
Chapter 1 

Introduction 

1.1 Liquid Crystals 

Liquid crystal is a state of matter intermediate between positionally and orien- 

tationally disordered liquid and positionally and orientationally ordered crys- 

t al. The constituent molecules which form these phases are highly anisotropic 

in their shapes. When crystals made of such anisotropic molecules melt to 

form a liquid phase they generally go through an intermediate thermodynamic 

phase which is the liquid crystalline phase. This liquid crystalline phase is 

characterised by the presence of an orientational order and by the absence of 

crystalline order in one, two or three dimensions. In some compounds this loss 

in positional order can be brought about by a change in temperature. This 

results in thermotropic liquid crystals. In a multicomponent system, which 

comprises typically of rigid rod like polymers in a liquid substrate, liquid crys- 

talline phases appear in a range of concentration of the component molecules. 

Such liquid crystals are called lyotropic liquid crystals. 

Liquid crystals exhibit characteristic optical textures under a polarising 



microscope. These textures are due to a collection of topological defects called 

d i . ~ ~ l i ~ ~ a t i ~ ~ ~ s ,  wliicli are cli~lracteristic of liquid crystals. Most of tllc licluitl 

crystalline phases are often identified by a study of such textures. Some of 

these defects exist naturally in a given sample of a liquid crystal. Disclina- 

tions can also exist in some liquid crystals in an external magnetic or electric 

field. Another natural topological object which can exist in a liquid crystal 

but in the presence of an external electric or magnetic field ie a defect state 

called soliton. In some field induced phase transitions between different liquid 

crystalline phases, solitons play an important role. Apart from that they have 

unique elastic and hydrodynamic properties. 

Defects in liquid crystals have close analogies with those found in other 

states of condensed matter like crystals, superfluids and magnetic systems. 

Thus a study of liquid crystal defects which are easy to undertake give an 

insight into defects in other systems which call for more sophisticated tech- 

niques. 

111 I . I I ~ H  thenis, wc 11i~vc: llridcrtnkcri n tlicorcticnl study or1 tllo c:l;rtitic:, I l y -  

drodynamic and optical properties of solitons. In particular, emphasis is on i) 

single soliton states with an associated lattice structure ii) solitons in a liquid 

crystal with a latent lattice structure and finally iii) a lattice of single solitons. 

All these we study in different contexts. In this introductory chapter, a brief 

review on a planar soliton is presented. This is necessary for the development 

of the subject matter of the thesis. This chapter also has some new results 

pertaining to single solitons, which were obtained in the course of our study. 

The second, third and fourth chapters concern themselves with the mechanical 

properties of these defects. This includes a study of the structure and propaga- 
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tiol~ o l  ~ i ~ ~ g l c  solitotls nntl ~rlultisolitona. A eirriplc way to probc ttlc ~ t r \ rc t \~ rcs  

of rrlany of liquid crystal defects is through optics. This is particularly im- 

portant in our case as most of the defects of interest have periodic structures 

associated with them. Optical reflection and diffraction in such structures is 

the subject matter of the last three chapters. 

1.1.1 Classification of liquid crystals 

lliqrlid crystal systems are made of highly anisotropic rod like or disc like 

rrlolecules which in general have no positional order. Hence the degree of free- 

dom distinct from the localization of centre of gravity of an individual molecule 

constituting a liquid crystal, is its orientational order. A natural way to  clas- 

sify these systems is to start with a liquid with no positional order but with 

orientational order and impose positional order in one or two dimensions [I]. 

Achiral liquid crystals 

Nerrlatics 

The simplest of liquid crystals are Nematics. In this liquid crystal there 

is no positional order in all the three directions but only a long range 

orientational order. Nematics can be made of both rod-like (or disc-like) 

molecules. They are all oriented on an average, along (or perpendicular 

to) a specified direction. This direction is denoted by an unit vector n 

called the "director" (Figure 1.1). The director is apolar i.e., n = -n due 

to the existence of a plane of mirror symmetry perpendicular to it. This 

phase has uniaxial symmetry and belongs to the point group element 

Dooh. A nematic phase with a biaxial symmetry has also been realised 



Figure 1.1 :Schematic representation of nematics 

in recent times. 

Smectics 

When a nematic like orientational order has also in addition a transla- 

tional order along a particular direction, we end up with stacks of two 

dimensional liquid layers. That is, density modulation occurs in only 

one direction with a quasi long range lattice order. These systems are 

called smectics. The simplest of these liquid crystals is Smectic A ( S A )  

(Figure 1.2 ) with the point group symmetry of a nematic. Here the 

director n and the direction of the density modulation are parallel to one 

another. In other words the normal to the liquid layers and the director 

are in the same direction. In a smectic C (Sc) liquid crystal, the average 

orientation of the molecules in the liquid layer is at an angle to the layer 

normal. This liquid crystal is of monoclinic symmetry and belongs to 

the point group Czh. Since the director n makes an angle with the layer 

normal, the projection of the director on to the layers is a well defined 
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Figure 
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N = layer normal 
n = direc o 

.2:!khernatic representation 01 h e c t i c  A 

vector called the c. Obviously c is a polar vector. There could be even 

bond orientational order in the smectic layers. Such liquid crystals are 

called hexatic phases. 

Discotics 

These are phases which have two dimensional positional order with liquid 

order in the third dimension. In general, this phase is made up of disc 

like molecules stacked with liquid like order. These stacks are arranged 

in a regular lattice. These are also called columnar discotics. 

Sorne additional classification of liquid crystalline phases has also been rriadc 

depending on the nature of the molecules forming the liquid crystalline phases. 

If the constituent molecules are non-centro symmetric (chiral), then we get 

some additional phases which are related to one or other of the above three 

categories. 

Chira l  liquid crystals  



Cholesterics 

Locally a cholesteric (Ch) (Figure 1.3) is very similar to a nematic with 

a long range orientational order but because of the presence of chirality 

this nematic director n twists spontaneously in a direction perpendicular 

to itself. This results in a helical structure with the director confined 

everywhere perpendicular to  the helical axis. If the helical axis is taken 

to be along the z axis, then the cholesteric can be described as follows: 

IIcrc tllc initial phase 4 of the helix is arbitrary. Becausc of the cquiv- 

alence of n and -n the spatial period is equal to one half of the pitch 

P = 27r/q0. 

Chiral Smectics 

A chiral smectic or Smectic C* ( S p )  is a smectic C spontaneously 

twisted about the layer normal. Because of the helical arrangement of 

the molecules forming the phase, the symmetry of this mesophase is C2 

with a two-fold axis perpendicular to the twist axis. Even an electric 

polarisation is allowed along the two-fold axis. This phase is known as 

ferroelectrics. In general, in all these phases, in addition to the 1-d den- 

sity wave, the director (Figure 1.3) n which is at  a constant tilt angle 

B with the layer normal precesses about the layer normal from layer to 

layer. That is, the vector c rotates with a periodicity P, the pitch of the 

structure. 
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N = layer normal n = director 

Figure 1 . 3 : s ~  hematic representation of chiral smectics and cholesterics 

Twist Grain Boundary Smectics 

Many SA with chiral molecules melt on heating, into a cholesteric phase. 

But recently, [2], [3, 41 an intermediate phase transition has been seen 

in some of these. For example between SA and cholesterics one finds a 

new phase called the Twist grain boundary smectic. Essentially, it is 

a helical stack of thick SA domains connected by thin grain boundaries 

made up of an array of screw dislocations. Inside each such boundary, the 

director n twists through an appropriate amount to smoothly connect 

the adjacent smectic blocks. This is schematically shown in Figure 1.4. 

Such structures are also possible near a SA-Sc* phase boundary. Hence 

between SA and Sc* we find a twist grain boundary smectic with Sc 

blocks connected by grain boundaries. 

Blue Phases 

In general, on heating, cholesteric melts into an isotropic phase. But 

new thermodynamically stable phases appear between the cholesteric and 

isotropic phase on heating cholesterics of extremely small pitch. They 



Figure 1.4$tl1ematic representation of a twist grain boundary s~~rectics 

are called as Blue phases. Structurally, most of these phases are a three 

dimensional lattice made of disclination lines. 

Ferro liquid crystals 

Liquid crystals can be doped with ferromagnetic grains with a very low grain 

concentration. One can prepare the system such that these grains align with 

their magnetization everywhere along the local director n i.e., the mediurn 

has a magnetisation M. In recent times, such systems have been made in the 

laboratory. For example, in the case of nematics, the liquid crystal is doped 

by taking it to the isotropic phase in the presence of an external niagrletic ficld 

and then gradually cooling it to  the nematic phase. The resultant phase is a 

ferronematic phase [5 ,  6). Ferrocholesterics and ferrosmectics have also beer1 

realised [7, 8). 
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Topological defects- Solit ons 

A large variety of topological defects exist in liquid crystalline phases. These 

defects are associated with elastic distortions in the director field and in some 

cases the elastic distortions of the layers. Topological defects in any system 

are decided by its inherent symmetry. Unlike the case of crystals where ener- 

getically favoured topological defects are dislocations of translation, in liquid 

crystals the most common topological defects are dislocations of rotation called 

disclinations. Since liquid crystal phases are made up of highly anisotropic 

rriolcculcs sorric of the piiysical propcrtiea are also anitropic in ~iaturc. For 

instance, liquid crystals have anisotropy in their dielectric and diamagnetic 

susceptibilities. Generally, the diamagnetic anisotropy (x,) is positive for liq- 

uid crystals made up of rod-like molecules and negative for liquid crystals made 

up of disc-like molecules. Due to this, naturally existing defects get modified 

in the presence of an external magnetic field. Also, there are some defect struc- 

turcs which are new and which are natural topological objects in an external 

field. One such a defect is a Wal l  or a Planar Soliton. As this thesis largely 

deals with planar solitons we describe them briefly here. 

1.2.1 Static Planar Solitons 

A planar soliton, as said earlier is a natural topological object in the presence 

of an external magnetic field. The structure of such a wall in nematics was 

first studied by Helfrich [9]. These walls are similar to the Bloch and Nee1 

walls present in ferro-magnetic systems. In a nematics, because of the 180' 

rotational symmetry perpendicular to the director, both n and -n have the 



Figure 1.5: Helfrich Walls. (a) Twist soliton (b) Bend-rich soliton (c) Splay- 
rich soliton 

same magnetic potential energy. This magnetic potential energy is minimum, 

for a X, > 0 nematics, whenever n is parallel or anti-~arallel to H. Thus in the 

presence of a field these two states which are energetically degenerate can be 

smoothly connected by a Wall or a soliton [lo] [ll]. The orientation of the 

director continuously changes by T on crossing the wall. For this reason, they 

can also be called T solitons. We can have twist solitons, bend-rich solitor~s 

and splay-rich solitons as depicted in Figure 1.5. These structures are strictly 

non-singular and most of the distortion is confined to a narrow region. These 

solitons are different from "true" solitons which are traveling solitary waves 

and which retain their shape and structure after pairwise collision. For the 

sake of simplicity we briefly discuss here a Twis t  Soliton. 

Let the magnetic field I-I be along the z axis and the director is confined to 

the y - z plane with variations along the x axis i.e., n = (0, sin 4, cos 4 )  with 

r ,  
ql = g) (x) .  1 he free energy density of distortion of nernatics in ari extcrrial 
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A Soliton 

Figure 1.6: Profile of a soliton and an antisoliton 

magnetic field is given by: 

where xo = XI! - XI. XI! and XI are diamagnetic susceptabilities parallel and 

perpendicular to n. 

Fe~a,tic is the free energy density for distortions in the director field 1121. Here 

V . n represents the splay distortion, n . (V x n) represents the twist distortion 

and n x (V x n) represents the bend distortion. The coefficients Kl l ,  

and K33 are the respective elastic constants. In this particular case, only pure 

twist is present and the minirnisation of total energy gives, 

a24 x a H 2  - = = - ax2 
sin q5 cos q5 

K22 

where q5 is the angle between the field and the director. This can be solved, sub- 

ject to boundary conditions q5(x = -00) = 0, q5(x = +oo) = T and aq5lax = 0 



at x = f m. The equation ( 1.3) has a solution given by 

4 = 2 tan-' (ex'() (1.4) 

It shows that the twist distortion is confined to a narrow length called the 

coherence length ( with 

Ipigurc 1.6(a) gives the 4 profile of a soliton. The total energy per uriit arcii 

of the wall is given by 

So even though the wall is of infinite extent its energy is finite. Equation ( 1.3) 

also permits the solution 

4 = 2 tan-' (.-"It) (1-7) 

This represents an antisoltion with $(a: = -m) = T ,  $(x = +co) = 0. Its 

profile is also shown in Figure 1.6(b). Similar results are found for the case of 

splay-rich and bend-rich walls. 

In this thesis, we are primarily concerned with the mechanical and optical 

properties of such soliton states. While undertaking these studies we found 

some new planar soliton states in nematics. A brief discussion on these solitons 

is presented here. 

1.3 Some new soliton states in nernatics 

1.3.1 Intertwined Solitons 

In nematics with negative diamagnetic anisotropy (x, < 0), in a magnetic 

field H, a topologically permitted non-singular defect solution is a cylindrically 
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Figure 1.7: (a)  All radial splay-bend soliton. (b) The coordinate system with 
reference to  which the planar solitons shown in Figure 1.8 are described. 

symmetric structure such that at  r = oo, the director n is perpendicular to 

H and is along H at r = 0. It may be mentioned that n can be either in 

an all radial or all circular state at  r = oo. Figure ( 1.7) shows an all radial 

structure. This is also a soliton. We can also construct planar solitons in 

such nematics. Here also there are three possible planar solitons viz., the twist 

soliton, the bend soliton and the splay soliton. These are similar to planar 

solitons of X, > 0 nematics. Here we refer n and H to a coordinate system 

shown in Figure 1.7. 

In a bend soliton (Figure 1.8(a)) described by n = (0, cos 4, sin 4) with 



9 , I Twist 

Fi ure 1.8: Planar Solitons. (a) T bend soliton confined to the y - z plane with 
(bJ A pure twist deformation about z 

4 = 2 tan-' ez / t  the director is perpendicular to z axis at z = f oo and n, = 

0 everywhere. These states are of minimum energy since X, < 0 and they get 

connected by a continuous bend in the director in the y - z plane. 

We now consider the effect an out of plane distortion in this well known 

planar solitons. That is, we impose a twist distortion 8 on n. The director 
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now has components n, = cos 8, ny = sin Bcos $ and n, = sin 8 sin 4. The free 

energy density in the one constant approximation i.e., Kll = Kz2 = K33 = I( 

K 
F = - [ ( ~ 8 ) ~  + (sin B ) ~ ( ( V $ ) ~  - E2(sin $)2)] 

2 

Here E2 = x,H2/K. The equations of equilibrium are 

V28 = sin 8 cos B[(V$)~ - Ez(sin $)2] 

v2$ = -E2 sin q5 cos $ - cot 9[2(VB.V$)] 

We seek bend soliton solution for q5 assuming that the 9 variation is also along 

the direction of $ variation i.e., along z .  Then we can see that the out of plane 

distortion can only be a twist distortion connecting the same base states of 

the bend soliton. From Figure 1.8(b) we see that a pure 9 distortion confines 

the director everywhere to a plane perpendicular to the field and since we are 

considering X, < 0 nematics, its elastic distortion is not coupled to the field. 

Hence left to itself it will unwind on its own and go to the uniform state. But 

interestingly in view of ( 1.9) and ( 1.10) we find that this twist in 8 can be 

coupled to the field through variations in 4. The numerical solutions of these 

equations which reveal this aspect is shown in Figure 1.9 (a) to (d). Inter- 

estingly, even the 8 variations are confined to a narrow region of space as in a 

soliton. It has a net twist A8 = 81 - 02. Hence even the out of plane distortion 

is in the form of a soliton. The value of the net twist A9 is a function of H. It 

can be made to change continuosly from 0 to x. In Figure 1.9(d) we see that 

a T bend soliton is coupled with a T twist soliton. We call this an intertwined 

soliton. The twist per unit length (as given by the slope at the centre) in the 



Figure 1.9: The amount of twist locked in 8 is shown with the corresponding n 
soliton in 4. 

A8 soliton is seen to increase with increasing Ad. 

Similarly, we can construct two other types of intertwined solitons. 1) A 

twist soliton with twist along x axis intertwined with a splay soliton with varia- 

tion along the y axis. 2) A splay soliton with variation along x axis intertwined 

with a bend soliton with variation along y axis. 

Interestingly we find such intertwined soliton states only in X, < 0 ne- 

mat ic~.  We can easily understand this because a 6' distortion in the X, > 0 

nematics leads to an increase in the magnetic energy. 
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1.3.2 Soliton-antisoliton pairs 

The solitons described in the earlier sections are static. However we can also 

have dynamic solitons, Dynamic solitons result from one of the following two 

qualitatively different kinds of mechanisms. 

Motion due to base state asymmetry 

If it so happens that a soliton connects director orientations of different 

magnetic potential energies, then it will move, with the stable state ex- 

panding into the unstable region. 

a Motion due to core asvmmetrv 

It may also happen that even though a soliton connects base states of the 

same magnetic potential energy, the symmetry in the magnetic potential 

energy can be broken inside the soliton. This also leads to an expansion 

of the stable region into the unstable region and hence to a motion of 

the soliton. 

A soliton in a nematic confined to a plane and subjected to a rotating mag- 

netic field about an axis perpendicular to the plane, can move due to core 

asymmetry. We discuss such a soliton here. 

Dynamic solitons in nematics 

We consider a nematic with the director n confined to a plane, say the xy 

plane with the magnetic field H also acting in the same plane but rotating 

with an angular frequency w about the z axis. The differential equation for 

the director field of a nematic in this geometry is given by [13] 

a2 4 K- = 71%'- a$ x ,H2 
2 

sin 24 - r l w  
d x 2  



Here $ is the angle between n and H, K is the bend or splay elastic constant 

in the one constant approximation and yl is the rotational viscosity. This 

cq~~a t ion  permits the solution 

where wc = 271 

For w < w,, this represents a uniform director field co-rotating with the field 

Z-I at a constant phase lag angle do. This is called the synchronous regime. 

For w > w,, the angle $0 is not given by the above relation. It can be shown 

that in this region the angle $0 between n and H becomes a function of time. 

This is the asynchronous regime. 

In the uniform director field n of the synchronous regime (i.e., w < w,) 

we can construct a planar soltion. It can either be a bend-rich or a splay- 

rich soliton with the director confined to the x - y plane. In these solitons, 

the uniform states will be at an angle $0 to the field H. We have shown in 

Figure 1.10 a splay-rich soliton and an antisoliton. It can be seen from the 

figure that the uniform states are at the same angle $o with respect to H while 

the director field inside the wall has one region more favourably aligned with 

respect to H. Thus the soliton moves. We hence seek traveling wave soliton 

solutions of ( 1.11). In a coordinate system X = x - ut,moving with a velocity 

u, equation ( 1.11) simplifies to, 

H = where p = %, F = T'w/K and 11 = ylu/K. In all our computations we 

have taken K = dynes, xa = loM6 cgs units and rl = -0.53poise. This 

differential equation permits a traveling wave soliton solution going from 4o 
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Soliton-antisoliton pair in nematics in a rotating magnetic field 

A soliton 

unstable 
solitorz-antisolitori 

Art uritisoliton ? 

stable 
antisoliton-soliton 

(c) (4 
Fi ure 1.10:Schematic director representation of (a) A soliton, (b) Antisoliton 
(cfi an  unstable soliton-antisoliton pair (d)stable antisoliton-soliton pair in ne- 
m a t i c ~ .  The full arrow and the dotted arrow represent the direction of force 
due to  elastic and dynamic interactions respectively between soliton pairs. 

to $0 + 7 ~ .  traveling at  a velocity u in a direction perpendicular to the wall. 

It can be shown that u, the velocity of propagation of the soliton increases 

monotonically from 0 at F = 0 and diverges sharply at F = ,f3. In the same 

way we find that, the antisoliton moves in a direction opposite to the soliton 

i.e., its velocity is -u. That is, due to the core asymmetry if the soliton moves 

in +x direction the antisoliton moves in -x direction. 



Figure 1.1 1: (a) Profile of antisoliton-soliton pair in nematics. (b )  The varia- 
tion of width(which has been scaled relative to () of the pair with F/ f 

Static soliton-antisoliton pairs 

In a static magnetic field, if a soliton and an antisoliton simultaneously ex- 

ist they will attract and annihilate one another leading to an uniform state. 

However in a dynamical situation as in a rotating magnetic field, a soliton 

and an antisoliton can coexist with a finite seperation. This however, happens 

only in situations where the opposing motion imparted by the core asymmetry 

opposses the attractive interaction between these unlike soliton pairs. 

For example, in the present problem, an antisoliton-soliton pair (Figure 

l.lO(d)) is stabilised while a soliton-antisoliton pair (Figure l.lO(c)) is unsta- 
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Il'igr~rc! 1.12: 1'7.oJilcs o j  unlike soliton pairs in  a jcrronetnutic. ((L) n .vtr~tic 
~ ~ ~ l i u o l i t o ~ ~ - s o l i t o ~ ~  yuir 6) a stutic soliton-antisoliton pair (1) bound to U T L  

antisoliton-soliton pair II). 4 is  in radians. Widths o unlike soliton pairs as 
a function of F /  f. (c) 1 or soliton structure shown in  f a), (d) for the structure 
shown in (b) .  Widths have been scaled relative to t. M = 0.001 and X, = lob6 

ble. Profile of antisoliton-soliton structure in nematics is shown in Figure 1.11. 

The width defined as the seperation at half maximum is a sensitive function 

of F. It is important to  note that the width of antisoliton-soliton structure 

diverges both as F -, 0 and as F -+ f = P.  The variation of width with F /  f 

the permitted state is a static single soliton and when F = f the velocities of 

the soliton and antisoliton diverge. This leads to a divergence in the width at  

both F = O  and F = f .  



The above arguments for a nematic can also be extended to a ferronematics 

- a nematic doped with magnetic grains. Unlike nematics which has only two 

stable states at 4 = 0 and 4 = 7r ferronematics has two stable states a t  q5 = 0 

and 4 = 27r. That is, the natural topological object is a 27r soliton and the 

dynamical equation ( 1.12) has an additional MH sin 4 term. Depending upon 

the strengths of various terms contributing to the magnetic potential energy, 

this systcrn, in some parameter regimes, can have a metastable state at  q5 = n 

as well. 

New kinds of soliton-antisoliton pairs can exist in this system. The detailed 

structure is decided by the sign of x,. Here we give the structure for X, > 0 

ferronematics. Figures 1.12(b) and (c) show two such soliton-antisoliton pairs. 

Their associated divergence in their widths are also shown in the same figure. 

The unlike pair shown in Figure 1.12(c) is rather similar to that found in a 

nematic excepting for a finer structure. When M > X, H this will not have this 

fine structure and the profile is then very similar to that found in a nematic. 

However the bound state shown in Figure 1.12(b) is unique to ferronematics. 

Note that,  the widths of these structures diverges at F = 0 and at  F < f .  The 

divergence at F < f is unlike the nematic case where it takes place for F = f .  

Here 

f = p sin 24, + a sin 4, (1.13) 

with a = M H I K .  Here 4, defines the maximum possible angle between t~ 

and H in the synchronous regime. 
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