribution function 

on phase space. This function f ( x , p ,  A )  gives the humber of particles in the volume of the 

phase space d3xd3p at  the point ( x ,  p) at the instant A. The evolution of this distribution 

function is governed by the Vlasov equation 

3 

+ S G ~ ~  J f ( x f , a , ~ ) ,  x - x - a f ( x , p ,  A)d3xfd3; = 0 (2.17) 
x f  - x ( dp,, 

The ensemble described above can be used to define an ensemble averaged M point distri- 

bution function pM(x l ,  pl ,  x 2,  p2, .., x M ,  pM, A )  defined as 

P M ( x ' , P ' , x ~ , P ~  ,.., x",pM,A) = < f  ( x 1 , p 1 , ~ )  ... f (x",pM,A) >, (2.18) 

where the angular brackets indicate an average over all the systems in the ensemble. 

This function gives the joint probability density of finding a particle in the volume 

d3x1d3p1 at the point ( x l ,  p l )  and in the volume d3x2d3p2 at  the point ( x 2 ,  p2) and in the 

volume d3x2d3p2 at the point ( x 3 , p 3 ) ,  etc. at the instant A. The evolution of this distribution 

functions is governed by the BBGKY hierarchy For a detailed discussion of this subject the 

reader is referred to Peebles (1980) and references given there. 

In the fluid limit the equations of the BBGKY hierarchy can be easily derived using 

equation (2.17) and the definition of the distribution functions. Here we explicitly derive the 

first equation of the BBGKY hierarchy which governs the evolution of the ensemble averaged 

one point distribution function which is defined as 

Differentiating this with respect to A and using equation (2.17) we have 

a a 
-p l (x ,p ,  A )  =< - f ( x , p ,  A )  >= --- d A dX m a x ,  

(2.20) 
I 

a a 4 
f 

" P -  ' P  d3x1d3pf - -TSG~X,,-  < ~ ( x , P , A )  > - x m 2  J - < ~ ( x , P , A ) ~ ( x ' , P ' , A )  > , x ,  - 
13 3 ~ P P  ~ P P  

Using the numbers 1,2,3  etc. to denote points in phase space i.e. ( 1 , 2 , 3 )  instead of 

( x l ,  p l ,  x 2 ,  p2, x 2,  p2),  and using the notation 



we can write this equation as 

a P' a a 
-pl  ( I . ,  A)  + * - p l ( 1 ,  A )  + sm2G- J p2 ( 1 , 2 ,  A )  ~ ~ ' d ~ x ' d ~ p ~  
OX m ax:  ap: 

This is the first equation of the BBGKY hierarchy. At this stage we should point out that 

later on in the text we shall use the numbers 1 , 2 , 3  etc to denote points in real space. The 

usage will be clear from the context. 

We should note that the equation for the one point distribution function involves the 

two point distribution function. This is because the gravitational force is determined by the 

distribution of the rest of the matter. Similarly, the equation for the two point distribution 

function involves the three point distribution function and the equation for the three point 

distribution function involves the four point distribution function and so on. We next present 

the equation for the two point distribution function. The derivation of this equation is similar 

to that presented for equation (2 .22) .  In this equation the index a is to be summed over the 

values 1  and 2. 

d 4 d 
P", p2 ( 1 , 2 ,  A) + - aSGpmxa-p2  ( l , 2 ,  A) 3 p 2  ( 1 , 2 , A )  + 3  "ap;: 

a + Sm2G- 1 p3 ( 1 , 2 , 3 ,  A) ~ p d ~ x ~ d ~ ~ ~  = 0.  ( 2 . 23 )  
ap; 

The following equation is the third equation of the BBGKY hierarchy. In this equation the 

index a is to be summed over the values 1 , 2  and 3 .  

This hierarchy continues and in the fluid limit we have an infinite hierarchy of equations.. 

The condition that the disturbances are statistically homogeneous and isotropic allows 

us to simplify the functional form of the distribution functions. For example, homogeneiety 

implies that the ensemble averaged one point distribution function cannot have any spatial 

dependence and isotropy implies that it cannot depend on the direction of the momentum 

vector i.e. p l ( x ,  p ,  A)  = p(l p  1 ,  A). Henceforth we shall use f (p ,  A) = p l ( l  p I ,  A) for the 

ensemble averaged one point distribution function. 



For special initial conditions it is possible to truncate the hierarchy at some level, the 

error from the terms dropped being.of a higher otder in some small parameter compared to 

the terms retained. In order to do this explicitly it is convenient to work in terms of the 

reduced distribution functions defined below. 

The probability density for finding a particle at x1 with momentum p1 and another with 

position x2 and momentum pa has a contribution from the one point distribution function. 

This is f (1) f (2). The reduced two point distribution function is defined by the equation 

Pa (112) = f (1) f (2) f ~(192)  * (2.25) 

The reduced three and four point distribution functions are similarly defined by 

~3(1 ,2 ,3 )  = f ( l ) f ( 2 ) f ( 3 ) + z f ( l ) c ( 2 , 3 ) + d ( l , 2 , 3 ) . ,  (2.26) 
P 

where Cp means a sum over all cyclic permutations of the position indices. Equations 

m (2.22) ,(2.23) and (2.24) and the definition of the reduced distribution'functions can be com- 

bined to obtain equations for the evolution of the reduced distribution functions. Written in 

terms of the reduced distribution functions, the first equation of the BBGKY hierarchy is 

It should be noted that the part of the force which arises because of the transformation 

to a time dependent co-ordinate system and has the form of an inverted simple harmonic 

oscillator is canceled by the force due to t h i  reducible part of the two point distribution 

function f(pl) f(pa). This cancellation is expected, and in the case when the universe is 

absolutely uniform and all the particles move with the Hubble flow, this cancellation leads 

to the result that the ensemble averaged one point distribution function remains unchanged 

as the evolution proceeds. A similar cancellation occurs in the equations for the higher 

distribution functions too. 

We next consider the equatibn for the reduced two point distribution function. This 

depends on a pair of points (e.g.,. 1 and 2) and in the equation below the index a refers 

to any one of these points. For a fixed vale of a the index a' refers to the other member 

of the pair (e.g. for a = 1,a' = 2). Also the index a is to be summed over the allowed 



Similarly, the three point distribution function depends on three points i.e. the vertices 

of a triangle which may be labeled 1,2 and 3. We use the index a to denote any one of the 

vertices of the triangle and we use the index a'' to refer to both the other vertices simulta- 
' neously (e.g.,. if a  = 1,a" = (2 ,3 ) ) .  We also use the indices a; and a; to individually refer 

to the other two vertices for a fixed value of a  (e.g.,. for a = 1 we have a; = 2, a; = 3  and 

a; = 3, a; = 2).  The possible set of values for the indices a' and a" are shown in the table 

below. 

a 1  2  3  

a" 2,3 3 , l  1,2 

The various values over which the symbols a, a; and a; are to be summed over when- 

ever they appear together are shown below. 

a 1 1 2 2 3 3  

a i 2 3 3 1 1 2  

a 6 3 2 1 3 2 1  

Using this notation we have for the reduced three point distribution function 

a 
-d(1 ,2 ,3 ,X)  + -- ax 

c (a;, 4 ,  A) X:d3~4d3p4 



2.3 Initial Conditions. 

We next specify the initial conditions which we are going to evolve using these equations. 

These initial conditions have to be specified for the ensemble averaged statistical quantities 

and they have to be such that we can have some meaningful evolution using only a few 

equations of the whole hierarchy. 

We choose initial conditions such that in any member of the ensemble the deviation of 

the particles from the uniform distribution is small. The fractional density perturbation at 

any point is of order e (a small number). The deviations from the Hubble flow are also of 

this order. It is also assumed that initially in any member of the eqsemble all the particles 

at  any one point have the same velocity. In other words, initially all the members of the 

ensemble have a single streamed flow. When we average over the whole ensemble we have 

different velocities from the different members of the ensemble contributing at the same 

point. Thus initially, the velocity dispersion at a fixed point or a fixed separation will arise 

due to the spread in velocities across the various members of the ensemble and there will 

be no contribution due to the spread in velocities at a point in a particular member of the 

ensemble. As the evolution proceeds multi-streaming will occur in the different members of 

the ensemble. In the multistreamed regime the velocity dispersion will have a contribution 

from both the spread in velocities amongst the various members of the ensemble as well as 

the spread in velocities at a point in any member of the ensemble itself. 

We should also point out that because the disturbances being considered are statistically 

homogeneous (i.e. there is no preferred origin) we can replace the ensemble average by an 

average over the whole of space. 

Using these assumptions we can estimate orders of magnitude for the initial values of 

various moments of the distribution functions as powers of' e. We give this for some of the 

moments we encounter later. These initial conditions correspond to a situation where the 

linear theory of density perturbations (Peebles 1980) can be applied. In the first equation n 

is the mean number density of particles per unit comoving volume. 

J f ( l ) d ~ ~ '  = n (nm = p )  , (2.31) 

From isotropy we have 

JP i f (1 )  PP' = 0 ,  (2.32) 

This is true for all odd velocity moments of the one point distribution function. The second 

velocity moment of the one point distribution function corresponds to the velocity disper- 



sion (across the ensemble) at a point. We define various moments, displayed using angular 

brackets, as follows 
a ( 1 ) 2 > 1 - e  . J ( ~ : ) ~ f ( l ) d ~ p '  = n  < P, (2.33) 

For the moments of the two point distribution function we have the definitions 

where i and j take values 1 and, 2 and i#j and is the two point correlation function. All 

other moments of 'c' are of higher order in e. It should be noted that we use the subscript 

below the angular bracket to denote the distribution function whose moment is being referred 

to (e.g.,. < p; > 2  is the first moment of the two point distribution function). 

We also present similar expressions defining our notations for some of the moments of 

the three point distribution function 

3 /d(1,2,3)d3p1d3p2d3p3 = n3C (x1,x2,x3) - e ,  (2.37) 

where i, j and k run over the values 1,2,3 and i#j#k. All other moments of 'd', the reduced 

three point distribution function, are of higher order in a. All moments of 'e', the reduced 

four point distribution function, are also of higher order in a. We also use C to denote the 

three point correlation function, and x to denote the four point correlation function. 

The initial conditions are all specified at some instant Xo. 

2.4 Pert urbat ive evolution and linear theory. 

We now want to see how the various moments of the reduced distribution functions evolve 

from the given initial conditions. We treat the problem perturbatively by initially keeping 



terms only up to the lowest order in E and solving the equations and then putting in the 

contribution from the higher order terms as corrections. 

We first deal with the reduced two point distribution function c. We proceed by taking 

velocity moments of the evolution equation for c. The zeroth moment of equation (2 .29 )  is 

This equation relates the evoliltion of the two point correlation function to the divergence 

of the first moment of 'c'. This equation does not contain Newton's constant and is purely 

kinematical and it is the continuity equation for pairs. Using x ,  = x i  - x: and 

this equation may be written as 

The quantity j , ( x ,  A )  is the pair current at the separation x  and epoch A, and its divergence 

gives the rate of change of the two point correlation function at that separation. Another 

way of interpreting this equation is to average it over a sphere of comoving radius T denoted 

by V ( T ) .  This then gives us 

The second integral can be converted to a surface integral. Also from isotropy we know that 

both < and j ,  are spherically symmetric functions. We then have 

d 
j , ( r ,  ~ ) 4 s $  = - - 4 s  ( ( I ,  ~ ) x l d x .  ax (2 .45 )  

which may also be written as 

j p ( x ,  A )  = --- x p  a  fix,^) 
3 ax (2 .46 )  

where t ( x ,  A) is the two point correlation function averaged over a sphere of radius x  

These are various ways of writing the same pair continuity equation. This equation has two 

unknown functions both of order e2 and therefore we cannot ignore any of them. We cannot 

solve this equation either. We look at the evolution of the first moment which is given by 

the first moment of equation (2 .29 )  

2  7 



The last two terms have been obtained by doing the 'p' integral by parts and dropping 

the surface term. This will be done in the equations for aH the other moments qlso. The 

second term in the above equation is due to the streaming of particles. The effect of the 

gravitational force is in the last two terms. If we are calculating the force at position 1, 
the matter distribution causing the force may be correlated with the position of the second 

point in the two point correlation function i.e. 2. The force term containing the two point 

correlation function arises because of this effect. The matter distribution causing the force 

may be correlated to the to particles at both the positions 1 and 2 and this effect is in the 

term containing the three point correlation function. The equations for the higher moments 

of the two point distribution function have a similar structure. 

We next take the divergence of the above equation , and differentiate the continuity 

equation with respect to A, and combine the two to get an equation involving the two point 

correlation function and the second moment of 'c' 

where, 
' d 

fi (1,2, A)  = SGp- J ( (1'2'3, A) x;d3x3. 
dx; 

This equation still has two unknown functions of order 2. We take the evolution equation 

for the second moment of 'c'. This equation is 

Taking divergence with respect to both the free indices we have 

a b c  < P,,?'vPu >a 



where, 

Differentiating equation (2.49) with respect to A and using equations (2.52) and (2.41) 

we have the equation for the two point correlation function 

where, 
1 

f3 (1,2, A) = - d3 a b c  

m3 ax;axbax; < P,P,P,, > 2  (1 ,2 ,3 ,4  . 
In this equation the only unknown function of order e2 is the two point correlation function 

(. The functions i.e. fl , fa and f3 are of higher order in e .  Initially we neglect terms of higher 

order in e and deal with an equation correct to order e2 only. 

As the system evolves the higher order terms become important and they have to be 

considered. They can be thought of as giving rise to corrections to the lowest order solution. 

Keeping terms of order e2 only equation (2.54) becomes 

This is a third order differential equation for the two point correlation function. 

For an = 1 universe this is 

which has solutions of the form 

where Fl, F2 and F3 are functions of x 1  and x 2.  The two point correlation function at A. is 

expressed in terms of these functions which have to be given as initial conditions. We have 

three initial conditions because we have a third order differential equation. Instead of these 

three functions one could have given the two point cotrelation function and the first two 

moments of 'c' at A. as initial conditions. 

One can derive the same result by evolving one realisation of the ensemble using the linear 

perturbation th'eory and then calculating the correlation function . The growing mode for 

29 



density perturbations, usually denoted by Dl (t), grows proportiond to the scale factor and 
, the decaying mode ,usually denoted by D2 (t) is proportional to t - l .  In terms of A this is A3 

. The three modes of growth for the two point correlation function correspond to D:, DID2 

and Di (Peebles 1980), which is also what we get above. 

If the two point correlation function starts as a mixture of the three modes, after some 

time it will be dominated by the growing mode 012 (A). For most purposes it suffices to just 

keep this mode. If we consider a situation where only the growing mode is present we can 

introduce a potential (b (xl, x2). All the quantities of interest can, to order ea, be expressed 

in term of this potential. 

= , (x' -2') , 

In the above equations the V2 is with respect to either x1 or x2,'and, a, b = 1, 2 with 

a # b . It can be checked that the above relations are consistent with all of the moment 

equations (i.e. 2.41,2.48 and 2.52) of the two point distribution function at order e2. 

The potential r$ is proportional to the correlation of the gravitational potential at the 

two points x1 and xa and has dimensions L4T-'. If the other modes are present one can 

introduce potentials fo* them too. This is not considered here. 
. A similar treatment can also be done for (2.30), the third equation of the hierarchy. This 

equation governs the three point distribution function. We follow a sequence of operations 

very similar to that described above for the two point distribution function. We do this 

below to obtain an equation for pertur6atively evolving the three point correlation function. 

The zeroth moment of equation (2.30) is 

d 1 d 
-( (1,2,3, A)  4- -- dX 

< p; >3 (1,2,3,A) = 0. 
m dx; 

(2.63) 

This is the triplet continuity equation and it is similar to the pair continuity equation. The 

first moment of equation (2.30) is 

a 
dA 

>3 (1,2,3, A) - < p; >3 +--7 < P,,Pv m dx, 



) 

- S ~ G ~  J (a", 4 )  X F d 3 x 4  - ~ m ~ p  J (1,2 ,3 ,4)  X p d 3 r 4  

- SrnGpE ( a ,  a;) / ( (a;, 4 )  X:4d3s4 = 0 .  (2.64) 

Taking divergence of equation (2.64) we have 

a2 1 a= 
a x a x ;  

< p; >3 +- 
m ~ x L ~ x ;  < P ; P ~  >s +12*SmGpC = m ( f 4  + f s )  , (2.65) 

where 

a \ 

f4  (1 ,2 ,3 ,  A )  = SGP- ax; (t (a ,  a: A)  1 t (a;,4, A)  x;d3x4) I (2.66) 

and 

i3 
fs ( 1 , 2 , 3 , ~ )  = S G ~ -  J x ( l 9 2 , 3 , , 4 , ~ ) x ~ d 3 x 4 .  

ax ;  
(2.67) 

Differentiating equation (2.63) with X and using equation (2.65) we have 

a2 1 a2 f 

sC - 2 8 x ; ~ x ;  < pip: 
>a -12SwGpC = - ( f 4  +I f e )  . (2.68) 

The second moment of equation (2.30) is I 

d a b c  
- < p$: >3 +-- ax rn ax; < P,PvPu >a (1,293, A )  

S m 2 G  4c 3 4 l a  

- --/ n3 (S , "~ ;  +6Zp;)c (c ,c ; )c (c ; ,4 )  X ,  d d p 

J 
n3 

(2.69) 

\ 

Taking divergence with respect to both the free indices we have 

O3 1 q3 a b c  

OXdxb,dx; < P,PvPw >3 
- .  

i3 + 1 6 ~ S m G p -  < p; >a= m2 ( f s  + f 7 )  , 
ax;  

(2.70) 

C- t - mr' 1 ? 33A3z3r H- 31 
-a > f O . j A W  

a --a*." .........* "** 
- 0  *&AX) 

'**...A .= . .--. - - -.A - - 



and 

f7 ( l , 2 , 3 ,  A )  = 2SGn  
aa 4a 3 4 

axtax; J < P i  >r ( l , 2 , 3 , 4 , ~ ) ~ ,  d x (2.72) 

Using equation (2.63) this becomes 

O3 1 a3 a b c  
< P;P; >3 + - axax;ax; rn a ~ ; a ~ t a t ;  < P,P~P, >3 

a - 16nSrn2GpiTj;C = ma ( f6 + f7) , (2.73) 

which when combined with equation (2.68) gives 
I 

a3 1 a3 a b c  

,C + - m3 ax;ax;ax; < P,P~P, >3 - ~ G P  

a 
= ( f 6  + f 7 )  - ( f 4  + f 5 )  , (2.74) 

The third moment of equation (2.30) is 

Taking divergence with all the three position co-ordinates we have 

a4 a b c  1 a4 a b c d  

d X d ~ ; d ~ $ d x ;  < p ~ p v p s  >3 +, ax~cfx~Bx$ax; < P,PuP,,X, >3 

a2 + 12nSmGp- ax;x; < P;P: >3= rn3 ( f s  + f9 - flo - fll) , (2.76) 
w 
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(2.77) 
n 

f9 (1 ,2 ,3 ,  A )  = 3SG- 
a3 

/ < p i p :  > 4 X u  4~ d 3 x 4 , m 8 x ; d x p ~ ;  
(2.78) 

12nSGp ( d2 
f i o  (1 ,2 ,3 ,  A) = 

m2 
ax;ax; < P;P; >S (1 ,2 ,3 ,  A) , (2.79) 

and 

12nSGp 
f l l ( l , 2 , 3 ,  A) = 

a2 
m2 

< pip: >1 ax;px: S ( l , 2 , 3 ,  A) . (2.80) 

Using equation (2.68) this becomes 
- 

O4 a b c  1 8 
< PpPUP4 >3 +- abed 

axax:ax;ax; 7n ~ X ; ~ X ; B X ; O X ;  < P,,P,P~X, >3 
(2.81) 

Differentiating equation (2.74) with A and using equation (2.81) we obtain the equation 

for the three point correlation function 

where, 
1 

f l 2  ( l , 2 , 3 ,  A) = - a a b c d  

m4 a ~ ; a ~ ; a ~ ; a ~ ;  < PpPuPuXr >3 . (2.83) 

The functions f4 to fla are of order e4 or higher. To order 8 we have a fourth order 

differential equation for the three point correlation function 

which for an J Z  = 1 universe becomes 



The solution of this equation can be written as 
I 

5 (1,2,3, A) = X'OF4 + X'lFg + X4
Fg + X9

F7 (2.86) 

where F 4 ,  F g ,  F6, F7 are functions of xl, xa and x3. 

Thus we have obtained four modes Di, D:Da, Dl Dl and Di for the evolution of the three 

point correlation function. This is as expected and it corresponds to what we would have 

got if we had used the linear theory of density perturbations to evolve some initial density 

perturbations and then calculated the three point correlation function and compared it to the 

initial three point correlation function of the density field. One could do a similar treatment 

for the higher correlation functions too. 

The solution we obtained for the two point correlation function will be valid as long as 

the 8 terms may be neglected. As the evolution proceeds the contribution from the higher 

order terms will increase and they will modify the evolution of the two point correlation 

function. The evolution of the higher order functions fli fa and f3 is calculated by solving 

to lowest order the equation for these quantities. For example, $0 lowest order the function 

fl will be of order e3, and its evolution is governed by equation (2.82). These functions are 

then to be incorporated as known functions into the equations for the two point correlation 

function. These equations then have to be solved to obtain the two point correlation function 

to a higher order. This method can in principle be used to caltulate higher order terms for 

the other correlation functions also. 

The perturbative approach is expected to break down when rw 1. 
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