
Chapter 4 

Dynamics of defects with 

periodic structures 

4.1 Introduction 

So far we have dwelt upon the elastic properties of static solitons and soliton 

lattices. As described in chapter I, a static soliton becomes dynamic, i.e, it 

starts moving if there appears a difference in the base state potential energies 

or if there is an asymmetry in the potential energy associated with the core 

of the soliton. These dynamic solitons are actually solitary waves, since they 

preserve their structure during motion. However, they do not preserve their 

structure after a pairwise collision. So even though, they are not true solitons, 

in liquid crystal literature they are referred to still as solitons. In liquid crystals 

these dynamic solitons exhibit many unique features not found in solitons of 

other condensed matter systems. 

We study in this chapter the structural and dynamical features of two kinds 

of dynamic solitons which are associated lattice structures. They are: 



Soliton with a tapered lattice. This is a dynamic single soliton with an 

uniform orientation at one end and a nearly periodic director distortion 

at the other end. The distortions decay exponentially to reach another 

uniform state. 

Multi-soliton lattices. This is a periodic stack of single solitons. 

These defects have been studied both in nematic (N) and ferronematic (FN) 

liquid crystals. 

4.2 A particle analogy 

A mechanical analogy is often useful in understanding these soliton structures. 

We illustrate this with an example of an F N  in a rotating magnetic field. In 

this geometry, both the field and director are confined to the same plane (x - y 

plane say). The differential equation governing the director motion has already 

been discussed in the introduction and is given by 

where a = MH, @ = q, F = n w ,  q = ylu and X = I - ut is a moving 

coordinate frame moving with a velocity u. Often F is referred to as the driving 

force. Equation ( 4.1) [I], can be looked upon as representing the motion of a 

particle with mass K ,  moving in a potential g(4) = -a cos 4-(P/2) cos 24+ Fq5 

with a damping coefficient 7. The maxima and minima of the negative of 

potential energy g(4) is brought out in Figure 4.1. Needless to say, the 

peaks here refer to stable or metastable states and valleys unstable states. 
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Figure 4.1: The potential energy g(q5) of an F N  (a) for /3 < a. With a = 
5 0 ~ r n - ~ ,  /3 = 1 0 ~ r n - ~ ,  F = - l ~ r n - ~  and do = 4' = -0.0142 radians (b)  for 
/3 > a. a = 1 0 ~ m - ~ ,  /3 = 5 0 ~ m - ~ ,  F = and c j o  = q5" = -0,0090 
radians. 

- 

The potential curve is drawn for both ,Ll < a and /3 > a. The particle analogy 

helps us to understand the structure and dynamics of single solitons and multi- 

soliton states. The salient features of this analogy are: 

(i) A dynamic single soliton moving with a uniform velocity u and connect- 

ing base states of the same magnetic potential energies corresponds to 

a particle motion under such a friction .q that, starting from rest at a 

hill top 'a' it comes to rest on the next hill top 'e'. In other words, the 

particle goes from one stable equilibrium point to another stable point. 

Here, the damping experienced by the particle for this motion is said to 

be critical. Some new properties of such soliton moving due to the core 

asymmetry in the potential energy were discussed in the introductory 

chapter. 



(ii) A dynamic single soliton connecting states of different magnetic potential 

energy corresponds to a particle starting from rest from a hill top 'a' and 

coming to rest in a valley 'b' or 'd'. In the highly damped case the particle 

slides down monotonically from rest at a hill top down to the adjacent 

valley. When the damping is not high enough, the particle settles down a t  

the bottom of the valley after going through damped periodic oscillation 

about the bottom of the valley. This oscillatory motion corresponds to 

the periodic distortion accompanying the soliton. Since the amplitude 

continuously decreases. This is a dynamic soliton with an associated 

tapered lattice. This type of soliton is present both in nematics and 

ferronematics. If the unstable state is at 'b' then the soliton is called the 

A soliton and if it is at  'd' the soliton we call it a E soliton. 

(iii) Another type of particle motion is possible only in the case of ferrone- 

matics which has a metastable peak at 'c' whenever /3 > a as shown 

in Figure 4.l(b). In this type, the particle starts from rest at  'a' and 

goes to  'c' and falls back to the valley at 'b' where it settles down after 

damped oscillations about 'b'. We call this the G soliton. 

(iv) A particle starting from rest at a hill top 'a' scales several hill tops before 

coming to rest on one of them. This corresponds to a periodic array of 

single solitons i.e., a dynamic soliton lattice. The velocity of the particle 

is non-zero at  any intermediate hill top and zero at the last hill top where 

the particle comes to rest. 

We discuss in this chapter the last three types of solitons. Incidentally, the E 

and G solitons are new states not discussed so far in literature. 
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Single solitons with a tapered lattice 

We consider first these single solitons in ferronematic liquid crystals in a rotat- 

ing magnetic field. In all the cases, the soliton is driven by an asymmetry in 

the magnetic potential energy of the base states. This is shown schematically 

for the case of ferronematics in Figure 4.2. This motion is to be contrasted 

Twist saliton Bend rich soliton 

Figure 4.2: Dynamic single solitons in a ferronematic in a rotating field (H) 

with the motion of single solitons connecting base states of the same mag- 

netic potential energy and which are driven by the asymmetry in the potential 

energy inside the core of the soliton. As discussed in chapter I, for a sirigle 

soliton connecting the base states of the same magnetic potential energy, the 

velocity is a function of the driving force F and is zero at  F = 0 and diverges 

at F = f [I]. It is easy to conclude that in the present case, even when the 



field is non-rotating (F # 0) the soliton will be in motion. 

4.3.1 Dynamics 

These solitons are driven primarily by the base state asymmetry in its mag- 

netic potential energies [4]. However, apart from the base state asymmetry 

there is also present a core asymmetry in the magnetic potential energy, since 

in the centre of the soliton the director field is not symmetric with respect to 

the magnetic field. These two together give rise to a dynamic single soliton 

with an associated periodic distortion. 

Some of the general properties of such lattices can be summarised by con- 

sidering a specific example - that of a ferronematic in a rotating magnetic 

field. Referring to Figure 4.l(b), we can see that in this case, the magnetic 

potential energy g(4) has two stable states at 'a' and 'e', one metastable state 

at 'c' and two unstable states at 'b' and 'd'. As already stated, depending on 

the amount of damping, the particle will either slide down from 'a' to one of 

the unstable states at 'b' or 'd' or will settle down to these states with an ex- 

ponentially damped oscillation. Since the damping of the particle corresponds 

to the velocity of the soliton, we either get a very fast moving single soliton 

without periodic distortions or a slowly moving soliton with an associated pe- 

riodic distortion, t he amplitude of which decreases exponentially. This can be 

qualitatively understood by solving the linearised form of equation ( 4.1). This 

corresponds to the tail region where the amplitude of oscillations are small. 

In this limit, this equation is a damped harmonic oscillator equation whose 

analytical solutions are well known. For example, below a certain q we get a 

periodic damped oscillation. Beyond a certain value of the friction 7 = u * 71 
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Figure 4.3: Solitons with a tapered lattice. (a) The A. type of soliton (b)  Eo 
type of soliton. Scaled velocity u of a soliton as a function of scaled force for 
(c) A. soliton and (d) for Eo soliton. 

there is no oscillatory motion but a monotonic decay. Also, while the driving 

force F solely affects the intial amplitude of the periodic distortion, the u and 

/? coefficients affect the intial amplitude and period as well. In our problem 

these parameters have to be numerically evaluated by integrating equation 

( 4.1). We get the following answers for three distinct types of single solitons 

with a tapered lattice. 



The A soliton 

In a A type of soliton, as said earlier the particle slides down from a 

to b. This motion from the stable to the unstable state occurs over a 

range of values of 7 i.e., 7' < 7 < 7''. That is, in the case of the soliton 

this occurs over a range of velocity values. Depending on the precise 

value of 7, we get a soliton with an oscillatory tail or one without any 

oscillations. The former is known as the A. type of soliton and the later 

the A type [5] .  We consider here only the A. type of soliton. We have 

computed numerically, the soliton velocity as a function of F.  Since for 

every F  there is a range in the velocity, we have chosen that velocity in 

the range beyond which the oscillations in the soliton profile is absent. 

The computations were done for nematics also (a = 0) as this soliton is 

permitted both in nematics and ferronematics. The results are shown in 

Figure 4.3(a). The scaled velocity uo = 2 J(m/71. In the case 

of nematics, the velocity at small values of F  remains a constant and 

decreases to zero as F  -, f .  However, in the case of F N  the velocity of 

the soliton remains more or less constant at all of F/  f .  Also both in the 

case of N and F N  the A. soliton has a non-zero velocity at F = 0. This 

is to be expected since the soliton connects a stable state to an unstable 

state. Incidentally, in the case of both nematics and F N  the A. type of 

soliton cannot be stabilised very near F  = f .  

The E soliton 

This dynamic soliton connects a stable state at 'a' to an unstable state at 

'd' of Figure 4.l(b). This soliton which we call the E type is peculiar to 

F N .  This soliton is also permitted over a range of 77 i.e., velocity values. 
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Again we can have a soliton with or without the periodic distortions. 

The soliton with an oscillatory tail is called the Eo soliton. The velocity- 

force characteristics of this soliton is very different from the A. type of 

soliton. As seen in Figure 4.3(b), the velocity of this soliton continuosly 

increases and diverges near the asynchronous regime but at F < f .  

Figure 4.4: A Go soliton with its velocity-force characteristics. 

The G soliton 

A G soliton is present in the case of an F N  whenever cy < P.  This 

soliton connects a stable state at 'a' to the unstable state at  'b' through 

the metastable state at 'c'. The presence of the metastable peak at 'c' 

is crucial to the existence of such a soliton. This soliton is only possible 

whenever the excess elastic energy expended in having a higher distortion 



(going upto 'c' instead of going directly to 'b') is comparable to the gain 

in energy due to smaller friction 71. Here again we can have a soliton 

with or without tapered lattice. The former is called the Go soliton. The 

structure and the velocity force characteristic of this soliton is shown in 

Figure 4.4. The velocity, as in the case of an Eo soliton diverges at  a 

F < f .  

4.3.2 Structure 

I I I I I I 
0 5 10 15 20 25 30 

H (in Kilo Gauss) 

Figure 4.5: Period dependance of the  tapered lattice o n  (a) F and (b) o n  H .  
For  H < H, we have asynchronous regime 

In both the A. and Eo type of solitons, the periodic distortions associated 

with the soliton show exponential decay of their amplitudes. But the period of 

these distortions is not a constant all through the lattice. Figure 4.5, shows the 
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Figure 4.6: Dependance of initial amplitude of the tapered lattice on F 

dependence of the average period on both H and F. Interestingly, in contrast 

to the behaviour of static soliton lattices discussed in the previous chapters, 

the period of this soliton decreases on increasing H. The initial amplitude 

of the oscillations, on the other hand after an intial increase, decreases with 

increasing F and is not affected to  any appreciable degree by changes in H. 

The amplitude variation with F is shown in Figure 4.6. 

It is to be mentioned in this context that the existence of a range of 

velocities in the case of solitons connecting the stable and unstable states is a 

well known feature of front propagation from stable to unstable states [6]. The 

actual velocity selected by the medium will be based on a marginal stability 

criterion. We have not addressed ourselves to this problem here. 



4.4 Soliton lattices 

An array of single solitons will constitute a soliton lattice. From an experimen- 

tal point of view, a multisoliton structure can possibly be obtained as follows. 

A nematic with X, > 0 is homeotropically aligned along the z direction and a 

magnetic field in the x - y plane. Then it is known that, beyond a threshold 

field, the director in the central region of the sample, tilts towards the x - y 

plane. In the process planar solitons are formed in many places in the x - y 

plane. Two like solitons which are formed close to  each other will repel, in a 

static situation. But due to the rotation of the field about the z axis, such two 

or more solitons can coexist and form what is called as a multisoliton lattice. 

The single solitons forming the lattice will all be moving in the same direction 

with the same velocity. Hence the multisoliton structure as a whole will move 

with this single velocity. The multisolitons that we discuss here are not infinite 

in extent i.e., the number of single solitons in an array is finite. In the particle 

analogy, a multisoliton lattice with n single solitons corresponds to a particle 

having such an initial velocity that it traverses n peaks before coming to rest 

on a peak. 

We give here an analysis of multisolitons based on particle analogy. For 

soliton lattices also, the governing partial differential equation is the same as 

the case of single solitons discussed so far. That is, the director orientation in 

a lattice and the velocity of the lattice can be obtained by solving 

We solve this equation, as in the case of single solitons, by assuming that a 

traveling wave multi-soliton exists. Then the corresponding ordinary differen- 
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tial equation obtained in a frame moving with a velocity u, is solved. It must 

be mentioned no two succesive solitons in a multisoliton lattice are exactly 

identical. Also, the lattice parameter is not a constant all through the struc- 

ture. We have worked out the structure and propagation velocities of such 

multisolitons both in N and FN. We find the effects of magnetic field (H) 

and F to be very similar in both the cases. Here we present results obtained 

for nematics in a rotating magnetic field. 

4.4.1 Dynamics 

Theoretically computed velocity-force characteristic for multisolitons in nemat- 

ics is shown in Figure 4.7 for two different values of n the number of single 

soliton units in the soliton lattice. Interestingly, the velocity of a multisoliton 

Fi ure 4.7: A typical velocity projle of a multisoliton lattice. The curve with ($ is  for n = 10 and the curve with (+) is  for n = 25. 

does not diverge at any value of F. The velocity starts from zero, exhibits a 

peak in the range 0 < F < f and then rapidly decreases actually going to zero 



as F + f .  This behaviour is entirely different from what we find in the case 

of single solitons. As n increases the overall velocity of the multisoliton lattice 

decreases but the characteristic remains qualitatively the same. 

4.4.2 Structure 

Effect of force (F) 

The structure of a multisoliton undergoes considerable modifications as F 

increases, This is depicted in Figure 4.8(a) for n = 10. As F increases, the 

multisoliton structure undergoes a gradual transition from an array of well 

spaced solitons to an array of closely spaced solitons. At high F, we find a 

nearly uniform periodic structure i.e., 4, = const. Further the average bend 

or splay or twist in the structure increases as F increases. 

The number n of single solitons that can be stabilized at a given velocity 

is also decided by F. Interestingly this number increases from unity at  F = 0 

reaches a peak value before it drops to unity at F = f .  In other words multi- 

solitons cannot exist at  F = 0 and F = f .  This aspect is depicted in Figure 

4.8(b). 

The period of the soliton lattice as a function of F is shown in Figure 4.8(c) 

for different values of n. The important result is that the period diverges as 

F -t 0. This is understandable since in this limit, the differential equation 

permits only a single static soliton. In this context, we may recall the exper- 

imental results of Migler and Meyer [7]. In their observations, the distance 

between any two neighbouring solitons in a spiral soliton lattice obtained in a 

rotating field, diverged as the rotational frequency which is propotional to F 

is decreased. 
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Figure 4.8: (a) The profile of a soliton lattice with n = 10 for ( i )  F/f = 0.1 (ii)  
F/ f  = 0.9 (b) The number n of solitons in a soliton lattice with 7 = 1.2cm-I 
as a function of F /  f. (c) The variation in the period p (in p m )  of a soliton 
lattice as a function of F/  f .  The curve with (0) is for n = 10 and the curve 
with (+) is for n = 25. 

Effect of field (H) 

The period of a multisoliton lattice is sensitive to H both in N and FN. The 

structure of the soliton lattice undergoes drastic modifications as the field is 

increased. From a uniformly distorted structure at low fields the lattice devel- 

ops into a well formed soliton train at higher fields in the case of an N. There 

is also a decrease in the average bend or splay at higher fields. These features 



Figure 4.9: The profile of a soliton lattice in an N with n = 10 at two diflerent 
magnetic field values (i) H = 2000 Gauss (ii) H = 9000 Gauss 

are shown in Figure 4.9. In the case of F N  however, the average splay or 

bend more or less remains a constant. It should be remarked that in FN,  very 

high field values cannot be considered due to the possibility of grain migration 

PI. 
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