
Chapter 3 

C hiral-achiral lattice transit ions 

3.1 Introduction 

In the last chapter we considered soliton states in nematics with a latent lat- 

t.ic:c: ortlcr ctnd showcd tlrnt plnnnr soliton stntcs in the prescrrcc of nri cxt.or~~ill 

field, can rnediate trarlsitiorls between two liquid crystallirle pilaves -rlartlcly 

a chiral to an achiral phase. In this chapter, we consider other chiral-achiral 

phase transitions induced by external electric or magnetic fields or both. The 

transitions can take place through the formation of single soliton, disclinations 

and soliton lattices or even without the involvement of any defect. 

In the previous chapter, we saw that a cholesteric ( C h )  to nematic (N)  

transition takes place in a magnetic field H perpendicular to the axis of sym- 

metry. This is an example of a soliton mediated transition. The transition is 

through the formation of a .rr soliton lattice whose period changes continuosly 

with H, diverging at a critical field H,. This transition is second order. An- 

other example of a soliton lattice mediated transition is the transition from an 

Sc= to Sc in a similar geometry under an external electric or magnetic field. 



'l'hese transitions have been considered here in crossed electric and magnetic 

fields. As not much attention has been paid to these transitions in a field nlorig 

the twist axis, we consider this geometry also. 

In this chapter, field induced chiral-achiral transitions are discussed in 

cholesteric, ferrocholesteric(FCh) and chiral Ferrosmectics ( F S p  ) liquid crys- 

tals. We consider two geometries (i) Field along the symmetry axis and (ii) 

field perpendicular to the symmetry axis. 

3.2 Transitions in a magnetic field along Athe 

axis of symmetry 

Figure 3.1: Schematic representation of a n  out of plane distortion in a 
cholesteric and the coordinate sys tem used in describing the out  of plane dis- 
tort ion 
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3.2.1 Cholesterics 

The undistorted structure of a cholesteric in the absence of the field is given by 

110 - (COB $0,   in $0, 0) with do = 21rzlI'. In a field pnrnllcl t o  thc  t w i ~ t  itxiti 

the director n will develop an out of plane distortion given by n, = sin 8 cos 4, 

n, = sin 8 sin 4 and n, = cos 8 .  This is shown in Figure 3.1. The free energy 

density for this deformation in the one constant approximation is given by 

This leads to the following equations of equilibrium 

v 2 8  = sin 0 cos 8[(4,)' - 2q04, + f] ( 3 . 2 )  

(sin 8 ) ' V 2 4  = - 2 sin 8 cos B[VB . ( 4 ,  - qO)$] ( 3 . 3 )  

Here k is the unit vector along the twist axis i.e., the z-axis. These two coupled 

equations permit the following solutions in 4 and 8 

where qa = d m ' .  Equation ( 3.5)  describes a planar soliton of width 

2qa with 8 ( - o o )  = 7r/2 and B(+oo) = 371'12. Within this width the director 

goes out of the cholesteric plane and at the centre of the soliton the director 

is along the twist axis. The structure of this soliton is depicted in Figure 3 .2 .  

We call this a 'Pinch Soliton' since the cholesteric lattice is pinched so to say 

in a narrow region of space. The width 2qa of the pinch soliton, grows as the 

field increases and it diverges at a critical field given by H, = ( ~ T / P ) \ I K / ~ . .  
Hence we find a transition from the cholesteric state to the nematic state with 



2-L 
Pinch Soliton 

Figure 3.2: Structure of a longitudinal Pinch soliton. It has a 8 variation along 
the twist axis. 

the director n everywhere along the twist axis of the parent cholesteric. It 

is important to mention here that the energy required to create such a pinch 

soliton gradually decreases and goes to zero as H increases to Hc. Unlike the 

case of soliton lattice mediated transition, the period in the present geometry 

does not change with H. We have a single soliton which grows in size and 

irons out the entire lattice at the critical field H,. Interestingly this critical 

field is nearly 213 of that obtained in soliton lattice mediated transition. 

It is important to note that in this pinch soliton shown in Figure 3.2, 4 

and 8 variations are in the same direction namely the twist axis. Hence we 

call this a lorigitudinal pinch. Equations ( 3.2) and ( 3.3) also permit a soliton 

solution with 8 varying in a direction perpendicular to the twist axis. Here 

4 continues to vary along z.  This transverse pinch soliton is shown in Figure 
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Figure 3.3: Structure of a 
dicular to the twist axis. 
tively. 

transverse Pinch soliton with i ts  8 variation perpen- 
It is a stack of twist and splay-rich solitons respec- 

3.3. As can be seen from the figure it is an alternate stack of twist and splay- 

rich solitons. The C h - N  change can be brought about through the creation 

of either a longitudinal or a transverse pinch soliton. In this simple model 

we cannot assert as to which mode of transformation the system will adopt. 

However it is not difficult to see that in the presence of elastic anisotropy one 

of the pinch solitons will be of higher energy compared to the other. Therefore 

in a real system there will be no ambiguity. We have already discussed in the 

previous chapter that N to C h  transition can be brought about by a giant 

packet soliton. Hence in this geometry, both C h  - N and N - C h  transitions 

can be brought by a single giant soliton. 



3.2.2 Ferrocholesterics 

A ferrocholesteric ( F C h )  is obtained from an usual cholesteric by doping it 

with magnetic grains so that the local magnetization M is along the local 

director n i.e., M spirals uniformly about the twist axis with a pitch P. When 

unwound such a system would become a ferronematic ( F N ) .  The transition 

of an F C h  to an F N  in the presence of a magnetic field applied perpendicular 

to the twist axis has been considered by others [I], [2]. Here we consider the 

F C h  - F N  transition in a field applied parallel to the twist axis of an FCh.  

Ferrocholesteric to ferronematic transition 

The unperturbed state of the F C h  is described by n = (cos $0, sin $0, 0) with 

$0 = 2 r z l P .  The applied field is in the z direction. It results in an out of 

plane distortion in the director n described by n, = sin 6 cos $, n, = sin 6' sin $ 

and n, = cos 8. The free energy density is given by 

K xaH2 
F = [ ( 8 , ) 2  + sin2 8(4: - 2q04,)] - - 

2 
cos2 8 - M H  cos 8 (3.6) 

Minimization of the total energy yields 

BZz = sin 8 cos 8[(4,)' - 2qo#, + f ]  + g sin 8 (3.7) 

2 sin B$,, = -2 sin 6' cos 8[8,(4, - qo)] (3.8) 

where f = x , H ~ / K ,  g = M H I K ,  $,, = a2q5/az2 and B,, = a26'/az2 

The equations ( 3.7) and ( 3.8) permit the following solutions: 

cos 61 = 
- xaH2 



It is clear from equations ( 3.9) and ( 3.10) that in the presence of the external 

magnetic field the pitch of the structure is unaltered and that 6' is uniform 

throughout. When 0 < 6' < n/2 we get a tilted FCh. Since 6' = 0 in an 

F N  we find that the transition from an FCh  to an F N  occurs at  Hc with 

M H ,  = Kg: - X,H,2. The angle 6' continuously decreases from 7r/2 as H 

increases from zero. Incidentally this transformation does not involve any 

defect. 

Ferronematic to ferrocholesteric transition 

Now we consider the F N  obtained from the FCh in the manner described 

above. In this nematic state the director lies along the z direction. As we lower 

the field to H < Hc, we get 6' and 4 distortions described by n, = sin 6' cos 4, 

ny = sin 6' sin 4 and n, = cos 6'. In view of the degeneracy in 6' with respect to 

the field direction, we set up the equations of equilibrium in cylindrical polars 

( r ,  a, z). This leads to 

4 = qoz f N a ,  N = integer (3.11) 

and the 6' distortion obeys the differential equation 

1 sin 6' cos 6' or, + -8, = + (f - q~)sin6'cos6 +gsin6' 
r r 

Equations ( 3.11) and ( 3.12) permit a non-singular topological defect in 

n. At the centre of this defect 6 is zero and far away from it 6' is given by 

( 3.10). The solution with N = 1 can be called a flower and it is rather similar 

to the all radial non-singular solution presented in chapter I, for a X, < 0 

nematic. The director at r = f oa is at a constant angle Bo with respect to the 

field and at  the centre of the defect the director is along the field direction. 



Through the formation of such topological defects we can enter the tilted FCh 

state. Given enough time, the unlike defects will attract and annihilate one 

another leading to an uniformly tilted FCh. Hence in this system one possible 

structural transformation, which is permitted by the equations of equilibrium, 

is that the achiral to chiral transition can be defect mediated while the chiral 

to achiral can take place without defects. However, in this transition, we can 

also have uniform 8 solution without the formation of flowers provided there is 

a predisposition of the director to  tilt in a particular direction due to sample 

boundaries. 

Phase diagrams 

Figure 3.4: The transition from an FCh to an F N  when X, > 0. Q = qi in 
units of go = 2nlP with P as the pitch of the FCh and H is the 
magnetic field. M = 0.0001 gauss and X, = cgs units 
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Ferrocholesterics 

Figure 3.5: The transition from an F C h  to an F N  when X, < 0. M = 0.0001 
Gauss and X, = cgs units. 

We showed that in FCh ,  on a gradual increase of the magnetic field, 0 

decreases monotonically and at a critical field H,, F C h  goes over to the F N  

state. The phase diagram for this transition is shown in Figure 3.4 for X, > 0 

systems. Here we have presented the phase diagram in the H, Q(= qi)  space 

since it is possible to have cholesteric systems where qo can be varied contin- 

uosly. This is possible both in compensated cholesterics [3] and in some pure 

systems [4]. We find a totally different phase diagram when X, < 0. This 

is shown in Figure 3.5. We see that depending on the value of q,2 we get a 



reentrance of F C h  on increase of the external field. For qi above a critical 

value the transition from F C h  to F N  does not take place at all. This phase 

diagram can be easily understood from the fact that there are two opposing 

torques on the director, one due to the X, term which tilts the director towards 

the cholesteric planes and the other due to the M term which tilts it towards 

the twist axis. The net torque decides the state of the system. In view of 

the discussions presented in the previous section, we expect the F N  to F C h  

transition in this phase to be mediated by flower defects. 

3.2.3 Ferrosmectics 

Ferrosmectics(FS) are smectic systems which have been doped with mag- 

netic grains. Such systems have already been made in lyotropic liquid crystals 

[5], [6] .  We consider here an FS with the magnetic grains aligned such that the 

local magnetization M, is parallel to the local director n. We further make the 

system chiral by doping it with chiral molecules. It is possible for such a sys- 

tem to have in a magnetic field a low temperature chiral smectic C* like phase 

(FSc*) and a high temperature achiral phase of smectic C (FSc) or smectic A 

( F S A )  type. In our analysis of this system we take the electric polarization in 

the chiral phase to be negligible. We have considered the chiral-achiral transi- 

tions near the FSc(FSA)-FSc* point. Generally, the tilt 0 of n with respect 

to the layer normal can be assumed to be small. 



Clln.pter 3: C11ira.l-achiral lattice transitions 4 !J 

Ferrosrnectic C' to ferrosmectic A transition 

We first discuss the transition from F Sc* to F SA. The smectic layers of F Sc* 

are in the x - y plane with the director at an angle 80 with the layer normal. In 

the absence of the field the director configuration is no z (00 cos #o, O0 sin $0, 

1 )  with do = 2 ~ z / P ,  P being the pitch of the helical structure. In the presence 

of a magnetic field H along z we find n, z 8 cos 4, n, z 0 sin 4 and n, FZ 1. 

The free energy density is, 

The parameters a and P are the Landau coefficients. We consider the positive 

or the negative sign according as H is parallel or anti-parallel to Mz, the 

component of M along to the twist axis. 

In the FSc. phase, 8 # 0 and a is negative equal to -ao. As in the case of 

ferrocholesterics here also in the chiral phase a uniform twist with a constant 

tilt are permitted solutions given by 

e = j  (a0 + Kg;) - ( x a H 2  M H )  
P 

(3.15) 

Transition from FSc* to FSA occurs when 

(ao 4- Kg:) - (x.H2 f M H )  = 0 (3.16) 

'this transition occurs by a continuous change in 0. In principle the critical 

fields for the transition are different for H parallel to Mz and anti-parallel to 



M, cases. However with H anti-parallel to M E  and for X, < 0 we do not get 

a transition to the FSA state. 

Ferrosrnectic A to ferrosrnectic C' transition 

Consider an FSA in a magnetic field parallel to the layer normal. In the absence 

of the field we have no = (0 ,  0 ,  1) .  In this geometry if the magnetization M 

is anti-parallel to  H, we expect a tilt 8 in the director n with a cj degeneracy 

in the plane of the smectic layers. The director components are n = ( 0  cos 4, 

8 sin g5, 1).  Since the phase is assumed to lack a mirror symmetry due to the 

presence of chiral molecules, this tilted director n also precesses about the layer 

normal. In other words a tilt 0 results in an azimuth ) which is a function of 

x, y and z.  The free energy density for a X, > 0 material is given by 

In the present case a > 0 ,  as we are in the FSA phase for which 0 = 0 when 

H = 0. Minimization of total energy leads to the following coupled equations. 

s2v2g = -ze[ve. (v )  - qok)] (3.19) 

where a = a / K ,  b = P / K  and k is a unit vector along r .  Equations ( 3.18) 

and ( 3.19) permit the following solutions in cylindrical polars: 

4 = qoz f Na, N = integer 
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And 9 is assumed to be a function of r only. It obeys the differential equation 

The solution in 4 describes a disclination of strength N with its associated 4 

pattern rotating as we go along the z axis. Equation ( 3.20) is the familiar 

Ginsburg - Piteaviskii equation. The tilt angle 6 goes from zero at  the centre 

of the disclination to a constant value Bo at a large distance from the centre 

[7 ] .  Such field induced disclinations start interacting soon after creation. Given 

enough time unlike disclinations will annihilate one another resultir~g finally 

in an uniformly twisted FSc* phase with a tilt angle do.  This Bo is given by 

(MN + Kg:) - (a + x,H2) 

P 
(3.21) 

It is clear from ( 3.21)) that only for certain values of H we get a transition 

to the FSc* (i.e., Bo # 0). This transition is second order. It is to be noted 

that, in the case of X, > 0, for H parallel to M no phase transition to the 

FSc* takes place. And for X, < 0, both with H parallel and anti-parallel to 

M we find that a transition to FSc* is possible at a critical field H,. Inter- 

estingly, the critical fields in the two cases are different. Thus we see that the 

above analysis permits a disclination triggered transition from FSA to FSc* 

and a defect free transition from FSc* to FSA. Thus it is rather similar to 

FCh - F N  transition. 

Phase diagram 

Phenomenon of reentrance 

In the presence of the field, both in FSA and J'Sc*, we get the phenomena 



Figure 
X a  = 0 
of 104 

3.6: The phase diagram for the achiral FSA phase. Here cy = 1,P = 0.1, 
.1 * and M, and H are anti-parallel to one another. M is i n  units 
Gauss. 

of reentrance. Figures 3.6 and 3.7 depict this. It should be noted that 

in both the cases the transition from the chiral to the achiral phase is 

not defect mediated while the transition from the achiral to the chiral 

phase is always through disclinations. 

Tricritical point 

By incorporating higher order terms in the magnetic field contribution 

to the free energy, we can show that at a certain field the coefficient of 

the O4 term can change sign. Beyond this field, the F S A  - FSc. phase 

boundary becomes first order. Therefore we can expect a tricritical point 

on this phase boundary. At this point a second order phase transition 
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goes over to a first order phase transition. Hence this phase change at 

11igh ficlds can bccorne first order above a ccrtnin villuc of 11 whilc trt low 

fields it is second order. 

Figure 3.7: The phase diagram for the chiral FSc* phase. Here a0 = -0.02, 
X, = -0.1 * = 0.1 and Mz and H parallel to one an0ther.M is in units 
of lo4 Gauss. 

Grain migration 

It is well known that in a magnetic field acting perpendicular to the twist 

axis of an F C h  the magnetic grains migrate out of highly distorted regions 

to regions of low distortion. The same phenomenon can be expected in FSc* 

also in the same geometry. We have seen that in both F C h  and FSc* in a 

magnetic field parallel to the twist axis the 4 and 0 distortions are uniform all 

over. Hence in this geometry we find F C h  to F N  or FSc* to FSA transition to 

take place without grain migration. Even when we go from F N  to F C h  or FSA 



to FSc. though non-uniform distortions result due to the creation of defects, 

these get ironed out quickly due to the attraction between unlike defects. 

Therefore even here, there will be no grain migration. This is the unusual 

feature of tlicse chiral-achiral transitions in ferrosystems in this gco~rlctry. 

3.2.4 Remarks 

I t  may be mentioned that all the structural transitions discussed so far are 

perlni t ted solutions to the equations of equilibrium. The solutions are such 

that a uniform twist exists in the medium even in the presence of an external 

field. However, there could be other solutions with a non-uniform twist and a 

different B variation. These may even have lower energies. Hence the structural 

transition suggested here, in any particular case should be looked upon as one 

of the possible modes of transition from a twisted configuration of the director 

field to the untwisted one and vice versa. 

3.3 Transitions in crossed electric and mag- 

netic fields 

So far we considered transformations in a magnetic field acting along the sym- 

metry axis. The process of chiral - achiral transition will be very different in 

a field perpendicular to the symmetry axis, This has already been discussed 

in literature for cholesterics [8] [9] ferrocholesterics [l, 21 and Sc* [lo, 111. 

In the case of Sc., the transitions have been considered in the neighbourhood 

of SA - SC* point. These transitions are mediated by the creation of soliton 

lattices which at a critical field go over to the achiral phase. Here we consider 
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Figure 3.8: The schematic phase diagram for a cholesteric in crossed fields. 
NII and Nl denote nematics which are aligned parallel and perpendicular to  
the H jield respectively. C h ( ( J )  denotes a cholesteric soliton lattice with ne- 
matic regions aligned parallel to  the field and C h ( l )  denotes that which has 
the nematic regions aligned perpendicular to  the field. 

the same phase transitions but in crossed electric (E) and magnetic (H) fields. 

3.3.1 E and H perpendicular to the twist axis 

We consider transitions in C h  and F C h  systems in crossed electric and mag- 

netic fields both in a plane perpendicular to the symmetry axis uiz . ,  the twist 

axis. 

Cholesterics 

Consider a cholesteric with a magnetic field H along the x axis and an 

electric field E perpendicular to it along the y axis. The director configuration 

is described by n = (cos 4, sin 4, 0). The free energy density is given by 

where E*, = ca/(47r) with E, as the dielectric anisotropy. We consider the case 



of xa > 0 and E, > 0 systems. Minimization of the total energy gives 

( X a H 2  - EI,E2) 
4 Z Z  = K 

sin 4 cos 4 

This is similar to the equation found in cholesterics. Hence the transition is 

driven by the formation of a .~r soliton lattice which on increase of either electric 

or magnetic field goes over to a nematic state aligned along the magnetic 

field ( N I I )  or to a nematic state aligned perpendicular to the magnetic field 

( N * )  depending upon whether XaH2 is more or less than iaE2.  The phase 

diagram is schematically shown in Figure 3.8. Here Ch(l1) represents a soliton 

lattice where the nematic regions are parallel to the magnetic field and C h ( l )  

represents the one where the nematic regions are perpendicular to the magnetic 

field. As can be seen from Figure 3.8, a continuous change of E(or H )  above 

;I thrcsliold II(or E) rcsult~ in a cllnr~gc of thc ncrrlntic phase frorri tlic NII to 

the NL state or vice versa through the formation of a cholesteric structure is 

possible. The cholesteric-nematic phase boundaries are given by 

Ferrocholesterics 

We consider a ferrocholesterics ( F C h )  in the same geometry of crossed fields. 

Here we have to solve numerically two coupled differential equations one for 

qi distortions and another for grain migration. A very similar problem has 

already been considered [2]. We summarize here its implications since its 

generalization to the present problem is trivial. 

We find that FCh to FN transition takes place as shown schematically 

in Figure 3.9 for xa > 0 and E ,  > 0. The FCh goes to the FN state either 
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Figure 3.9: Schematic phase diagram for an F C h  in crossed fields. Here a 
denotes the phase boundary M H  = XaH2 - eaE2 and b denotes MH = e,E2- 
xaH2.  

through the sequence of a 27r soliton lattice followed by a split 2 s  i.e., 7r - n 

soliton lattice and ultimately to a NII ferronematic or through the sequence 

of a 27r lattice followed by an N - W soliton lattice and finally to a Nl 

ferronematic state. In the .~r - 7r soliton lattice, the repeat unit is a pair of 

7r-solitons. However, in the N - W soliton each repeat unit is again a pair of 

solitons but of type N and type W which respectively have twists from -do  to 

8 and 8 to 27r - 00 with 00 = COS-'(M/~,H). The transformation of the 27r 

lattice to either 7r - 7r lattice or N - W lattice takes place along the phase 

boundaries 

M H  = f ( X a H 2  - G E ~ )  



These lattices on further increase of the field go over to Nil  or Nl ferronematics. 

This phase boundary can only be numerically evaluated. It may be mentioned 

that for X, < 0 and E, < 0 ferrocholesterics, the regions of n - T lattice and 

N - W lattice get interchanged in the phase diagram. In all these soliton 

mediated FCh - F N transition, we will have migration of magnetic grains. 

Interestingly, the grain profiles for n -n and N - W soliton lattices are entirely 

different [2]. Even here, through a continuous change of E (or H )  above a 

threshold H (or E )  a change of the nematic state from NII  to NL and vice 

versa via FCh is possible. In a similar way we can also discuss the case of X, 

and E, being of opposite signs. 

3.3.2 H along and E perpendicular to the symmetry 

axis 

We now consider field induced chiral - achiral transformations in ferrochiral 

smectic ( F S p )  with H along and E perpendicular to the symmetry axis i.e., 

H = (0, 0, H), E = (E, 0, 0) and n = (0 cos 4, 0 sin 4, 1). Here again we 

assume 6' to be small and grain migration to be negligible. The free energy 

density without grain migration is 

Thermal phase transitions in chiral smectic ( S p )  due to a rather similar free 

energy density has been worked out by Michelson [12] and Yamashita [ lo ,  

111 but in a E or H perpendicular to the twist axis. We state here their 

main results. Michelson theoretically suggested the possiblility of a Lifshitz 
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Figure 3.10: A possible schematic phase diagram of a c, > 0 ferrosmectic i n  
crossed fields. For (a) a > 0 ,  X, > 0 and M H j 0. (b) a < 0 ,  X, < 0 and M 

H i 0. The full line represents second order phase transition and the dashed 
line the first order transition. Points C and L represent tricritical and Lifshitz 
point respectively. Here f = (XaH2 + M H )  

point in the vicinity of Sc - Sc* - SA transition point. A Lifshitz point is a 

modified triple point at which disordered, completely ordered and modulated 

phases meet. He predicted the phase diagrams for both X, > 0 and X, < 0 

materials. He also conjectured that the Sc to Sc* transition must be first order. 

Yamashita undertook a detailed study on the existence of various kinds of 

soliton mediated transitions between Sc* and Sc phases in a similar geometry. 

He also, like Michelson concluded that in the presence of a magnetic field the 

Sc to Sc* phase transition need not be a second order transition. 

We can easily extend their results to ferrochiral smectics in a configuration 

where H is along and E is perpendicular to the twist axis with the system at a 

constant temperature. We find that this system has phase diagrams which are 



Figure 3.11: 
crossed field. 

A possible schematic phase diagram for E, < 0 ferrosmectic i n  
The notations are the same as those of Figure 11. For (a)  

< 0, X, < 0 and for (b)M.H < 0, a > 0 and X, > 0. l l ere  f = 
(x,H2 + M H ) .  

interesting variations of those obtained by Michelson and those of Yamashi ta. 

Two of the very interesting possible phase diagrams are shown schematically in 

Figures 3.10 and 3.11. These are respectivelyfor 6, > 0 and E, < 0 materials. 

We find that this system can exhibit the features of reentrance together with 

tricritical point C and Lifshitz point L. The essential features of this phase 

diagram can be easily understood. For (a! $ X, H2 + M H )  < < 0 we can expect 

what Yamashita and Michelson predict in the low temperature region of Sc* 

i.e., a second order FSc* to FSc transition. In the neighbourhood of (a + 
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xaH2 + M H )  = 0, this transition becomes first order resulting in a tricritical 

point C on the FSc* - FSc phase boundary. For (a!+x,H2+ M H )  >> 0 this 

phase boundary meets the FSc - FSA phase line tangentially at  the Lifshitz 

point L. These arguments hold good for both e, > 0 and E, < 0 case as well. 

3.3.3 Remarks 

We have intentionally not considered the following geometries in our study. 

i) FSc* and FCh with E along the twist axis and H perpendicular to it. 

ii) FSc* with E and H perpendicular to the twist axis. 

iii) Cholesterics with E (or H )  parallel to the twist axis and H (or E) per- 

pendicular to the twist axis. 

We make the following comments regarding these geometries. In geometry 

(i) due to the M . H term in the free energy density the FSA phase will not 

exist. Also if X, = 0, we can expect a phase diagram similar to that obtained 

by Yamashita [13] for a ferroelectric Sc. with 6, = 0 and in an electric field 

parallel to the smectic planes. There will be no FSA phase and the J'Sc* 

to FSc phase boundary will have two tricritical points. This is shown in 

Figure 3.12. However when X, # 0 we can extrapolate the results of magnetic 

field effects on an FCh and electric field effects on a ferroelectric Sc.. It has 

been shown that in the case of FCh, in a magnetic field perpendicular to the 

twist axis, to start with we get a 27r soliton lattice which transforms to either 

a 7r - 7r soliton lattice (x, > 0) or a N - W soliton lattice (x, < 0) at a 

certain field H. A very similar result can be expected in the case of FSc* 

also. This phase transition is second order. Therefore we expect a new phase 



Figure 3.12: Schematic representation of F S p - F S c  phase boundary showing 
TC as the tricritical point. 

boundary in the J'Sc* region before it goes over to FSc.  This phase boundary 

corresponds to a transition from a 27r soliton lattice to a T - T or N - W soliton 

lattice. At low magnetic fields (acting along the twist axis) we can expect this 

transition to be still second order. However at high magnetic fields it will be 

different in view of the fact that the soliton structure is quite unusual in this 

region. Here even a single 27r soliton has ripples in its 19 profile. Extending the 

arguments of Yamashita we speculate that this leads to an attraction between 

like 27r solitons resulting in a first order transition from the 27r soliton lattice 

to a T - T or N - W soliton lattice. Therefore we expect on this new phase 

boundary a tricritical point as well. The way this new phase boundary meets 
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Figure 3.13: Schematic representation of Ch - N transition with crossed fields. 

the F S p -  FSc boundary is not easy to  speculate upon. All these features are 

plausible even in the case of an FCh in a similar geometry. In geometry (ii) 

the phase transition is qualitatively similar to an FCh in the same geometry. 

We conjecture that in geometry (iii), we can expect a phase diagram similar 

to that obtained by Yamashita [ll] for ferroelectric Sc. in a magnetic field 

along the layers. Here we will be having a phase transition from C h  to NII and 

C h  to NL states in the place of FSc and FSA states. This phase diagram is 

shown in Figure 3.13. 

It should be emphasized that phase diagrams in all these cases can be 

constructed only by undertaking detailed and elaborate calculations pertaining 



to the structure and energetics of the soliton lattices. 

3.4 Effect of boundaries 

It has been implicitly assumed in the case of FCh - F N  and C h  - N  transi- 

tions, that a global reorientation of the helical axis perpendicular to the field 

is prevented by sample boundaries. In the case of F S  with M anti-parallel 

to H, a global flip of the sample to the configuration of M parallel to I1 is 

again assumed to be prevented by the sample boundaries. In this context a 

few remarks on the boundary effects are in order. 

In C h  and FCh systems we can easily realise in the laboratory two 

boundary conditions viz., the twist axis is either parallel or perpendicular to 

the bounding surface. These are shown in Figure 3.14. In FS systems like- 

wise, we have two boundary conditions viz., smectic layers are either parallel 

or perpendicular to the bounding surface. In such situations our values of 0 

and q5 should be matched smoothly with the values of 19 and 4 existing at  the 

boundaries of the sample. This takes place over a coherence length in the the 

neighbourhood of the sample boundaries. The value of the coherence length 

depends upon the field and elastic constants. Though this can be explicitly 

included in each problem we may still expect many of our solutions to be rea- 

sonably valid in large enough samples under appropriate boundary conditions. 

In particular, we make the following observations: 

(1) In the case of F S  we can easily orient the layers but cannot anchor 0 or 

q5 at the boundaries. Hence for both the boundary conditions solutions 

discussed for this case will be valid. 



(3) In all the situations in section 3.2, where the field induces a soliton lattice 

the appropriate boundary condition to be chosen is that where the twist 

axis is perpendicular to the wall or where the smectic layers are parallel 

to  the walls. Then all the solutions discussed under this section are valid. 

(4) In all the other cases, the solutions obtained can be matched with either 

of the boundary conditions viz., the twist axis is parallel or perpendicular 

to the walls. This matching can be effected over a coherence length 

xiear tlie Loundirig surfaces. Further, for F N  to FCh t r i l ~ ~ s i t i o ~ ~ ,  f o r  

both boundary conditions, the director is already predisposed to tilt  in 

a particular direction. Hence this transition will not be defect mediated. 
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