
Chapter 5 

Optical reflection from defect 

lattices 

5.1 Introduction 

In the previous chapters we considered the elastic and hydrodynamic properties 

of defects and defect lattices. A study of optical reflection from defect lattices 

often gives an insight into their structures. Also the structure in turn can give 

rise to interesting optical effects which may not exist in other systems. The 

main feature of a liquid crystal is that it is optically birefringent. The refractive 

index tensor should confirm to the symmetry of the liquid crystalline systems. 

In nematic, cholesteric and smectic A liquid crystals two of the three diagonal 

components of the index tensor are identical. In other words, the tensor surface 

can be visualised as an uniaxial ellipsoid of revolution about n. On the other 

hand a smectic C liquid crystal is biaxial with all three principal components 

different. The tensor surface here, is a triaxial ellipsoid. This unique feature of 

refractive index anisotropy can be contrasted with that of an isotropic system 



where the refractive index is a scalar and the corresponding tensor surface is a 

sphere. The refractive index anisotropy and the director orientation gives rise 

to interesting polarisation dependant optical phenomena. The study of these 

features is carried out under the restrictive assumption that the structure under 

study is not affected by the optical fields which is a reasonable assumption to 

make at  low intensities of the incident field. 

We study optics in two important modes viz., a)  the reflection mode and 2) 

the diffraction mode. We consider in this and the next two chapters the optics 

of two defect lattices viz., twist grain boundary smectics (TGBS) and solitons 

with tapered lattices. We are interested in TGBS since it is rather similar 

to a multisoliton lattice like the cholesteric soliton lattice. Optics of such 

multisoliton lattices have already been considered by others. In this context, 

it is relevent to summarise the main results of reflection and diffraction studies 

on a soliton lattice of a cholesteric. The lattice has nematic like nearly uniform 

regions followed by a soliton of a twist. The important optical features are [I] 

Many reflection bands exist even at normal incidence. Each band has a 

finer structure with three sub-bands with different polarisation features. 

The central band is polarisation insensitive and the side bands reflect 

orthogonal polarisation states. 

a Diffraction pattern is very sensitive to sample thickness and the intial 

polarisation state of the electric vector. 

a Diffraction from absorbing soliton lattice can be used to elucidate the 

structure. 
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We may expect some of these features to be present in this study of defect 

lattices viz., TGBS and tapered lattice. In addition we can expect some 

unusual optical effects since they are structurally very different in detail. It is 

important to remark that tapered lattices are dynamic in nature propagating 

with a finite velocity. Here we have considercd them at such low velocities 

that, from the point of view of optics they are static structures. Relaxing 

this constraint will lead to doppler shift in the frequencies of reflected and 

diffracted light. 

5.2 Theory of Reflection and Transmission 

We have worked out the optical reflection and transmission properties using 

the Berreman's 4 x 4 matrix formulation [2] of Maxwell's equations. Here 

the heterogenous anisotropic medium is divided into thin homogenous slabs, 

in each of which Maxwell's equations are solved. In any givcn slab 

where 

and A(z) is a 4 :: 4 matrix whose elements contain the dielectric tensor 

components which are periodic in z. In our case it is periodic along the z- 



direction and is of the form 
y ? ,, > \  C 

I 
0 1 - x 2 / c 3  0 

c + 6cos 2qz 0 6 sin 2qz  

0 0 0 1 

&sin 2qz 0 E - X 2 -16 - X 2 - ~ C O S  292 0 I ]  
Here X = (2n/X)JEod,  with 8, = angle of incidence with respect to the pitch 

and EO = dielectric constant of the incident medium. E = ( e l  + c 2 ) / 2  

q = 2 n / P  and P = pitch of the periodic structure. Here E,, E, and H z ,  H, 

are respectively the components of the electric and magnetic fields in a plane 

perpendicular to the twist axis. Integrating ( 5.1)  we get 

The matrix M ,  called the propagation matrix, relates the field components in 

the ( j  + l ) t h  slab to those in the j th  slab. The eigenvectors of M give the modes 

which travel unaltered inside the medium. The reflection and transmission 

coeffiecients are calculated from this as follows. The electric and magnetic 

field components of $(0) is made up of two parts, the incident and the reflected 

part. 

$(O) = $; + $r ( 5 . 3 )  

The field components after j  slabs consists of only the transmitted part. 

For a plane wave of frequency w,  incident at  an angle dl to the layer normal 
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of the first layer, of refractive index nl ,  the incident part can be written as 

where T, = + T, = nl cos 81 The reflected and Transmitted waves are 

- A nz = refractive index of the second medium where Tx1 = a, T,l - ccs 

e2 = sin-1 X 
( m  sin el) From equation ( 5.2) and from the knowledge of polari- - 

sation state and the amplitude of the incident wave, we can get the reflected 

and transmitted coefficients namely, R,, 4, T, and T,. 

This method can be used to calculate the reflection spectrum, the transmis- 

sion spectrum and the phase of the transmitted wave. It must be emphasised 

that in actual experiments we also have the bounding isotropic media. Then 

we use the method of Galatalo et. a1 [3], to calculate the eigenmodes which 

travel unchanged both in the liquid crystal and in the boundiq media. This 

method consists of writing the proper modes of the multilayer heterogenous 

media in terms of the modes in the bounding isotropic media in the 

form of 2 x 2 matrices. 



5.3 Twist grain boundary smectics 

The structures of TGBS have been established to a certain degree by X-ray 

studies [4]. From these studies, it has become clear that the TGBS are a 

helical stack of smectic blocks with the smectic layer normal perpendicular to 

the twist axis. Any two neighbouring smectic blocks are connected through a 

twist grain boundary. Here also, as in crystals [5] the twist grain boundary is 

a periodic array of screw dislocations. The TGBS are classified as commen- 

surate or incommensurate, depending upon whether or not the net director 

rotation across the grain is a rational multiple of 27r. In the case of commen- 

surate TGBS, the twist axis also happens to be a N-fold screw axis, N being 

an integer. On the other hand, the incommensurate structures have no such 

screw symmetry. Further the smectic blocks could be of smetic A (SA), smec- 

tic C (Sc) or smectic C* ( S p )  structure. Then the TGBS are respectively 

designated as TGBA, TGBc and T G B p .  Optical studies on T G B S  struc- 

tures have been largely confined to the determination of their pitch and the 

sense of the helix. Even here it has been tacitly assumed that these are akin 
- 

to cholesteric liquid crystals [6], [7]. Interestingly, we find that these liquid 

crystals are, optically, different from cholesterics and Sc*. 

5.3.1 Model 

The model of TGBS which we have used in our calculations is shown schemat- 

ically in Figure 5.1. Optically the smectic blocks can be thought of as thick 

birefringent plates which are arranged in a uniform helical stack.Any two such 

neighbouring smectic blocks are connected by a grain boundary.In our model 



Chapter 5: Optical reflection from defect lattices 9 3 

the grain boundary is approximated by a stack of thin birefringent plates.These 

thin plates smoothly rotate and connect the adjacent smectic blocks. Gener- 

ally the size of the smectic block is of the order 1000 A" and that of the grain 

boundary is about 150 A". The director orientation profile in such a model 

G - Smectic Grain 
gb- Grain boundary 

Figure 5.1: Schematic representation of the TGBA model. The line inside each 
block i s  the projection of director n on  x axis. 

is as shown in Figure 5.2. It is rather similar to the cholesteric twist soliton 

lattice since it has uniform regions seperated by twisted regions of the grain 

boundaries. The important differences are (i) the uniform regions globally 

twist as we go from one uniform region to the next and (ii) the twist in the 

grain boundary is small compared to the n twist of cholesteric soliton lattice. 

As a further approximation to this mode1,we have also considered the case 



where the grain boundary is ignored altogether. Also, we must note that in 

Orientation profile of the director 

7 

L .- 

Thickness in microns 

Figure 5.2: Director orientation profile of TGBA model. 

TGBA the blocks have uniaxial symmetry while in TGBc the blocks are biax- 

ial since Sc is of monoclinic symmetry. In the twist grain boundaries of both 

TGBA and TGBc we can assume, to a good approximation, local uniaxial 

symmetry. As a result of this both in the smectic blocks and the grain bound- 

aries of TGBA the index and absorption tensors are ellipsoids of revolution 

about the local director. On the other hand in TGBc, in the smectic blocks 

the index and absorption tensors are triaxial ellipsoids. In these ellipsoids one 

of their principal axes will be along the local 2-fold axis of smectic C blocks 

and the other two will be at an angle with respect to one another. However, in 

the grain boundary of TGBc the two tensors become ellipsoids of revolution 

about the local director. Further, in the smectic blocks of TGB, we consider 

two geometries where in the local two-fold axis of smectic blocks is either par- 



Chapter 5: Optical reff ection from defect lattices 95 

allel or perpendicular to the twist axis. These are respectively designated as 

TGBcll and TGBc,. In TGBcll, the molecules are perpendicular to the twist 

axis in the smectic blocks and in TGBc, they spiral at a constant angle about 

the twist axis. 

5.3.2 Reflect ion and Transmission Spectra 

Normal Incidence 

(a) Reflection spectra: 

We find that a total reflection occurs at X = pp with p being the pitch 

of the structure and p being its mean refractive index. This Bragg re- 

flection has many features in common with the Bragg band seen in the 

cholesterics [8]. For example, a circularly polarized light of the same 

sense as that of the structure is totally reflected. The width of the reflec- 

tion band is pSp with Sp being the layer birefringence. Also the standing 

electromagnetic wave inside the reflection band has, locally, a linear po- 

larization state. But unlike in cholesterics, the local electric vector of the 

standing wave does not follow the equivalent of the cholesteric director 

viz, the smectic layer normal. However, globally the linear state rotates 
\ 

uniformly about the twist axis. As in a cholesteric soliton lattice we 

get many reflection bands and the wavelengths at which they occur are 

decided by the symmetry of the screw axis. They occur at X = pplm 

for 2,4,6 ... (N is even) screw symmetry and at X = 2pplm for 1 , 3 , 5  ... 

(N  is odd) screw symmetry, m being an integer. We can understand on 

a simple mode1,the positions and polarization features of the prominent 

reflections. A left handed structure of N-fold screw axis and of pitch p 



can also be looked upon as a right handed structure with a N'-fold screw 

axis with a pitch p'. Therefore, we can get from the same structure 

both right circularly polarized and left circularly polarized reflections. 

In the case of N = 4,however, both left and right have the same N-fold 

screw symmetry and hence in all the reflection bands this structure re- 

flects both right circular and left circular polarizations. The positions of 

the interference maxima can be worked out by the so called kinematical 

theory of reflection from a helical stack of birefringent plates [9]. This 

procedure is also implied in the work of Joly et a1 concerning a helical 

stack of thick birefringent plates [lo]. However, this method predicts 

only the positions at which reflection peak of a particular polarization 

occure. l h r  (I kriowlcdgc of tlic iritcneity of rcflcctioritl arid the width 

of reflection bands, a theory taking into account multiple reflections is 

necessary. The theory presented in the previous section incorporates this 

feature explicitly. A few computed reflection spectra are shown in Fig- 

ure 5.3. We notice that neither reflections permitted for all values of 

m are seen nor the intensities of the different reflections are the same. 

As stated earlier, important feature of these reflections is that in some 

of them circularly polarized light of the same sense as that of the helix 

is strongly reflected and in some others circularly polarized light of the 

opposite sense is strongly reflected. In view of this, the determination 

of the pitch and the sense of the helix could be completely wrong if 

we happen to treat any of these higher order reflections as a cholesteric 

reflection. 
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Figure 5.3: The ectance (R) as a function of ( P P / X )  smectic block thick- 
ness = 1000 A". N = 3, (b)  N = 4, (c) N = 5, (d)N = 6, (e)N = 

d 20 and f)Incommensurate TGBA with an inter-grain angle of nearly 18" and 
here p enotes the pitch of the nearest commensurate structure of inter-grain 
angle of 18" exact.Here R and L represent respectively the right and left circu- 
larly polarized state and pi represents the polarization insensitive reflection. Our 
computations are for a left handed structure. 

(b) Incommensurate structures 

If the structure is incommensurate the spectrum gets considerably al- 

tered. In Figure 5.3(f), we give the higher order reflection spectrum for 



an inter-grain twist of nearly 18'. In fact the inter-grain twist is 27ra, a 

being an irrational number close to 0.05. This spectrum is quite different 

from that shown in Figure 5.3(e) which corresponds to a commensurate 

TGB with an inter-grain angle of exactly 18'. We note that the reflec- 

tions do not any more occur exactly at X = p p l m  . Also, interestingly 

in this example, the polarization insensitive band is absent. 

(c) Anomalous optical rotation 

As in cholesterics here also the base states are right and left circular 

polarizations travelling with different velocities. Hence the structure has 

optical rotation. As one approaches a band of either left or right circular 

Figure 5.4: (a) Rotatory power (p )  as a function of (,PIX). Here A is for 
TGBA and B is for a cholesteric with same parameters but using de Vn'es 
formula. (b) Higher order rejection spectrum of TGBA in the same (pp/X) 
range. 
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reflection, the optical rotatory power obtained from the phase difference 

between right and left emergent states increases and changes sign on 

crossing the band i. e. , the rotation becomes anomalous. The rota- 

tion anomaly in a band associated with the reflection of right circularly 

polarized light is opposite in sign to that found in a band associated 

with the reflection of left circularly polarized light. Also we find that 

the rotatory power in the low wavelength range of the main reflection 

band at pp/X = 1 does not obey the de Vries formula valid for X << pP 

for cholesterics [ll]. It may be noticed that the difference is both in 

sign and in magnitude. All these features are depicted in Figure 5.4. 

Hence even a study of optical rotation cannot lead to an unambiguous 

determination of pitch or helical sense. 

(d) Effect of structural parameters 

It is theoretically established that the smectic order parameter which 

is constant in a smectic block gradually decreases and finally vanishes 

at the centre of the grain boundary. As a result of this the director 

twist in the grain boundary will be non-uniform. Lubensky and Renn 

predict a gaussian variation of the order parameter. Using this fact and 

a simple model we calculated the non-uniform director twist. Optical 

calculations based on this model were compared with those carried out 

on a less realistic model where we assume a uniform director twist in 

the grain boundary. For all practical purposes the model, with grain 

boundaries of uniform twist, appeared good enough. In our simplified 

model the total twist in the grain boundary is comparable to that in a 

normal cholesteric of an equivalent thickness. ( i.e., its pitch is about 



Figure 5.5: Rejection spectra of TGBA with N = 20 for a grain boundary 
thickness of 150 A0 and for different thicknesses of the smectic block (a) 750 
A0 (b) 500 AO (c) 300 AO and (d)  100 AO 

0.3 microns or more). We now consider the influence of the thickness 

of the smectic block. In Figure 5.5 we give the reflection spectra for a 

TGBA (or TGBcl l )  with an inter-grain angle of 18' (N  = 20)  computed 

for different thickness of the smectic block keeping the grain boundary 

thickness the same. We find that when the smectic block thickness is 

less than or about the grain boundary thickness, in this case 150 A0 , the 

spectrum goes over to that of a cholesteric i. e. , only one reflection band 
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1 ,  (b) 

Fi ure 5.6: Reflection spectra of TGBA for N = 3, (a) with the grain boundary 
(bj without the grain boundary. 

at pP/X = 1. Similarly in the case of TGBc, the spectrum goes over to 

that of Sc* of a high tilt angle. This effect is true for only small inter- 

grain angles irrespective of the value of N. We have also considered a 

simplified model of TGBS where we ignore its grain boundaries. We find 

that this model gives a very different reflection spectrum for intergrain 

angle greater than or equal to  90". In Figure 5.6 this difference has been 

brought out for a TGBA of a 3-fold screw symmetry. In this context it 

may be mentioned that Joly and Isaret [lo] have studied, using a 2 2 



matrix formulation the reflection spectra for helical stacks of birefringent 

plates of very high phase retardation. Some of the features of the T G B S  

Figure 5.7: Reflection spectra at an  angle of incidence of 60'. (a) Reflection 
peaks occur at integral values of (pp/X) for T G B A  with N = 6, (b) Reflection 
peaks occur at integral and half integral values of (pp/X) for a TGBc, with 
N =6. Reflection spectrum of (c) TGBA and (d )  TGBc, for N =S have half 
integral reflections in both. Polarization features of a rejection band of (e) 
TGBc, with N =6 and (f)Scl .A represents incident T E  state reflected as a 
T E  state, B represents incident T E  or T M  state reflected as a T M  or T E  
state and C represents incident T M  state reflected as T M  state. 

are present in their systems. 
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0 blique lriciderice 

In this geometry also the reflection spectrum is decided by the screw sym- 

metry. In the case of 2,4,6 ... (even N)  screw symmetry both for TGBA and 

TGBcll ,  reflection peaks occur at  pp/X = m while for TGBc, they occur at  

p P / X  = m / 2  . In Figure 5.7(a) we give the spectrum computed for TGBA 

and in Figure 5.7(b) that for TGBc,. However for 1,3,5 ... (odd N) screw 

symmetry, the three TGBs, namely TGBA, TGBcll and TGBc, have reflec- 

tions at pp/X = m/2.  This is shown in Figure 5.7(c) for TGBA and in Figure 

5.7(d) for TGBc, . 

As in the case of normal incidence, here also reflections at all permitted 

values of m are not present. Also, in TGBA or TGBcll for even or odd values 

of N and in TGBc, for odd values of N,  for angles of incidence greater than 

about 30" each Bragg band splits up into three sub-bands with different polar- 

ization properties. We find that in the lower wavelength sub-band an incident 

wave with its electric vector perpendicular to the plane of incidence ( T E )  gets 

reflected in the same state(TE). On the other hand in the longer wavelength 

sub-band a wave with its electric vector parallel to the plane of incidence(TM) 

gets reflected in the same state(TM). In the central sub-band a wave in the 

T M  state gets reflected in the TE state and vice versa. This is explicitly 

shown in Figure 5.7(e) for one such band. On the other hand, surprisingly 

for TGBc, for even values of N ,  we get new reflections at oblique incidence 

corresponding to half integral values of pp/X and they do not split into sub- 

bands. And in such bands, an incident T E  state is reflected as a TM state 

and vice-versa. One such band is also shown in Figure 5.7(e). Interestingly 

the polarization features of the three sub-bands shown in Figure 5.7(e) are 



rather similar to those found in cholesterics and are quite different from those 

of normal Sc*. We have shown in Figure 5.7(f) a typical Sc* reflection. This 

difference is due to the fact that in all the three TGBs considered here, the 

molecular tilt with respect to the twist axis is quite large. Thus this structure 

has optical properties that were predicted by Oldano [12] for a Sc. with a 

tilt angle above a certain value 8,. As was first shown by him, a Sc* with a 

tilt angle greater than 8, is optically different from an Sc* with a tilt angle 

less than 8, , in that the short wavelength and long wavelength sub-bands 

have opposite polarization features in the two cases. In conclusion we notice 

that oblique reflection studies can distinguish between TGBc, and TGBA or 

TGBc,, . 

5.4 Tapered lattice 

In the last chapter, we obtained as a permitted solution, a dynamic soliton 

state in nematics and ferronematics, with a tapered lattice characterised by a 

periodic distortion. A typical structure of such a soliton with its tapered lattice 

is shown in Figure 5.8. The amplitude of the periodic distortion accompanying 

the soliton decreases exponentially. The period of the distortion also varies 

from one end of the structure to the other. 

In this section, we are interested in the peculiar optical features this 

structure gives rise to, in the reflection mode. Since the soliton associated with 

the periodic distortion could either be a twist soliton or a splay-bend soliton we 

have considered both the cases. The director pattern in these are schematically 

shown in Figure 5.9. We first consider an ideal tapered lattice where the period 
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Figure 5.8: A tapered lattice with F/ f = -1 and H = 7000Gauss 

is a constant all through but the amplitude decays exponentially. Towards 

the end, we comment on the modifications due to relaxing this constraint of 

constant period. 

5.4.1 Twist-tapered lattice 

Bragg reflection at normal incidence 

Bragg reflections from a twist tapered lattice at  normal incidence can be 

calculated using the 4 :: 4 matrix formulation of the Maxwell's equation dis- 

cussed earlier. The reflection coefficient (R) for the incident light with a circu- 



A twist-tapered lattice 

A splay-bend tapered lattice 

Figure 5.9: Schematic representation of a twist tapered lattice and a splay-bend 
tapered lattice 

lar polarisation, has been calculated. As in the case of TGBS, here also there 

are many reflection bands at normal incidence. Reflections occur a t  both in- 

tegral and half-integral values of MIA. All the reflection bands reflect both 

left circularly polarised light and right circularly polarised light. This is not 

surprising as the structure itself can be looked upon as an alternating stack of 

left handed twisted structure and a right handed twisted structure of decreas- 

ing twist connected by very thin regions of uniform director orientation. A 

typical reflection spectrum is shown in Figure 5.10. We notice the following 

important features: 

Reflections of both left circular and right circular light have generally 

noticeably different amplitudes in bands with integral values of pp/A. In 
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Figure 5.10: Optical reflection in a twist tapered lattice. Re9ection cofiecient 
for incidence of left circularly polarised light (-) and right circularly polarised 
light (. - .-). The soliton starts with a left handed twist. The period of the 
structure i s  0.4 microns. 

some of these reflection bands right circular polarisation is reflected more 

than the left and in some others, left circular polarisation is reflected 

more than the right. 

All the bands evidently reflect linearly polarised light also. The inci- 

dent linear polarisation can either be polarised along X axis or along Y 

axis (see Figure 5.9) called the X polarisation and the Y polarisation 

respectively. Both X and Y polarisation are reflected in all the bands. 



Figure 5.11: The reflection of X and Y polarisations from the twist tapered lat- 
tice showing the shift in reflection peaks. Continuous line i s  for X polarisation 
and dashed line i s  for Y polarisation. 

The computed spectra is shown in Figure 5.11. Interestingly, in ev- 

ery band with integral values of pp/X, the X polarisation peaks at the 

shorter wavelength edge of the band and the Y polarisation peaks at  the 

long wavelength edge. But such differences are not seen in bands with 

half-integral values of pp/X. 

The structure of the tapered lattice is asymmetric. Hence the reflection 

coefficient for light incident at  q5 = 0 end (R(k)) need not be identical to 

reflection coeffiecient for light incident at q5 z :: (R(-k)). Surprisingly, 
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Figure 5.12: Reflection coeffieczent for right circularly polarised light. Here 
R(k) is denoted by a continuous line and R(-k) is denoted by a dot-dashed 
line 

this effect is more pronounced in reflection bands with ~ p l X  = m. This 

is shown for some reflection bands in Figure 5.12. 

Optical Rotation 

Since the right and left circular light are reflected with different reflection 

coeffiecients from bands with integral pplX we can think of the possi- 

bility of them acquiring different phases during the propagation. As a 



Figure 5.13: Reflection curve for a real twist-tapered lattice for incidence of 
left circularly polarised light 

result, they not only show optical rotation but the rotation changes sign 

within a reflection band. Thus there is an anomalous  rotation of the 

kind discussed in the case of TGBS. This optical rotatian is absent is 

reflection bands of half integral pp/X.  

4-- 

A real twist-tapered lattice 

We consider now the tapered lattice permitted by the equation of motion. As 

said earlier its period is not constant all through. Its reflection spectrum is 

shown in Figure 5.13. In this case we find Every reflection band is wide with 

no clearly defined prominent peaks. But for this, the rest of the optical features 
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Figure 5.14: Reflection spectra for a splay-bend tapered lattice for X polarisa- 
tion. 

of the ideal case is also present in the realistic case also. 

5.4.2 Splay-bend tapered lattice 

In the splay-bend lattice, only for X-polarisation i.e., for electric vector in 

the plane of director variation the refractive index has oscillations. Hence only 

this polarisation experiences reflection. For the orthogonal electric vector the 

medium is homogenous. The prominent reflections occur at integral values of 

pP/X. Reflections corresponding to half-integral values of pP/X are generally 

weak and only occur in the long wavelength regions of the spectrum. A typical 



computed reflection spectra is shown in Figure 5.14. 

Incidentally, in both the splay-bend and twist tapered lattices, if there was 

no damping and if the period of the lattice is a constant, we would get only 

one reflection band. This will occur at 2pP/X = 1 for the twist case and at 

pP/X = 1 for the splay-bend case. 
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