
Chapter 6 

photons: The 'strong' constraint of 
constant speed 

6.1 Introduction 

In the previous Chapter-5, we examined some models of photon migration, where, 

though the speed of the particle was not kept fixed locally, there was a global con- 

straint on the particle in some average sense, i.e., the 'weak' constraint. In this 

Chapter, we will develop a model for photon migration, where we will implement the 

'strong' constraint of fixed speed of the photon. It should be noted that this fixed 

speed would correspond to  the group velocity of the photon wave packet. In this 

description, we will neglect the dispersive effects of the underlying structure of the 

medium on the wave. In the approximate description of light' as a particle undergoing 

random scattering events, the speed in between the scattering events should be kept 

constant at  the very least. There is only a change in the direction of propagation a t  

each scattering event. We accomplish this by taking a clue from the simplest case 

of accelerated motion involving no change in the kinetic energy, i.e., motion along a 

circle where the forces act only perpendicular to the velocity of the particle. We can 

imagine that the photon during its random walk is instantaneously moving along a 

circle, whose radius is a random function of time. It must be remarked here again 

that the wave nature and polarization effects are ignored and light is treated as a 

particle in a medium which exerts transverse fluctuating forces on the particle, i.e., 

the force is perpendicular to  the instantaneous velocity vector. Also, as before, while 

the actual disorder is maybe in space (quenched disorder), all current treatments in- 
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cluding ours, are in terms of a Brownian motion (temporal disorder i.e., a stochastic 

process). 

Essentially, we describe the light propagation in a stochastic medium as the motion 

of a kind of Brownian particle on which the fluctuating forces act only perpendicular 

to  the direction of its velocity. This is effective in strictly and dynamically preserving 

the speed of the particle. We call this the 'modified Ornstein-Uhlenbeck process'. 

This process is shown t o  correspond t o  a diffusion in the angular co-ordinate in the 

velocity space for a white-noise disorder. Exact expressions for the moments of the 

space variables are presented and the second cumulant approximation is shown to  

yield a Gaussian expression similiar to  the traditional Ornstein-Uhlenbeck theory of 

Brownian motion. An expression is derived for the probability distribution for the 

large random force strength which preserves the light cone. The exact Fokker-Planck 

equation for the probability distribution is derived from the stochastic Langevin equa- 

tions for the white-noise process. Numerical solutions of this equation are presented 

. It  is shown that the probability distribution in infinite media is strongly forward 

peaked for short times and randomizes only at times of about 8t* t o  lot*. We have 

also solved numerically the equation for a semi-infinite geometry and obtained the 

persistence exponent of 0.435 0.005 in two dimensions for this process. Solutions 

for a finite geornetry are also given, showing that the effective diffusion coefficient as 

measured in a pulse transmission experiment through very thin slabs (L - l * )  would 

be lowered. We will also present results for the point spread function of a point 

source for transmission through a disordered slab. Finally we will discuss the case of 

an amplifying random medium. 

The modified Ornst ein-Uhlenbeck process 

Light scattering in a stochastic medium is treated as a probabilistic process where 

each scattering event only changes the direction of the photon. The equation for the 

motion of a randomly accelerated particle with the special condition tha t  the random 

forces always act only perpendicular t o  the velocity can be written as 

.. . 
?= F x  fit). 

This we term as the modified Ornstein-Uhlenbeck process. 
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We will consider two dimensions for simplicity, and write for the motion in the 

xy- plane, 

where the force term f (t) is a random function of time. We will assume a delta- 

correlated random force with Gaussian distribution. i. e., 

and all higher cumulants of f (t) being zero. This makes our treatment most valid 

for a very dense collection of highly forward scattering weak anisotropic scatterers. 

This set of stochastic Langevin equations yields on integration a first constant of 

integration x2 + G2 = c2, where c is the constant speed. So we can choose x = 

ccos 8(t) and $ = csin O(t) where 0(t) is some function of t .  8 is recognized to be the 

angular co-ordinate in the velocity space. Substituting these expressions back into 

equation(6.2,6.3), we obtain 8 = f (t) or 

Hence 8(t) follows a Wiener process and we can write the probability for 8(t) as 

This is the result for a diffusion in 8, the angular co-ordinate in the velocity space, 

and we recognize this modified 0 - U  process to be a random walk on the circle of 

radius c in the velocity space. Constraining 8 to  the range [O,27r], i.e., identifying 8 

with 8 + 2n7r for n an integer, we get the marginal probability distribution for 0. 

The value of O0 can be conveniently chosen to  be zero. 

Similiarly, in three dimensions, we have {(t) = [f,(t), f,(t), f,(t)], where f,(t), 

f,(t) and f,(t) are uncorrelated random functions of time, and are assumed to  be 

white-noise: 

(fi(t)) = 0, (fi(t)fj(t)) = rs(t - tl)sij. (6.9) 
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Figure 6.1: The marginal probability distributions for the angular co-ordinate in two 
dimensions (solid line) and three dimensions (dotted lines) 

As before, integration of the above stochastic Langevin equation yields a first constant 

of integration as x2 + y2 + i2 = c2. Proceeding as before, we reach the conclusion 

that again we have a diffusion for the angular coordinate in the velocity space. In 

three dimensions, we have a diffusion on the velocity sphere of radius c .  The result 

for diffusion on the surface of a sphere is well-known and the marginal probability 

distribution for O(t) and 4(t) (the polar angles) is given by: 

where the z-axis is chosen along the initial direction (8, = 0). This results in a 

uniform distribution for 4. We show a plot of the probability distributions for 8 in 

two and three dimensions in Fig. 6.1. 

Now we will derive the probability distribution function in the phase space. Con- 

sider the system of stochastic Langevin equations (again in 2-D for simplicity), 
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Let n ( x ,  y, u,  v) be the phase space density of points for the given system and U be 

the vector (x, y, u, v) . Now, l7 satisfies the stochastic Liouville equation. 

an 
- + vU (un) = o, 
a t  

a a a a where Vu = (z, a, z ,  %). Substituting for U and averaging over all possible con- 

figurations of disorder, by the van Kampen Lemma [98], the probability distribution 

P ( x ,  y, u, v) = (n(x ,  y, u, v)) and satisfies, 

By the Novikov theorem [loo] (see Appendix B) for a white-noise process f (t): 

Using the above, we obtain for P(x,y,u,v) the differential equation 

Now expressing u and v in terms of the angular co-ordinate 8, we finally get 

This can be generalized t o  three dimensions as 

where ?, = (a/ax,  a /ay ,  8/82), v' = (P, j r ,  i )  and V: is the angular Laplacian given 

1 a v;= -- aP 1 a2p 
(sin0-) + -- 

sin 8 88 88 sin2 8 a42 ' 
in polar-spherical co-ordinates. This differential equation explicitly preserves the 

constancy of the speed of the photon. This Fokker-Planck equation is the same 

equation which was intuitively written down in Ref.[152, 153, 1541. It is rigorously 

proved therein that this has a path integral solution and the two approaches are 

equivalent. It  appears that this equation in two dimensions has solutions in terms of 



6.3. Solutions in unbounded media 104 

the Mathieu functions. This is easily seen by taking a Laplace-Fourier transformation 

with respect to  the time-space giving: 

which is a hlathieu equation for P(0 ;  s,  k) = Jr dt ecSt J_+," e"""P(x, 0; t )  dx d0 

(here y-invariance has been assumed). Similiarly, the Equation(6.20) seems to have 

solutions in terms of Legendre polynomials. However, we have not been able to 

explicitly solve the equations analytically. 

6.3 Solutions in unbounded media 

In this Section, we will investigate the nature of the solutiorls of this modified 

Ornstein-Uhlenbeck process for a particle moving in an unbounded medium. The 

relevant boundary condition is then that the probability vanishes for Irl > ct in 

space. 

6.3.1 Moments of the displacement and the cumulant expan- 
sion 

The moments of the displacement can, however, be calculated analytically. The 

displacement can be written in terms of 0 as ( in 2-D) 

t 
y - yo = c sin 0d0. (6.24) 

Using these and a Gaussian distribution for f ( t) ,  we get 

2c 
(X - xO) = - cos 00 (1 - e-y)  , r' 

2 c 
sin 00 (1 - e - 7 )  , 

2t 4 2 1 2  
((y - yo)2) = [r - (F)2 (I - c?) + (T)l (1 - e ) ]  , (6.28) 

((x - XO)(Y - yo)) = 0. (6.29) 

This reproduces the result of the traditional Ornstein-Uhlenbeck process in that the 

first moment saturates at a mean free path l* and the second moment increases 



linearly with time at  long times (I't/2 >> I). For short times ( r t / 2  << I ) ,  however, 

the longitudinal spread (Ax2) - t2 and the lateral spread (Ay2) - t3, which are 

considerably slower than the diffusive linear behaviour. From these relat'ions, we 

identify the mean free time t* to be 2/I' and the transport mean free path l* = ct*. 

The diffusion coefficient is identified as the coefficient of the linear term of the second 

moment i.e., c2/r .  

It is of interest to note that analytic expressions for the moments of all orders for 

the displacement can be obtained. The nth order moment is given by 

t t t 
( (a  - 10)~) = cn / 1 . . - / dtndtnFl - . dtl (cos Q(tl) cos Q(t2) - . cos Q(tn)). (6.30) 

0 0 0 

Writing Q(ti) as Qi, the quantity within the angular brackets can be expressed as 

follows, 

This can be expressed as a path integral using a Gaussian distribution for f (t).  

where to = 0 and we assumed a time ordering of tl < t2 < . . < t,. Thus, 

t2 
((x - ~ 0 ) ~ )  = cn(n!)2-n 1' dtn ln dt,-l . - . 1 dtl x 

A similiar expression can be obtained for the ((y - yo)n) by noting that sin 13 = 

cos(7r/2 - 8). 

Now we can obtain the joint probability distribution of x and y as 
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Expressing the 6-functions in terms of the Fourier transforms, we obtain 

( exp [-ic [w, cos 6(t1) + wy sin 6(t1)]dt' ). I 
This statistical average can be evaluated by a cumulant expansion [155], and since 

we have an expression for moments of all orders, we can in principle evaluate the 

cumulant expansion to  any desired order. Truncation of the cumulant series after the 

second term yields the result of Ref.[153] for the probability distribution: 

+ 2c a = - (1 - e-rt/2) (cos 60, sin 00) r 
j = ( - ) - ) - ( ( F - ) ) ( ( - j )  (6.36) 

The distribution is Gaussian in this approximation and similiar to  the distribution 

for the traditional Ornstein Uhlenbeck process given in the previous Chapter. Thus 

it does not exactly preserve the light cone and would appear to  constrain the speed 

only in an average sense. Higher cumulants would be required to  describe this feature 

of fixed speed. 

6.3.2 An approximate solution for strong, isotropic scatter- 
ers 

An approximate solution which preserves the light cone can be obtained under the 

assumption that 6 is completely randomized in time t*, so that 6 has a uniform 

distribution over [O,27r]. This can be justified in the limit of large force strength (I?), 

when the scattering events change the momentum by a large amount. Now the time 

can be discretized on this time-scale and the probability distribution can be written 

l o o  n 

p(x , t ;xO,O) = -1 dw eY(x-xO) ( exp[-iwc x cos Qjt*] ), (6.37) 
27r -0;) j=1 

where we have used that at  t = 0, the angle 6 was uniformly distributed and have 

assumed y-invariance, or a line source. To evaluate the average, we will use the fact 

that in this approximation, each Oj is independent of all others, giving 
n 

( exp[-iwc x cos Qjt*] ) = [ Jo(wd*) ln  , 
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Figure 6.2: The marginal probability distributions P (x ,  t ;  xo, 0) predicted by the 
approximate solution given by equation(28) a t  different times indicated in the figure. 
There is a clear cut-off at  the light front and initially the probability accumulates a t  
the light front (for t = t*). 

where Jo is the Bessel function of order zero. Using n = t l t* ,  we have 

Using the fact that the Fourier transform of Jo(wct*) is zero for lx - xoI > ct* and the 

fact that P (x ,  t ,  xo, 0) is an nth convolution of Jo(wct*), it is seen that P (x ,  t ,  xo, 0) is 

zero for lx - xol > net* = ct. Thus the light cone is preserved. In Fig. (6.2), we plot 

the P (x ,  t ,  xo, 0) obtained by numerical evaluation for different times. It is seen that 

for t = t*, the probability is accumulated at the light front, and all the curves show 

a cut-off at  lx - xo 1 = ct. At long times, using the Laplace approximation, we have 

(for large n)  : 

Thus, we recover the diffusion limit at  long times. 

6.3.3 Numerical solutions in the phase space 

In this Section, numerical solutions for the differential equation (6.19) (in two di- 

mensions) are presented. The particle is released in the x - y plane a t  the origin 



Figure 6.3: The Probability distributions (P) in the phase space of a particle in an 
infinite medium at  different times obtained by numerically propagating equation(l7). 
The particle is released at  x = 0 along the positive x direction(6 = 0) a t  t = 0. The 
probability distribution is clearly forward peaked and and becomes almost flat along 
the Saxis only a t  times of about 8t". 

(generally) along an initial direction OO. Here 8 is the angle made by the velocity vec- 

tor with the x-axis. Let us first further simplify by assuming invariance with respect 

to y, i.e., we have a line source along the y axis. Then the derivative with respect t o  

y drops out and and we have a partial differential equation in three variables. This 

is essentially a parabolic equation with an advective term. To numerically propagate 

the probability distribution in time, we use an alternating direction implicit -explicit 

method [I561 for x and 19. A local von Neumann stability analysis [I561 shows that 

this differencing scheme is unconditionally stable. The initial condition is a &function 

at  x = 0,0  = 0 which is approximated by a sharp Gaussian for numerical purposes. 

For numerical stability, we cannot have the Gaussian sharper than a certain amount 

and in our case the full width at  half maximum (FWHM) should be larger than 

about 8 discretization units. For infinite media, the boundary conditions used were 

P (x ,  t )  = 0 for 1x1 > ct and periodic boundary conditions on 8. 
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Figure 6.4: The first and second moments of the displacement for the probability 
distribution of a particle in an infinite medium. The solid lines show the analyti- 
cal result of equation(20) and equation(22) while the symbol ( o ) show the result 
obtained from the numerical solutions. 

In Fig. 6.3, we show the probability distributions in an infinite medium wit'h the 

initial condition, P (x ,  8, t = 0) = 6(x)6(8). It is clearly seen that the probability 

distribution for times upto 5t* is peaked in the forward direction 8 - 0 for x > 0, 

with a tail in the backward direction (8 - f ~ )  at x < 0. There is also a clear cut 

off at  1x1 = ct, which is prominently noticeable for positive x. The small amount 

of tailing arises from the finite width of the Gaussian by which the 6-function was 

approximated. One can also note that the probability distribution becomes almost 

flat along the 8-axis only at times of about eight times the mean free time (8t*). In 

Fig. 6.4, the first and second moments of the x co-ordinate are shown. The solid lines 

show the analytical results of equation (6.25 and 6.27) and the symbols(o) represent 

the results of the numerical solutions. Excellent agreement is found between them. In 

Fig. 6.5, we show the marginal probability distribution for x i. e., P (x ,  t; xo, 00, 0) = 

ST, dOP(x, 8, t ;  xo, 00, 0). At short times (t II 3t*), there is a clear ballistic peak, 

separate from the more randomized tail. The probability distribution for these times 

is also clearly forward-peaked. One can also note that the probability distribution 

randomizes and becomes almost Gaussian, centred at x - I* only a t  times t > 8t*. 

As noted above, this is also the time by which the angular coordinate 8 randomizes. 

This is when the diffusion approximation becomes valid. This can be understood 

by noting that,  by eq~at ion(6.7)~ the time required for Pt(8) to attain an angular 
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Figure 6.5: The marginal probability distribution P (x ,  t ;  xo, 00, 0) - - 

STn P(x ,  8 ,  t ;  xoOo, 0)dO a t  different times. The marginal probability distribution be- 
comes almost a Gaussian at times of 8t*. 

width of 27r is T where T is given by (A02) = ( 2 ~ ) ~  2 rT .  This yields (using 

r/2 = t*) a value of T = 7r2t* E lot* for the randomization time. Thus we now have 

a clear picture of the reason for this long known experimental fact [20]. This forward 

peaked behaviour a t  short times also illustrates the deficiency of the second cumulant 

approximation where the probability distribution is a Gaussian and symmetric about 

the first moment. Higher cumulants are clearly required to  describe these asymmetric 

features. 

Now let us look at  the probability distribution function in the real (3 space 

without assuming y-invariance. For this, we solve the Fokker-Planck equation(6.19) 

in two dimensions, i.e., involving x ,  y and 8 and integrate over all the directions (8) 

to get the marginal probability distribution P (x ,  y; t ) .  This distribution function is 

plotted in Fig. 6.6 a t  time t = 2t*. It is clearly seen that apart from the ballistic 

peak, the particles begin to spread around in the form of an expanding ring. This 

is due to the fact that the particles have to  diffuse over the velocity circle before 

their velocity can be reversed. The ring, which has very little probability density in 

the centre for short times, "fills out" gradually in the middle a t  longer times, as the 

diffusion approximation becomes more valid. We can see from here that any Gaussian 

approximation would be very far from describing the true situation at  these times. 
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Figure 6.6: The marginal probability distribution function in real space showing a 
hollow ring -like structure a t  short times t = 2t*. 

6.4 Solutions in bounded media with absorbing 
boundaries 

6.4.1 A semi-infinite medium 

For a semi-infinite medium -00 < x < L with an absorbing boundary a t  x = L, the 

appropriate boundary condition is given by P ( L ,  0, t; xo, Oo, 0) = 0 for -IT < 0 < -7r/2 

and 7r/2 < 0 < 7r, corresponding to  no flux entering the medium from free space. Also, 

we can write the Fokker-Plank equation in the form of a continuity equation. 

Since r = 0 outside the medium, we can conclude that the current density Tin the real 

(x) space is conserved across the boundary in the forward direction (-7r/2 < 6 < 7r/2) 

while the current density in the velocity (0) space is not conserved. This explains 

why the output flux a t  the boundary is proportional to  the value of the probability 

distribution function at the boundary itself (rather than the space derivative of the 

probability distribution (aP/ax)  given by Fick's law) as observed in experiments 
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Figure 6.7: The Probability distributions (P) in the phase space of a particle in a 
semi-infinite medium at  different times. The particle is released at x = 0 along the 
positive x direction(8 = 0) at  t = 0. The absorbing boundary is located a t  41*. The 
probability distribution is zero in the range -7r < 8 < -7r/2 and 7r/2 < 8 < 7r at the 
boundary implying there is no incoming flux into the medium. 

[157]. 

The probability distribution functions for a semi-infinite medium are shown in 

Fig. 6.7. Here the particle is released at  the origin inside the random medium and 

the initial direction is towards the boundary (in this case a t  x = 41*). For times 

lesser than 4t*, there is no difference in the probability distribution from the case 

of the infinite medium. This is because the wave front has not propagated upto 

the boundary and the effect of the boundary is not felt. This is to  be contrasted 

with the diffusion approximation where the effect of the boundary is felt everywhere 

simultaneously and causality is violated. At long times the probability distributions 

attain a typical shape with a long tail at negative x within the medium and a sharp 

cut-off a t  the boundary. In Fig. 6.8, we show the marginal probability distribution 

for x i.e., P(x ,  t ;  xo, 80, 0) = J_", dOP(x, 8, t; xo, 80, 0). The value of P(z ,  t ;  xo, 80, 0) 

is finite at  the boundary and zero outside. As seen in Fig. 6.8b, if the points near 
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Figure 6.8: The marginal probability distributions in a semi-infinite medium with an 
absorbing boundary at  x = 41*. The plot on the right shows an expanded view of the 
distributions near the boundary. The solid straight lines are the linear extrapolations 
of the behaviour near the boundary. All of them are seen to  cross the x-axis roughly 
at  0.71* outside the boundary. 

the boundary are linearly extrapolated outside the boundary, they all roughly cross 

the x-axis a t  about 0.71*, which is the value of the extrapolation length used in 

the diffusion approximation [146]. In Fig. 6.9, the surviving probability inside the 

medium P, = J dx J dQP(x, 8, t ;  xo, Qo, 0) is plotted with time. For long times, this 

quantity should scale as t-@ where 19 is the persistence exponent for this process 

[22]. We have performed these calculations for several source-boundary distances 

and obtained a value of 0.435 f 0.005 as the persistence exponent for this process in 

two dimensions. 

6.4.2 A finite slab 

Now, we present solutions for a finite slab with absorbing boundaries a t  x = &L. 

The particle is released from the origin at  t = 0 along the positive x direction a t  

x = -L. Fig. 6.10a shows the first and second moments of the probability with 

time in a thin slab of thickness 21*. The first and second moments initially increase 

as in an unbounded medium until the photon-front hits the boundary and dip be- 

fore increasing again and saturating at  an almost constant value. The dips occur 
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Figure 6.9: The surviving probability of the particle inside the semi-infinite medium 
for an absorbing boundary a t  41*(0) and 21*(*). The persistence exponent 6 is ob- 
tained from the long time behaviour of the survival probability. The lines (. - -) and 
(- . -) show the linear fits and give a persistence exponent of 0.4309 and 0.4364 
respectively. 

because just after the ballistic and near ballistic components exit the slab, only the 

photons which are effectively moving in the opposite directions are left behind. This 

is a manifestation of the fact that the cloud expands out in a hollow ring, as seen 

before. In fact, the first moment is seen to become negative, implying that the net 

transport is in the backward direction for some time. The dip in the second moment 

implies that the photon cloud is effectively expanding at  a slower rate. This would 

cause a lowered 'effective diffusion coefficient' to be measured in a pulse transmis- 

sion measurement [17]. This reinforces the conclusions reached in Ref.[l51] based on 

Monte-carlo simulations. Fig.6.lOb shows the survival probability for the case of a 

finite slab. This decays considerably faster than the in case of the semi-infinite slab, 

though at early times (t -- t*) the decay rates are comparable. The initial rates of 

decay are comparable because of the forward peaked nature of the probability dis- 

tribution at  early times, when the effect of the boundary at the back is hardly felt. 

This is to be compared with the mirror-image solution in the diffusion approximation, 

where equal weightage is given to  both boundaries at  all times. 

Now, let us look at  the temporal evolution of the spatial intensity profiles of the 
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Figure 6.10: The first and second moments of the displacement of a particle in a 
finite slab of thickness 21* (left plot). The right plot shows the survival probability 
in a semi-infinite medium and a finite slab. The distance between the point where 
the particle is released and the boundary is same in both case. (21*). 

transmitted light for the incident point source. This is equivalent to studying the 

dynamics of the point spread function in time. We take a thin slab with absorbing 

boundaries. and propagate the initial distribution, i.e., the photon is incident along 

the positive x-axis at  x = -L  and t = 0. The slab is assumed to be of infinite 

tranverse extent as before, but, no y-invariance is assumed. Now, we look a t  the 

transmitted near-field probability distribution along the y-axis. We plot these pro- 

files in Fig. 6.11. At t = Llc,  we see the ballistic peak emerging out of the slab. 

For slightly larger times and a reasonably thin slab, the transmitted profiles consist 

of two peaks with a dip in the centre at  y = 0. These peaks move apart in time, 

while the centre slowly 'fills out' in time. This means that for a 3-D system, the 

transmitted near-field intensity appears as a ring for intermediate times after the exit 

of the ballistic pulse. This ring grows in size as well as diffuses out, eventually giv- 

ing the distribution predicted by the diffusion approximation. Again, these features 

result from the persistence in the velocity space of the random photon walks. These 

features, however, smoothen out for thick slabs (L > 41*) as the distribution would 

have already randomized in the angular coordinate t o  quite an extent by the time 

the photons exit. 
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Figure 6.11: The near field spatial profiles of the transmitted light through a thin 
slab at different times 

6.5 Random Amplifying Media 

As discussed in Section-1.5.1, a random medium with amplification can turn into a 

laser. We will now apply this model of photon diffusion with constant speed to  the 

case of an amplifying stochastic medium. The effect of medium gain can be incorpo- 

rated straight forwardly by noting that in our treatment, the time of exit from the 

slab directly translates into path-length traversed within the medium because speed 

is kept absolutely fixed. In the presence of amplification in the medium therefore, the 

net gain is directly proportional to  the time. Thus the output flux at  the boundary 

in a given direction is simply P ( L ,  6, t)  cos 6 exp(at), where a is the gain coefficient 

in the medium. It is thus simple to  obtain a picture of amplified emission from 

such a medium. In Fig. 6.12, we show the total light emitted by slab (from both 

sides) with boundaries at  x = &21* for several amplification factors. The photon is 

released from the origin in the positive x-direction. VCTe see that output increases 

with increasing gain factor. However, upto a critical gain factor, the output in time 

goes through a (ballistic) peak and then reduces in time. Beyond the critical gain 

coefficient (a = 0.19), the output increases exponentially in time. This is because 

the random amplifying medium has now crossed the critical threshold and has now 

become a random laser. For large times, the output increases exponentially because 



Figure 6.12: Total light emitted (from both sides) by a disordered slab with am- 
plification for different values of the gain coefficient A in the medium. The output 
increases exponentially at  long times. 

of the presence of a exponential gain in the medium with no saturation. It is seen 

that the ballistic part is only slightly amplified while the output in the tail regions are 

increased considerably. To obtain a more realistic picture of lasing in random media 

[16, 541, however, one would have to  consider the lasing level population depletion 

and saturation effects. 

6.6 Conclusions 

In this Chapter, we have developed a model for photon migration which dynamically 

preserves the local constraint of fixed speed , i.e., the 'strong' constraint for fixed 

speed. The propagation of light in a scattering medium is described as the motion 

of a special kind of a Brownian particle on which the fluctuating forces act only per- 

pendicular to  its velocity. This enforces strictly and dynamically the constraint of 

constant speed of the photon in the medium. A Fokker-Planck equation is derived for 

the probability distribution in the phase space assuming the transverse fluctuating 

force to be a white-noise. Analytic expressions for the moments of the displacement 

(xn) along with an approximate expression for the marginal probability distribution 

function P(x ,  t )  are obtained. Exact numerical solutions for the phase space probabil- 

ity distribution for infinite (unbounded) media and media with absorbing boundaries 
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(semi-infinite media and finite slabs) have been presented. The results show that the 

velocity distribution randomizes in a time of about eight times the mean free time 

(8t*) only after which the diffusion approximation becomes valid. This factor of eight 

is a well known experimental fact. Absorption or gain is very easily implemented in 

this model because time directly translates to the path length in the medium, as the 

speed has been kept locally fixed. 

We note that the problem of diffusion of a particle moving with constant speed 

is of interest in several areas. Its application to the motion of an electron in a 

random magnetic field is obvious [158]. Another application of this model is to  the 

theoretical description of semi-flexible chains in polymer physics. These stiff filaments 

are represented by an inextensible curve r'(s), where s is the arc-length, Idr'ldsl being 

constant [159]. This problem can be mapped exactly into the current problem of 

photon diffusion at  constant speed. 

Finally, we point out that though this treatment is a radiometric calculation, it is 

not necessarily inaccurate as a description of wave motion. As has been pointed out 

in Section 1.3.4, the specific intensity describing the energy transport is related to  

the mutual coherence function describing the wave motion and a surprising amount 

of wave characterestics can be incorporated. In this problem, we have incorporated 

one of the wave characterestics, vix, the constant speed (group velocity) of the wave 

in between the scattering events. We worked in the limit ka  >> 1 where a is the 

inter-scatterer distance and k  is the wavevector. Even when the ka  - 1, it has been 

experimentally found that [I601 that  the primary effect appears to  be a renormal- 

ization of the group velocity of light. In this picture, the effects of dispersion can 

also be incorporated to a first approximation by making the speed c ( k )  a function 

of the wavevector and taking an appropriate distribution of speeds to  describe the 

wavepacket. 



Chapter 7 

Diffusive transport with inertia: 
the generalization of the 
Telegrapher process to higher 
dimensions and a model phase 
space 

7.1 Introduction 

The diffusion equation admirably describes the the incoherent transport of the energy 

density of light at a gross-level but fails, however, to describe the transport accurately 

at short length scales (1 < 81* where l* is the transport mean free path) and a t  short 

time scales (t < 8t*, where t* = l*/c is the transport mean free time) [20]. Among 

the many models proposed to deal with the intermediate range of length- and time- 

scales between the ballistic motion and diffusive transport, the attempts to  generalize 

the Telegrapher equation are important. The Telegrapher equation is exact in one 

dimension and describes the diffusion of a particle whose speed is fixed, i.e., the 

velocity can take on only two values f c [161]. The Telegrapher equation, i.e, 

where P is the probability distribution function and r / 2  is the mean scattering rate, is 

a combination of the wave equation describing the inertial aspect and of the diffusion 

equation describing the stochastic aspect. This equation has found wide application 

in many fields [I621 and was first considered by J.C. Maxwell [163, 1641, more than 

a century ago in his attempt to  describe heat conduction from basic kinetic theory. 

It also has been shown to  describe the 'second sound' in liquid Helium 11. 
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Following a suggestion of Ishimaru [165], a generalization of the Telegrapher equa- 

tion to higher dimensions in a heuristic manner was attempted [I661 by simply re- 

placing a2P/ax2 in Eqn.(7.1) by V 2P ,  to describe photon migration a t  short length 

scales, by including some ballistic aspects. This ad-hoc generalization appeared to be 

quite successful to describing photon migration as it preserved causality and did much 

better than the diffusion approximation to describe photon transport in absorbing 

media [166, 1671. This was also extended to studies of Diffusing Wave Spectroscopy 

in thin samples [168]. It was, however, shown by comparing it with Monte-Carlo 

simulations that this generalization furnished no better an approximation than the 

diffusion approximation in higher dimensions [169]. The in-principle weakness of this 

'ad-hoc' approach was demonstrated by the fact that the photon probability density 

evolving under this equation becomes negative in two dimensions for the simplest 

case of an unbounded (infinite) medium at  short times (t N t*) when the ballistic 

aspects of transport are most important. In fact, the negativity of the solution to  

this equation is a generic property in even-dimensional spaces [169, 1461. 

In this Chapter, we reconsider the problem of diffusion of photons at  constant 

speed and present a generalization of the Telegrapher process to higher dimensional 

turbid media (d > I ) ,  where the photon can move along 2d directions along the 

diagonals of a d-dimensional hypercube. We derive the equation for the probability 

density function using the "formulae of differentiat'ion" of Shapiro and Loginov [loll ,  

by considering a correlated random walk at constant speed. We show that a partial 

differential equation of order 2d results for the probability distribution function in 

d-dimensions. Our model is an advancement over the earlier models of BoguiiA et 

al. [170, 1711, where the photon could only move along the 2d directions along the 

axes, and results in a true diffusion a t  constant speed in the limit of large dimensions. 

Our work brings out certain features that were not recognized in earlier work. Light 

in the stochastic medium is considered to be a particle on which the medium exerts 

fluctuating forces. Each scattering event only changes the direction of the photon 

without affecting the speed of propagation. 
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7.2 The Telegrapher process in one dimension 

Let us first consider the dynamics of a particle executing a random walk in one di- 

mension while moving with constant speed c. This would describe the motion of light 

in a disordered fibre, or of electrons on the Fermi points in a one-dimensional disor- 

dered wire, if we neglect the wave nature and the consequent Anderson localization 

(Strictly speaking, this description would not hold for 1-D where all the quantum 

states are localized states. For sample lengths much smaller than the localizat'ion 

length, however, the transport is almost diffusive). The velocity v(t) of the particle is 

a random function of time such that it can take only two values f c, i.e., a Dichotomic 

Markov process. If r/2 be the transition probability per unit time between these t,wo 

values of the velocity (( ) indicate averaging over the disorder), 

i.e. the velocity is exponentially correlated in time. We note that the stochastic 

Langevin equation for the displacement x = v(t) gives: 

i.e., the behaviour at  long times (t + oo) or very large scattering strengths (large l?) 

is diffusive ((x2) N t )  and at  short times (t -+ 0): the behaviour is ballistic ((x2) -- t2).  

Now we will derive the equation for the probability distribution function. Let 

n (x ;  t )  be the phase space density of points in the x-t phase space. Now, l7 satisfies 

the Stochastic Liouville equation : 

Averaging over all the realizations of the random function v(t),  by the van Kampen 

lemma [98], the probability distribution P(x ;  t )  = ( n ( x ;  t ))  . We also define W (x; t )  = 

(v(t)rI(x; t ) )  and obtain, 
d P  dW - + - = o .  
a t  ax  (7.7) 

Now using the "formulae of differentiation" of Shapiro and Loginov [loll,  for a Di- 

chotomic Markov Drocess, 



Eliminating W from the above equations, we obtain 

i.e. the Telegrapher equation for the probability distribution function P. This is an 

exact description of the motion of a particle with constant speed in 1-D. 

The solutions to Equation.(7.9) are well known and, in an infinite medium given 

by 1161, 1661 

where y = ( r / 2 c ) & T T ? ,  I. and Il are the modified Bessel functions of order zero 

and one respectively, and I3 is the Heaviside step function. Note that the solution 

is zero for 1x1 > ct and thus causality is preserved. The solution indicates that the 

particles spread out symmetrically from the origin, half of them to the left and the 

other half to the right, with a front velocity of c beyond which there are no more 

particles and heap up at  the 'light fronts' where there are N/2exp(-I't/2) particles 

(if there are N particles altogether). 

Another approach to obtain the above is to consider that the photon density is 

made of two separate partial flux components: one consisting of particles moving 

upstream and another downstream. The scattering couples these two partial fluxes: 

where a, and a, are the scattering and absorption coefficients and pb is the backscat- 

tering probability. We immediately note that our P = IT + I& , the photon density 

and W = I? - IJ (the equivalent of the osmotic density of Nelson[Bl]). We also note 

that heuristic attempts have been made to adapt the above "two-stream" theory 

to describe transport in higher dimensions by, i) modifying the values of the coeffi- 

cients to  phenomenologically fit experiments, resulting in the Kubelka-Munk two-flux 

equations[ll], and ii) by introducing more number of streams[ll]. 
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Figure 7.1: One realization of the possible real space trajectories for the generalized 
Telegrapher process in two dimensions. 

7.3 Generalization of the Telegrapher process to 
higher dimensions 

Now, we seek a generalization of the Telegrapher process process t o  higher dimensions. 

The simplest way of doing this is t o  make every orthogonal component a dichotomic 

Markov process which take the values f c. Thus, in d dimensions, the particle is seen 

to  move along the diagonals of the d dimensional hypercube with a speed Jdc .  Here 

the real space is continuous, while the the velocity space is discrete and can take only 

2d discrete values in d dimensions. This is the model phase space that  we consider 

the photon t o  execute a random walk in. In Fig. 7.1, we show a possible trajectory 

in the real space for d = 2. 

7.3.1 The equations for the generalized Telegrapher process 

In two dimensions, we will consider both the x and y components of the velocity of 

the particle to  be independent dichotomic Markov processes, 

where xi(t) are unimodular processes. The particle is thus seen t o  move along the 

four directions ( f  i, f j )  with a constant speed f ie .  Now using the stochastic Louiv- 

ille equation, We define the averages P ( x ,  y ;  t )  = (I'I(x, y ;  t ) ) ,  Wx = (v,(t)I'I(x, y ;  t )) ,  

Wy = (u,(t)I'I(x, y ;  t ))  and Wxy = (vx(t)vy(t)II(x, y; t)) .  We also note that  the "for- 

mula of differentiation" of Shapiro and Loginov can be generalized t o  n-independent 
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dichotomic Markov processes (see Appendix-C) as 

where vi(t) are independent dichotomic Markov processes, ri are the respective tran- 

sition rates and is a functional of vl ,  v2, . -, v,. Using the above, we obtain the 

following closed set of equations : 

ap aw, aw, -+- at a x  
+- = 0, (7.18) 

dy 
aw, 2 a~ aw,, 
at -+rwx = -c---, ax ay (7.19) 

aw, 2ap awx, 
at +rw, = -c--- 

a y  ax (7.20) 

awxy + 2rwxy = 
at 

(7.21) 

Eliminating W,, W,, W,, from the above set of equations, we obtain for the proba- 

bility distribution function P(x ,  y; t) : 

By performing a 7r/4 rotation of the space axes and rescaling the speed to c, this 

equation is seen to be the same as the one derived by Boguna et al.[170] by a differ- 

ent approach. Unlike the "ad-hoc Generalized Telegrapher equation" of Durian and 

Rudnick [166], this partial differential equation is of fourth order involving all space 

and time derivatives. 

Similiarly, in three dimensions, we consider the x, y and z components to the 

velocity to be independent dichotomic Markov processes. Again, following the above 

procedure, we obtain the closed set of eight equations : 

ap awx aw, aw, -+- +- +- = 0 (7.23) at ax ay aZ 
awx aP aw,, aw,, - + rw, = -c2- - - - - 
at ax ay aZ (7.24) 

2ap awx, aw,, %+,,, = c -- -- - 
at 

(7.25) ay ax ax 
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It is possible to  obtain a cumbersome-looking partial differential equation for P(x,y,z;t) 

alone, similiar to Equation(7.22) by eliminating the other functions from the above 

coupled set of differential equations. However, no extra information results and it 

will not be presented here. 

The partial differential equation for P(r'; t) alone, in general, will be of order 2d 

(there are 2d independent first order coupled differential equations for d dimensions). 

The set of coupled first order differential equations(7.23) offer a very convenient fac- 

torization of the 2d dimensional equation satisfied by P(r'; t )  and are a more convenient 

starting point for numerical calculations of the solutions. We note that the above 

equations are linear with constant coefficients and can easily be solved by taking 

Laplace transforms with respect to  time and space variables. Inverting the solutions 

obtained back to  the real space-time, however, is non-trivial and only a few charac- 

teristic quantities such as the moments of the residence times have been calculated 

[I711 for a similiar model. 

7.3.2 Absorbing boundary conditions 

For the above system of equations, absorbing boundary conditions can be easily 

and rigorously applied for this set of equations. For an absorbing boundary a t  x = 

0, with the stochastic medium occupying the negative semi-infinite half-space, the 

appropriate boundary conditions corresponding to no incoming flux are 

Wx(x = 0, y, x; t) = cP(x = 0, y, z; t),  

Wx,(x = 0, y, x; t )  = cW,(x = 0, y, x; t ) ,  

Wzx(x = 0, y, 2; t) = Wz(x = 0, y, x; t), 

W,,z(x = 0, y, 2; t )  = cW,z(x = 0, Y ,  2; t ) ,  
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and free boundary conditions on the other functions P, Wy, W,, W,,. These con- 

ditions are equivalent to  the integral boundary condition 81% P ( x ,  y, z; t)dx = 

cP(x = 0, y, z; t )  on P ( x ,  y, x; t )  alone. 

7.3.3 Projected motion along any axis and angular non-symmetry 
of the model 

a2 P In higher dimensions (d > I ) ,  the ad-hoe generalized Telegrapher equation vix. + 
I'E - c2V2P = 0 is indeed obtained only if higher order velocity correlations are 

neglected, i.e., terms such as Wxy = (vxll), W,,, etc. are set t o  zero. This is 

not correct especially at  short times, when we expect the velocity components to  

be correlated to  a quite some extent. However, it is easily seen that the marginal 

probability distribution for the projected motion along one of the axis p(xl; t) = 

S P(x l ,  x2, - . -  , xd)dxl dx2 - . - dxd satisfies the Telegrapher equation 2 + I'* at - 

c2% = 0. The partial differential equation for P ( c  t )  alone, in general, will be of 

order 2d (there are 2d independent first order coupled differential equations for d 

dimensions) corresponding to  2d directions. 

There are some subtle differences between our model and that of BogufiA et a1 

[170]. First of all, the number of allowed directions for the photon motion is greater in 

our model (2d) than theirs (2d). The reason is that, they consider that the motion of 

the particle to  be along the axes, while in our case, the motion is along the diagonals 

of the d dimensional hypercube. They do not obtain a Telegrapher equation for the 

marginal probability distribution for the projected motion in general as we do. We 

always have a Telegrapher process along any one axis. This can be best compared in 

two dimensions by carrying out a 7r/4 rotation of the axes in Eqns.(7.18-21) and then 

looking at  the projected motion along the axes. We obtain the Telegrapher equation 

+ 2 I ' h  - Z& = 0 , i.e., only the diffusion coefficient is renormalized. This at at 8x2 

corresponds to the three step Telegrapher process of moving at  constant speed to  the 

left or the right with a probability 114 and being at rest with a probability 112. In 

higher dimensions (d > 2), the diagonals of the hypercube are not orthogonal and the 

equation obtained for the projected motion along the diagonals is not a Telegrapher 

equation in our case. 

Thus, it is to  noted that in these models without angular symmetry, such a de- 
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scription of projected motion is non-unique and depends on the direction of the pro- 

jected motion. It should, however, be pointed out that the angular spacing between 

these discrete directions, given by the ratio of the total solid angle to  the number of 

directions, in our model is 

"(d) 1 '""2 ' ( "'/'e1I2 ) d  
- , (7.35) 

2d 2d r (d/2)  d 2 1n1l2 (d/2) 

where r here is the Gamma function. In the limit of large d, the angular spacing 

decays almost exponentially to zero. Thus, in the limit of large dimensions, this 

process indeed describes a genuine diffusion at constant speed. 

7.4 Kubo-Anderson like stochastic processes 

In passing, we would like to touch upon the possible generalization to  more complex 

stochastic processes, which demonstrates t,he power of the current approach. It is a 

simple matter now, to write down the equations for probability distribution function 

for a Kubo-Anderson like process, given by the sum of n-independent dichotomic 

Markov processes (in one -dimension), i.e., v (t) = vl (t) + vZ (t) + . . . + v, (t) , where 

vi(t) can take on the values k c  and (vi(t)) = 0; (vi(t)vj (t')) = c2 exp(-rlt - tll)S,. 

The structure of the equations for n = 2 and n = 3 remain the same as Eqn. (7.18-21) 

and Eqn. (7.24-30) respectively, with only the derivatives d ldy and 3/82 replaced 

by 8/8x. I t  is immediately seen that the case of n = 2 corresponds to  the 3-step 

Telegrapher processes described above. The generalization to  higher n is obvious. 

In general, one obtains n + 1 coupled partial differential equations for the sum of 

n-independent dichotomic Markov processes. 

7.5 Conclusions 

In conclusion, we have developed a particular 'generalization' of the Telegrapher pro- 

cess to higher dimensional (d > 1) stochastic media which could be potentially useful 

for studying photon migration in turbid media as it rigourously preserves the photon 

speed to  be constant between the scattering events. In cornparision to  the model 

presented in Chapter 6, where the photon's random walk was modelled as a diffusion 

on the velocity sphere, we have a model phase space here, where the photon can 

move only along the 2d directions of the diagonals of the d dimensional hypercube. 
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It is admittedly an artificial phase space, but one having an appreciable directional 

persistence unlike the zero-persistence diffusion theory. However, the model does not 

have angular symmetry. In 1-D, there are only two directions and hence, the Telegra- 

pher equation is exact. On the other hand, in the limit of very large dimensions, the 

angular spacing between the directions tends to zero almost exponentially, and again 

the process is indeed a genuine diffusion-at-a-constant-speed. It  has been shown that 

the equation for the projected motion along any hypercube axis is a 1-D Telegrapher 

equation, though it is non-invariant under a rotation. Further, the ad-hoc generalized 

Telegrapher equation in higher dimensions [166, 1671 is recovered when higher order 

correlations are neglected. The power of this approach is demonstrated by deriving 

the equations for a sum of n-independent Markov processes. 


