SOLID-STATE LOCAL OSCILLATOR SYSTEMS
FOR
MILLIMETRE-WAVE RADIO ASTRONOMY RECEIVERS

A Thesis
Submitted for the Degree of
Doctor of Philosophy
in the Faculty of Engineering

By
RADHE SHYAM ARORA

Department of Electrical Communication Engineering
INDIAN INSTITUTE OF SCIENCE
BANGALORE-560 012
JULY 1984
A man should not abandon his work. O Son of Kunti (Arjuna), even if he cannot achieve it in full perfection; because in all work there may be imperfection, even as in all fire there is smoke.

ACKNOWLEDGEMENTS

The work presented in this thesis was carried out at the Raman Research Institute (RRI), Bangalore in connection with the millimetre-wave radio telescope project. I am grateful to Prof. V. Radhakrishnan, Director, R.R.I., for his encouragement and support during the course of this work.

I would like to express my deep sense of gratitude to Prof. N.V.G. Sarma, my research supervisor at R.R.I., who first suggested the research topic to me and has since been a constant guide and friend. I thank my research supervisors at the E.C.E. Department of I.I.Sc., Prof. (Mrs.) R. Chatterjee for her kind help and advice and Prof. A. Kumar for his invaluable guidance and active interest in my work.

I have benefited considerably from the technical discussions with several of my colleagues; Mr. K. Smiles Mascarenhas, Mr. M. Vivekanand, Dr. Rajaram Nityananda, Dr. D.K. Ravindra, Mr. K.R. Anantharamaiah and Mr. K.T. Balakrishnan, and it is a pleasure to acknowledge their help.

I thank Mr. V. K. Valsan and Mr. M. Achankunju for help in the fabrication of oscillator mounts. My thanks are due to Mr. G. Rengarajan and Mr. Antony Joseph for help in the wiring and testing of the phase-lock system, and Mr. R. Ganesan and Mr. K. Sukumaran for help in computations.

I thank Mr. S. Narasimha Rao for the excellent job in typing the manuscript, Mr. P.S. Somasundaram for the tracings, and Mr. C. Ramachandra Rao and Mr. P.S. Sasi Kumar for the photographs.

Finally, I would like to thank my wife, Sushma, and my two little children, Sanjay and Sanjana, for their patience and understanding while 'Papa' was away to work.
SOLID-STATE LOCAL OSCILLATOR SYSTEMS FOR
MILLIMETRE-WAVE RADIO ASTRONOMY RECEIVERS

Ph.D. Thesis

by

RADHE SHYAM ARORA

ABSTRACT

Presented in this thesis is the work on the development of solid-state sources for local oscillator application in millimetre-wave radio astronomy receivers for the two widely used atmospheric transmission windows, 33–50 GHz and 75–110 GHz. Such sources are required to provide a reliable alternative to the highly expensive and short-lived klystrons which have been traditionally employed as local oscillators.

Post-coupled Gunn oscillators have been developed for the 33–50 GHz frequency band in various circuit configurations using a standard rectangular waveguide, a reduced-height waveguide and a circular waveguide. Effects of the post diameter and the backshort position on the oscillation frequency and power output of these oscillators have been investigated.

Resonant-cap Gunn oscillators have been developed for the 75–110 GHz frequency band. These oscillators have been realized in a new circuit configuration using circular waveguide as well as in the standard rectangular waveguide circuit. The effect of the resonant-cap dimensions on the oscillation frequency has been studied. An empirical relation between the oscillation frequency and the resonant-cap dimensions has been obtained for the circular waveguide configuration. The performance of the circular waveguide oscillator which is simpler in construction is found to be comparable to that of the rectangular waveguide design.

AM sideband noise, which is a critical parameter for local oscillator application, has been measured for a number of millimetre-wave Gunn oscillators and klystrons in the 75–110 GHz frequency band. The noise performance of the Gunn oscillators is found to be better than that of the klystrons.

A phase-lock loop circuit has been developed for the frequency stabilization of millimetre-wave oscillators. The circuit has been used to phase-lock several millimetre-wave Gunn oscillators to a highly stable signal derived from a VHF frequency synthesizer.
CONTENTS

LIST OF FIGURES

LIST OF TABLES

CHAPTER 1 INTRODUCTION
1.1 Historical Background.
1.2 Millimetre-wave radio astronomy receivers.
1.3 Scope of present work.

CHAPTER 2 THE GUNN DIODE
2.1 Introduction.
2.2 Principle of operation of Gunn diodes.
2.3 Modes of oscillation of Gunn diodes.
 2.3.1 Transit-time mode.
 2.3.2 Quenched and delayed-domain modes.
 2.3.3 Limited space-charge accumulation (LSA) mode.
 2.3.4 Hybrid mode.
 2.3.5 Harmonic mode operation of Gunn diodes.
2.4 Gunn diode structure and packaging.
2.5 Oscillator design considerations.
2.6 Oscillator circuits.

CHAPTER 3 POST-COUPLED GUNN OSCILLATORS FOR 33-50 GHz BAND.
3.1 Introduction.

3.2 Post-coupled Gunn oscillator in a standard rectangular waveguide.
 3.2.1 Design and construction.
 3.2.2 Oscillator performance.
 3.2.3 Effect of the post diameter.

3.3 Reduced-height waveguide Gunn oscillator.
 3.3.1 Design and construction.
 3.3.2 Oscillator performance.

3.4 Post-coupled Gunn oscillator in a circular waveguide.
 3.4.1 Design and construction.
 3.4.2 Oscillator performance.

3.5 Discussion.

CHAPTER 4
RESONANT-CAP GUNN OSCILLATORS FOR 75-110 GHz BAND.

4.1 Introduction.

4.2 Resonant-cap Gunn oscillator in a circular waveguide.
 4.2.1 Design and construction.
 4.2.2 Oscillator performance.
 4.2.3 Effect of cap parameters on the oscillation frequency.
 4.2.3.1 Effect of cap diameter D.
 4.2.3.2 Effect of cap thickness t.
4.2.3.3 Effect of post dia d. 69
4.2.3.4 Effect of post length λ. 69

4.2.4 An empirical relation for determining the oscillation frequency. 73

4.2.5 Effect of cap parameters on the oscillator power output. 74

4.3 Resonant-cap Gunn oscillator in a rectangular waveguide. 76

4.4 Discussion. 81

CHAPTER 5 AM SIDEBAND NOISE MEASUREMENT. 86

5.1 Introduction. 86
5.2 Noise measurement setup. 89
5.3 System calibration. 90
5.4 Noise measurement. 92
5.5 'Discussion. 94

CHAPTER 6 FREQUENCY STABILIZATION. 97

6.1 Introduction. 97
6.2 Principles of operation of phase-lock loop (PLL). 99

6.3 Phase-lock system for frequency stabilization of millimetre-wave oscillators. 103
6.3.1 Harmonic mixer and the triplexer. 106
6.3.2 Frequency discriminator and phase detector. 107
6.3.3 Error signal amplifier. 110

6.3.4 Driver amplifier (for Gunn oscillators). 113

6.3.5 High voltage translator (for klystrons). 113

6.4 Performance of the phase-lock system. 118

6.5 Effect of phase-lock loop on oscillator noise. 121

6.6 Discussion. 122

CHAPTER 7 CONCLUSION 124

REFERENCES 128
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIG. NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Atmospheric absorption of millimetre-waves. (after Penzias and Burrus, 1973).</td>
<td>7</td>
</tr>
<tr>
<td>2.1</td>
<td>Conduction band structure of GaAs and InP. (after Eastman, 1976).</td>
<td>15</td>
</tr>
<tr>
<td>2.2</td>
<td>Velocity-Field characteristics of GaAs and InP. (after Kuno, 1981).</td>
<td>17</td>
</tr>
<tr>
<td>2.3</td>
<td>Oscillation modes of a Gunn diode. (after Narayan and Sterzer, 1970).</td>
<td>18</td>
</tr>
<tr>
<td>2.4</td>
<td>Structure of a typical millimetre-wave Gunn device. (after Kramer, 1976).</td>
<td>23</td>
</tr>
<tr>
<td>2.5</td>
<td>Millimetre-wave Gunn diode package.</td>
<td>25</td>
</tr>
<tr>
<td>2.6</td>
<td>Simplified lumped equivalent circuit of a packaged Gunn diode. (after Bischoff, 1979).</td>
<td>27</td>
</tr>
<tr>
<td>2.7</td>
<td>Typical Gunn diode oscillator circuits. (after Kuno, 1981).</td>
<td>29</td>
</tr>
<tr>
<td>3.1</td>
<td>Cross-sectional view of the standard rectangular waveguide Gunn oscillator for the 33-50 GHz frequency band.</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Photograph of the rectangular waveguide Gunn oscillator for the 33-50 GHz frequency band.</td>
<td>34</td>
</tr>
</tbody>
</table>
3.3 Block diagram of the measuring setup for the 33-50 GHz frequency band Gunn oscillators.

3.4 Photograph of the measuring setup for the 33-50 GHz frequency band Gunn oscillators.

3.5 Oscillation frequency vs. backshort position for the standard rectangular waveguide Gunn oscillator.

3.6 Oscillation frequency vs. post-diameter for the standard rectangular waveguide Gunn oscillator for a fixed backshort position.

3.7 Power vs. frequency characteristics of the standard rectangular waveguide Gunn oscillator.

3.8 Cross-sectional view of the reduced-height waveguide Gunn oscillator for the 33-50 GHz frequency band.

3.9 Oscillation frequency vs. backshbbrt position for the reduced-height waveguide Gunn oscillator.

3.10 Power vs. frequency characteristics of the reduced-height waveguide Gunn oscillator.

3.11 Cross-sectional view of the circular waveguide Gunn oscillator for the 33-50 GHz frequency band.
3.12 Photograph of the circular waveguide Gunn oscillator for the 33-50 GHz frequency band.

3.13 Oscillation frequency vs. backshort position for the circular waveguide Gunn oscillator.

3.14 Power vs. frequency characteristics of the circular waveguide Gunn oscillator.

4.1 Cross-sectional view of the resonant-cap Gunn oscillator in a circular waveguide for the 75-110 GHz frequency band.

4.2 Photograph of the 75-110 GHz band Gunn oscillator in a circular waveguide, (a) Assembled view, (b) Exploded view.

4.3 Photograph of the measuring setup for the 75-110 GHz frequency band Gunn oscillators.

4.4 Dimensional parameters of the resonant-cap Gunn oscillator in a circular waveguide.

4.5 Oscillation frequency vs. cap diameter D for the circular waveguide resonant-cap Gunn oscillator.

4.6 Oscillation frequency vs. cap thickness t for the circular waveguide resonant-cap Gunn oscillator.
4.7 Oscillation frequency vs. post diameter for the circular waveguide resonant-cap Gunn oscillator. 71

4.8 Oscillation frequency vs. post length R for the circular waveguide resonant-cap Gunn oscillator. 72

4.9 Power vs. frequency characteristics of the circular waveguide Gunn oscillator for several resonant caps. 75

4.10 Photograph of the resonant-cap Gunn oscillator in a W-band (75–110 GHz) rectangular waveguide. 77

4.11 Oscillation frequency vs. post length R for the rectangular waveguide resonant-cap Gunn oscillator. 80

4.12 Power vs. frequency characteristics of the rectangular waveguide Gunn oscillator for several resonant-caps. 82

5.1 Typical output power spectrum of a millimetre-wave oscillator. 88

5.2 AM sideband noise measurement setup - System calibration. 91

5.3 AM sideband noise measurement setup - Noise measurement. 93

6.1 An elementary phase-lock loop. 100
6.2 Loop filter.

6.3 Block diagram of the phase-lock system for frequency stabilization of millimetre-wave oscillators.

6.4 Circuit diagram of the triplexer for the harmonic mixer.

6.5 Block diagram of the frequency discriminator/phase detector.

6.6 Voltage-frequency characteristics of the frequency discriminator for I.F. input frequencies between 275 to 525 MHz. HOR-25 MHz/div., VER-50mV/div.

6.7 Circuit diagram of the error signal amplifier.

6.8 Circuit diagram of the driver amplifier.

6.9 Circuit diagram of the high voltage translator for millimetre-wave reflex klystrons.

6.10 Circuit diagram of the floating d.c. regulated power supplies.

6.11 Output spectra of an 87 GHz Gunn oscillator

(a) Free-running, (b) Phase-locked. HOR-200 KHz/div., VER-10dB/div.
Output spectra of the 87 GHz phase-locked Gunn oscillator illustrating the effect of loop gain. (a) Loop gain too high, (b) Optimum loop gain and (c) Loop gain too low. **HOR-2 MHz/div., VER-10dB/div.**
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Oscillation frequencies and output powers obtained with various resonant-caps for the 75-110 GHz Gunn oscillator in a circular waveguide.</td>
<td>64</td>
</tr>
<tr>
<td>4.2</td>
<td>Oscillation frequencies and output powers obtained with various resonant-caps for the 75-110 GHz Gunn oscillator in a W-band rectangular waveguide.</td>
<td>79</td>
</tr>
<tr>
<td>5.1</td>
<td>Results of AM sideband noise measurements on various millimetre-wave oscillators.</td>
<td>95</td>
</tr>
</tbody>
</table>