
Chapter 2 

Defects in a nematic with a 

latent lattice 

2.1 Introduction 

The introductory chapter dealt with solitons in intrinsically achiral systems 

like nematics. A cholesteric liquid crystal on application of an external mag- 

netic field perpendicular to the helical axis, develops a non-uniform twist in 

the form of a lattice of ?r twist solitons. Further, at a threshold field, the state 

gets completely unwound leading to a nematic like director configuration. A 

nematic state can also be obtained by deforming a cholesteric in a field applied 

along the twist axis. 

In either case, the lattice order that was manifest previously at a lower field 

influences the structure and energetics of solitons that are created in the un- 

wound state. This unwound state is referred to as a latent lattice. 

We study in this chapter the solitons permitted in such a nematic state but 

with a latent lattice order. For our discussion we have considered two different 



geometries. 

2.2 Planar solitons in H perpendicular to the 

twist axis 

A cholesteric with positive diamagnetic anisotropy (xa > 0), can be unwound 

by the application of a magnetic field perpendicular to the axis of the helix 

[l, 2). This is a well known transition and the transformation is mediated, as 

said before, by the formation of x solitons. At a certain critical field H,, given 

by - 

the solitons become infinetly seperated from each other and we get a nematic 

state. This process of cholesteric to nematic phase transition is shown in Figure 

2.1. The nematic thus obtained from the cholesteric however has a memory 

of the lattice. This can be seen by lowering the field in the nematic state and 

below the critical field the x solitons are spontaneously generated. We consider 

here, solitons in the unwound cholesteric i.e., in the nematic state. 

2.2.1 Defects in an unwound cholesteric 

The free energy density of distortion of a cholesteric liquid crystal in the pres- 

ence of an external magnetic field can be written as 

Here q0 = 27r/ P with P as the pitch of the cholesteric and X, > 0. For H 

perpendicular to the twist axis and with n, = cos4 and n, = sin4 the free 
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Figure 2.1: Unwinding of X, > 0 cholesteric helix in a magnetic field H per- 
pendicular to the twist axis 

energy density is given by 

Here ). = 2. This leads to an equation of equilibrium given by 

H 2  sin 9 cos 9 4" = 7 

where ),, = a 2 ) / d z 2 .  This permits a T -  twist and x anti-twist soliton solution 

described respectively by 



with 

A twist soliton ( T S )  has the same sense of twist as the parent cholesteric 

wl~ilc tllc anti-twist solitor1 ( A T S )  l i a ~  an oppoaitc actlac of twist. 'L'IIc tott~l 

distortion energy per unit area of these solitons are easy to work out. We get 

For (7r/2)qo( > 1 i.e., for H < ( 7 r / 2 ) ~ ~  J K ~ ~ I ~ . ,  the energy ETS of a 

twist soliton becomes negative indicating a spontaneous generation of such 

twist solitons leading to a soliton lattice. However for (7r/2)qO( < 1, we have 

the undistorted nematic to be of the lowest energy with the ATS having a 

higher energy compared to that of TS .  An interesting possibility exists in 

such nematics. Here a bend soliton can also connect the same base states as 

that associated with a T S  or an ATS. This is shown in Figure 2.2. This bend 

soliton can become energetically favourable compared to  an ATS. For this to  

happen the energy E per unit area of the bend soliton should be lower than 

that of the ATS which leads to the condition 

where is the bend or splay elastic constant. This together with the condition 

(7r/2)qo[ < 1 for the nematic state leads to 
I 

Hence for < 4K22 a bend soliton is favourable compared to an ATS. How- 

ever in a given situation this occurs only upto a field H' above Hc.  At 11' 
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Twist Soliton Anti-Twist Soliton 

Bend Soliton 

Figure 2.2: Twist, Anti-twist and bend solitons in  a nematic obtained by un- 
winding a cholesteric with X, > 0 

the inequality ( 2.7) is just violated. For H > H', the ATS is favoured en- 

ergetically. However, in the one constant approximation = Kzz, in such a 

nematic a bend soliton is always favoured to an ATS. It may be mentioned 

that in a normal nematic a bend soliton is not favoured since it always has a 

higher energy than the T S  or ATS since KZz < r. 
Thus in X, > 0 nematics, obtained from an unwinding of a cholesteric, 

we have two solitons namely the bend soliton and the twist or the anti-twist 

soliton connecting the same base states. From the above discussions, we find 

that the ATS and a bend soliton can sometimes have comparable energies. 

Therefore we can think of a A disclination line [3] connecting these two pla- 



A Bend wall and a Twist wall connected by a h  line 

Figure 2.3: A X line between a bend soliton and a splay soliton denoted by x .  

nar solitons. Interestingly, such lines cannot exist in normal nematics since 

K22 < K33. 

It may be mentioned that in X, negative nematics it is not possible to 

have both bend and twist soliton as solutions with the same base states, in a 

magnetic field alone. However, if dielectric anisotropy E, < 0, then in crossed 

electric and magnetic fields, it is possible to stabilize a bend soliton or a twist 

soliton between the same base states. Since their energies can be indepen- 

dently varied by altering the strengths of the fields, it is possible to have the 

energy of the bend soliton to be less than the energy of a anti-twist soliton. 

In conclusion unlike the usual nematics, in these nematics which have a 
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latent lattice symmetry we find some new results. 

Irltertwirled solitons in an unwound cholesterics 

In these structures, one can also think of creating intertwined solitons of the 

type discussed in the introductory chapter. The differential equations in this 

case are 

v 2 9  = sin 9 cos B[(v))~ - 2 g V 4  - E2(sin +)2] (2.9) 

v2q5 = - Ez sin q5 cos q5 - cot 9[2(VB.(V$ - qo))] (2.10) 

Here Ez = X , H 2 / K .  The linear term in the gradient of 4 is absent in the case 

of normal nematics (Chapter I). The presence of this linear term leads to  a 

completely different answer in this case. When solved the equations give the q5 

and 0 profile as shown in Figure 2.4. We see that q5 continues to be a T-twist 

soliton. However, 8 is not any more soliton like. This is the case even for very 

small values of qo. We can infer from this, that though this is a nematic state 

got from unwinding a cholesterics, the intertwined solitons which are possible 

in normal nematics are not permitted here. 

2.3 Note on electric field effects 

A similar argument, can be carried through for the energetics of soliton states 

in nematics in an electric field. An induced electric polarisation results under 

distortions in a nematic. This is termed the flexo-electric effect 14, 51. In 

general, a splay distortion leads to an induced electric polarisation along the 

director and a bend distortion leads to induced polarisation perpendicular to 

the director. One consequence of this is that, in an external static electric field 

one can produce alternating regions of periodic splay and bend distortions [4]. 



Figure 2.4: 8 and c j  profiles of a coupled soliton state in an  unwound nematics 

This is called the flexo-electric lattice. In such a nematic, if I€,( > w3e*'/4K 

where e* = el - ea, with el and e3 as flexoelectric coefficients, then it can be 

shown that a spontaneous splay bend flexo electric lattice is not possible [6], 

[7]. This is another example for a nematic with a latent lattice order. In such 

nematics also, we can construct bend solitons of opposite bends. These have 

their flexo-electric polarization either along or opposite to the external electric 

field. We consider the bend soliton of lower energy. Its flexo polarization is 

along the external field. In view of the above analysis we can again consider a 
t 4 
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twist soliton or an anti-twist soliton in the very same geometry. These twist 

solitons are equally energetic. In this case, for the twist state or anti-twist state 

to be more favourable than the bend soliton, we have to satisfy the inequality 

Since K22 is invariably less than this inequality is sufficient leading to  an 

interesting conclusion that a twist soliton is preferred to the permitted bend 

soliton. 

In a nematic obtained by unwinding a cholesteric in an electric field acting 

perpendicular to the twist axis, we find a totally different answer. In this case, 

above the threshold, there is no spontaneous twist, splay or bend . Hence, here 

a flexo-electrically permitted bend soliton can be made energetically favourable 

compared to an ATS by satisfying two inequalities. 

For values of E, satisfying ( 2.13), the inequality ( 2.12) will be satisfied only 

in a range of fields E, < E < E' as in the case of magnetic field effects. Only 

then a bend soliton is favoured in such a nematic with a very large E,. 

2.4 Planar solitons in H parallel to the twist 

axis 

In a magnetic field parallel to  the twist axis for a X, > 0 cholesteric, the 

director n which was confined originally to the x - y  plane perpendicular to the 



twist axis will experience an out of plane deformation given by n, = sin B cos 4, 

n, = sin $sin 4 and n, = cos 8. At sufficiently high magnetic fields the director 

everywhere goes over to the field direction i.e., along the twist axis resulting 

in a nematic state. We can construct soliton states in this nematic. Even, this 

is an example for a nematic with a latent lattice. 

2.4.1 A giant soliton 

The free energy density for this deformation in the one constant approximation 

of Kll = Kz2 = K33 = K is given by 

K 
F = -[(Vd)2 + (sinB)'(4; - 2 ~ 0 4 ~  + f)]  

2 

Here f = x,H2/K. This leads to the following equations of equilibrium 

V2B = sin B cos B[(#,)' - 2q04, + f ]  (2.15) 

v2# = cot o[~(vB.(v) - q o ) E ) l  (2.16) 

The equations of equilibrium then permit the following solutions 

where 7s = d m .  Equation ( 2.18) describes a soliton which has a 

chirality as given by ( 2.17) with O(-oo) = 0 and B(+w) = T. Its structure 

is schematically shown in Figure 2.5. Over a length of 2vb the uniform state 

can be distorted to form a cholesteric like section. We call this a 'Packet 

Soliton' since a lattice is packed inside this soliton. This lattice has the pitch 

of the parent cholesteric i.e., 2n/qo. On decreasing the field this region of 
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q b  
Packet Soliton 

Figure 2.5: Structure of a longitudinal Packet soliton in a nematic. 

width 2% grows and at the critical field given by H, = ( ~ T / P ) J K / ~ .  the 

entire structure transforms into a cholesteric. That is, there can be a single 

soliton mediated nematic to cholesteric transition. The energy of creation of 

this soliton continuously going to zero as H decreases to Hc. 

From equation ( 2.15) and (2.16) we find that, a packet soliton with 9  

variations in a direction perpendicular to the twist axis i.e., 9  = 9 ( y )  is also 

a possible solution. This is schematically shown in Figure 2.6. This can 

be considered as an alternative stack of twist and bend-rich solitons. In the 

one constant approximation the widths and energies of both the transverse 

and longitudinal packet solitons are the same. However elastic anisotropy can 

decide as to which packet soliton triggers chirality in the nematic phase. 



Packet Soliton 

Figure 2.6: Structure of a transverse Packet Soliton in a nematic. 

Such a giant soliton is also possible in a ferronematic got by distortion 

of a ferrocholesteric by the application of an external magnetic field parallel 

or perpendicular to the twist axis. If the grain migration is ignored and if 

M > > x,H we get essentially the same results. 
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