
Chapter 2 

Super-Reflection of light from a 
random amplifying medium with 
disordered complex refractive 
index 

2.1 Introduction 

The bosonic nature of light that allows for the possibility of phase coherent am- 

plification/absorption of light gives rise to a new class of problems involving light 

propagation in a spatially random but coherently amplifying or absorbing media 

(RAM). .4s discussed in Section-1.5.1 of Chapter-1, this can lead to the phenomenon 

of mirrorless lasing in such active media and has been supported by the several exper- 

iments carried out on these systems [16, 86, 87, 88, 541. However, the experimental 

findings of a narrowed spectral emission [16,54] and a pulse narrowing of the emission 

[86, 881 above a well defined threshold of pumping could be explained merely as an ef- 

fect of the long diffusive pathlengths in a random medium with gain (gain narrowing) 

and the consequent amplified spontaneous emission (ASE) [86, 891. More recently, 

the observed super-narrowing of the emitted spectra from strongly scattering semi- 

conducting powder [60, 611 and from weak scatterers dispersed in high gain organic 

media [90] has been attributed to  coherent feedback (distributed, but non-resonant), 

caused by recurrent multiple scattering [91]. 

In this chapter, we study the propagation of light and lasing in a random ampli- 

fying medium(RAM), specifically keeping in mind the coherent nature of the ampli- 

fication. The spatial, temporal and spectral coherence of the laser light is essentially 
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due to  stimulated emission, where the emitted photon has exactly the same phase, 

polarization and directionality as the incoming (stimulating) photon. This fact cou- 

pled with the coherent feedback offered by incipient Anderson localization of the light 

in a random medium makes us to expect new non-perturbative, synergetic effects, 

whereby the disorder induced localization of light enhances the amplification by con- 

finement (essentially providing a virtual cavity), while the amplification increases 

the strength of localization by enhancing the coherent backscattering involving the 

longer return paths [55, 57, 581. This enhanced folding manifests as the narrowing 

of the CBS cone at  the central peak [87, 511. In all these earlier studies, the active 

random medium is considered to  scatter the propagating light (wave) due to fluctua- 

tions in the real part of the refractive index (%) (real potentials) while the coherent 

amplification is modelled by a phenomenological spatially constant imaginary part 

of the refractive index (Q) (imaginary potential). Here we will study the case of a 

spatially fluctuating imaginary part of the refractive index. The case of a spatially 

fluctuating imaginary part of the refractive index, or potential is interesting in its 

own right, from the theoretical point of view and is necessary to realistically describe 

the experimental situation. In experiments [16, 88, 54, 531, where the scattering mi- 

croparticles (e.g. polystyrene microspheres or titania rutile particles) are imbedded in 

a lasing medium, as the scattering particles are not active, a corresponding mismatch 

in the imaginary part of the refractive index is seen to  exist. In other experiments 

[87, 86, 60, 611, where the microparticles (e.g. ZnO, GaN or Ti: Sapphire powder) are 

the active medium imbedded in a non-active polymer matrix or air, again a similiar 

mismatch is seen to  exist. As it has been pointed out by Rubio and Kumar [92] a 

mismatch in the imaginary part of the refractive index (imaginary potential) would 

always cause a concomitant reflection (scattering) in addition to  the absorption or 

amplification. Mismatch in alone in an amplifying medium (negative imaginary 

potential) with no mismatch in rl, can cause resonant enhancement of the scattering 

coefficients. To make matters more clear, let us examine the one-dimensional case 

of a single S-potential with complex strength (VR + iV,) placed at  the origin. Now, 

solving the Schrodinger equation for a plane wave incident on the potential from the 

left, we get for the transmission and reflection amplitudes: 
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R = 
x ( K  + iv,) 

1 - x(K + iv,) 

where x = m/(ih2k). As can be seen immediately, the reflection and the transmis- 

sion coefficients can even diverge for a purely imaginary potential with T/, = 0 and 

V,  = X-l (corresponding to  the case of amplification). This would correspond t o  

the experimental situation where the scatterers (polystyrene microspheres, say) are 

suspended in a fluid with the same qT (index matching fluid) in which a laser dye is 

dissolved and optically pumped. Thus, the mismatch in the imaginary part would 

be expected to  have a much more drastic effect on the scattering than the mismatch 

in the real part. This makes it interesting to  study the effect of the fluct,uation in 

the imaginary part of the refractive index on Anderson localization and lasing in 

random media. Particularly, in the case of light, where extremely large scattering 

coefficients are necessary to  cause Anderson localization [44], enhanced scattering 

due t o  mismatch in the imaginary part of the refractive index, i.e., amplification or 

absorption, can offer a novel mechanism for localization. The scattering caused by 

the fluctuations in 3 would, therefore be expected to  have non-trivial effects on the 

wave propagation in the medium. 

More specifically, we will investigate here the statistics of fluctuations of wave 

propagation in random media with quenched disorder in both the real and the imag- 

inary parts of the refractive index. It  is well known that  the emergent quantities 

such as the reflection (or the transmission) from (or through) a disordered conductor 

are non-self-averaging quantities and a knowledge of the entire probability function 

of these quantities is required t o  describe the system. The transmittance across a 

randomly amplifying and absorbing chain was recently considered by Sen 1931 numer- 

ically and was shown to  decay exponentially with the increase in the length of the 

chain, presumably due to  localization. But the effects of the fluctuation in the imagi- 

nary part of the refractive index on lasing in such random media has not been studied 

so far. In this work, we consider the statistics of the non-self-averaging fluctuations 

of the reflection coefficient for light incident on a one-dimensional active random 

medium with spatial correlated disorder in the imaginary part as well as the real part 

of the refractive index. A physical realization of interest here would be an Er3+ doped 

and pumped polarization maintaining optical fibre intentionally disordered along its 

length. The probability distribution of the reflection coefficient for light reflected 
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from a one-dimensional random amplifying medium with cross-correlated spatial dis- 

order in the real and the imaginary parts of the refractive index is derived using the 

method of invariant imbedding. The statistics of fluctuations have been obtained 

for both the correlated telegraph noise and the Gaussian white-noise models for the 

disorder. In both cases, an enhanced backscattering (super-reflection with reflection 

coefficient greater than unity) results because of coherent feedback due to  Anderson 

localization and coherent amplification in the medium. The results show that the 

effects of randomness in the imaginary part of the refractive index on localization 

and super-reflection are qualitatively different. 

It is to be noted that our treatment is for a classical wave obeying the Maxwell 

equations. Thus, our results do not include the quantum statistical fluctuations of the 

electro-magnetic field. The light is taken to be in a coherent state, vix., an eigenstate 

of the annihilation operator for the electromagnetic field with a large mean occupation 

number for a single photon mode. 

2.2 Time-independent Maxwell's equations and am- 
plifying media 

The linear time-independent Maxwell's equation 

where is the wave amplitude of the light wave, assumed to  be time-harmonic with 

frequency w (and a scalar wave here for simplicity) and € ( a )  = c, ( q +  ici (3 the com- 

plex dielectric constant, has been successfully used to describe a random amplifying 

media (ci < 0) by several workers [55, 57, 58, 94, 63, 59, 931. In these treatments 

one finds that the transmission through such media decreases with increasing ampli- 

fication. This result appears counterintuitive as one would expect the amplification 

to aid propagation, and naively think that the transmission should increase with the 

amplification. Unlike the case of an absorbing medium, where the reduced transmis- 

sion occurs trivially due to  increased absorption, this result for amplifying media is 

thought to  indicate an increase in the strength of localization due to increased proba- 

bility of return of the wave amplitude through coherent backscattering involving long 

paths which now contribute more due to amplification. This effect has now become 
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well known as implying a symmetry between amplification and absorption 194, 491 

and has been shown to  hold in the case of the time-independent equation. 

It is generally believed that the linear time-independent wave equation (TIWE) 

describes well the wave propagat'ion in amplifying media for conditions correspondirig 

to  below-the-threshold of laser oscillation. Above the threshold, this linear equation is 

known t o  be inadequate for describing the actual lasing phenomenon as the coupling 

between radiation and matter is not properly accounted for. Recently, it has been 

argued by Soukoulis et al. [95], that  that the TIWE and the associated stationary 

state scattering does not describe the situation above the threshold of lasing (oscilla- 

tions) when the gain-length product exceeds criticality. In fact, their numerical result 

based on the time-dependent wave equation(TDWE) gives a transmission amplitude 

which grows exponentially in time. 

We will now seek t o  understand the above result in the above-the-threshold para- 

mater regime. In other words, the question we seek to  answer is "What is the response 

of the system to  a weak probe when the system can behave as an oscillator ?". 

Obviously for frequencies, when the (laser) resonance condition is satisfied (when 

r21r23e2ikL 2 1 and kL = nr, see below), the output diverges exponentially in time 

due to  the onset of laser oscillations - the system is no longer an amplifier but be- 

comes an oscillator. The exponential growth eventually tapers off due to  non-linear 

processes such as saturation of the gain which are not considered here. However, for 

frequencies not satisfying the resonance condition of the cavity, the propagation(gain) 

at these frequencies in the cavity will be inhibited and the transmission should be 

attenuated. 

To illustrate our point, we will consider a Fabry-Pkrot setup (see Fig. 2.1) treated 

in Ref.1951 for ease of comparision. Thus we have a gain medium of length L between 

the facets with reflection coefficients rij and transmission coefficients tij respectively 

placed between two distant absorbers. The reflection and transmission coefficients a t  

the facets are related t o  the complex wave-vector k = k' + ik" (k" < 0 for the case 

of amplification) in the medium as (see Fig. 2.1) rzl = r 2 ~  = (k - ko)/(k + ko) = R, 

t12 = 2ko/(k + ko), and t.23 = 2k/(k + ko). where ko is the wave vector in free space 

outside the cavity. The TIWE can be solved easily for this case t o  yield a transmission 
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REGION- 1 REGION-:! REGION-3 

Figure 2.1: A schematic diagram of a Fabry-Pkrot etalon. The reflection and trans- 
mission (amplitude) coefficients for the facets are indicated. 

which is well behaved for all frequencies and lengths except for r21r23e2ikL = 1, which 

is the resonance condition. In fact, at  large lengths, the Transmission is attenuated 

exponentially with length. The above result can also be obtained by using the method 

of partial waves caused by multiple scattering and summing the geometric series 

where the first term represents the partial direct transmission of the incoming wave, 

the second term represents the partial wave reflected a t  the right facet then at  the left 

facet before final transmission, and so on. Soukoulis et al. have argued that the above 

series can be summed only if Ir21r23e2ikLl < 1 and that the attenuated transmission at  

large lengths of the cavity is an artifact due to the assumption of a finite output in the 

TIWE. Consequently, they have concluded that the full TDWE has to  be considered 

in order to describe the situation and have shown from a numerical calculation that 

such a treatment yields a transmitted wave amplitude that increases exponentially 

in time. 

Now let us consider the exact solutions to  the full time-dependent wave equation 

for the above case of the Fabry-Pkrot etalon. For the case of linear gain with no 

dispersion, an incident pulse propagates in the medium without changing its shape 

while undergoing amplification. Hence, the response function of the system for &pulse 
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incident from the left is 

B(t) = t12tn3eA6(t - r )  + t12r23~21t23e3A6(t - 3 r )  + t12r23r21r23r21t23e5A6(t - 5r )  + . . 
(2.6) 

where T = Llc, A = -kl1cr the gain in one pass and c is the speed of propagation in 

the medium. It  can be readily shown that for a time-harmonic wave (e-iwt) incident 

at the first facet a t  time t = 0, the wave amplitude outside the second face a t  time t 

is given by, 

where n = Int[1/2(t / r  - I)] with I n t  denoting the integer value. It  is seen that  the 

first part on the right hand side is what we would get from a scattering treatment 

based on the TIWE, i.e., as far as this term is concerned the expression obtained 

below threshold continues analytically in the expression obtained above the thresh- 

old. The second term on the right hand side, however, is what is not contained in 

this analytic continuation. It ,  indeed, gives the exponential growth of the transmit- 

ted amplitude (intensity) as in Ref.[95]. This growing oscillatory term (which may 

eventually get limited only by non-linearities not considered here) essentially is a 

noise imposed on the relatively weak transmission noted above. Further, rewriting 

the second part as 

where R = r exp(i4), we see that this exponentially growing part is a t  an effective 

frequency @IT. Note that this frequency is nothing but the rate of change of ac- 

cumulated phase shift arising from multiple reflections a t  the interfaces, due t o  the 

mismatch in the imaginary part of the refractive index. The growing amplitude is 

extremely sensitive t o  the change in the parameters (e.g. R, T) of the system in 

the limit t -+ oo. Indeed, in principle, it is possible to  pickup the small finite part 

referred to  above as it is synchronous with the incident wave. The above exponential 

growth is a t  a different frequency and hence, not contained in the solutions of the 

TIWE which is essentially a harmonic analysis and only gives the Fourier component 

a t  the frequency of the incident wave. Hence we conclude that the treatments based 
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on the TIVCTE are, indeed, valid within the linear response theory and for the ampli- 

fying media as well. We have considered here the case of transmission for the ease 

of comparision with Ref.1951, but the case of reflection can be treated similiarly. Of 

course, the above is a deterministic treatment that we have chosen for the purpose 

of illustration. For the random case, the interpretation has to be probabilistic. 

2.3 Random amplifying medium with disordered 
complex refractive index 

We consider a one-dimensional active disordered medium of length L with a random 

complex refractive index 71, 0 < x < L. For simplicity, polarization effects are 

neglected and light is assumed to be a scalar wave. Further, only the linear case of 

the gain/absorption being independent of the wave amplitude is considered and the 

non-linear features such as gain saturation are not considered. Here we would like to  

re-emphasize that our treatment is for the possibilit'y of super-reflection (r > 1) i. e., 

for an amplifier and not an oscillator1. The complex wave amplitude E(x)  obeys the 

Helmhotz equation inside the medium, 

d2 E (x) 
dx2 + k2 [1+ ~ ( x ) ]  E(x) = 0, 

where k is the wave vector in the medium (k2 = w2/c2eo) and q(x) = % ( x ) + z [ ~ + ~ ( x ) ]  

is the complex refractive index. Here q,(x) and qi(x) are random and is a constant 

representing the average amplification or absorption in the medium according as .iTi 

is negative or positive. It is well known that Eq.(2.9) can be transformed to  give an 

equation for the evolution of the emergent quantity, namely, the complex amplitude 

reflection coefficient R(L) = [ r ( ~ ) ] l / '  exp[zO(L)] as a function of the sample length L, 

via the method of invariant imbedding 196, 971 (see Appendix-A) as 

Equation (2.10) is a stochastic differential equation and we are interested in the cor- 

responding Fokker-Planck equation for the probability distribution P ( r ,  6; L) which 

can be readily obtained following the standard procedures. Thus, let II(r, 6; L) be the 

'See the last part of Section. 1.5.1 



density of points in the (r, 0) phase space. Now II(r, 8 ;  L) must satisfy the Stochastic 

Liouville equation [98], 

a n ( ~ , e  : L) - a - -- d 
a~ ar ( r  W, 0 : L)) - - ae   en(^, e : L ) )  , 

and by the van Kampen lemma[98], the probability distribution function P ( r ,  0; L) = 

(FI(r, 8; L)),,,,, , where the angular brackets denote averaging over all the realizations 

of the random refractive indices 71, and 3. 

2.3.1 The Gaussian 6-correlated (whit e-noise) disorder 

First, let us consider the simplest case namely that of a Gaussian 6-correlated (white- 

noise) model. In this model, rl, and 3 are assumed to  have 6 correlated Gaus- 

sian distributions with (rb(L)) = 0, (a (L) )  = 0, (rl,(L)rl,(L1)) = A;S(L - L') and 

(Q (L)% (L')) = A:S(L - L') . This model would most appropriately describe the case 

of a continuous random medium such as a laser-dye doped gel or intralipid suspension 

[99], where the fluctuations in and are uncorrelated. Using the Novikov theorem 

[loo] (See Appendix-B) to average over all configurations of rl, and 3, we obtain in 

the random phase approximation (RPA) (i.e., P(r ,  0) = P(r)/27r), 

where the linear operators LR and LI are given by 

and the non-dimensional sample length 1 = 1/2max{A,2, A:)k2L - L/1,, 4, = 

AP/max{A;,A:), 4i = A:/max{A;,A:) and A = 2~/max{A,2,A:)k r 1,/1,,, 

Here I,,, = ( ~ k ) - '  is the amplification length in the medium defined by the aver- 

age of the imaginary part of the refractive index and max implies the superior value 

of the arguments. The RPA is known to be valid in the the weak disorder limit, 

kl, >> 1, where I, is the localization length [97]. We point out that even if rl, and qi 

were cross-correlated, the final equations do not differ in the RPA for the white-noise 

model (because (L1L2P)o = 0 see equations (2.19), (2.20). 
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Figure 2.2: The probability distribution of reflectivity P ( r ;  I) in the,case of the whit,e- 
noise disorder given by eqn.(2.12), and the real disorder dominating (4, = 1.0, q5i = 

0.1), for the different sample lengths indicated. The line joining t'he dots is the 
analytic result for P ( r ;  oo) . The amplification parameter is A = -0.25 . 

The asymptotic 1 + oo limiting solution of Equation. (2.12) obtained by setting 

aP/dl  = 0 is given by, 

P(T;oo) = Po exP (-2AIy tan-1 [ ( ( 4 T  + 4i)r + 54% - 4,) ly ] )  
[ ( 4 T  + 4i) (1 + r2) + 2(54i - 4,)r] 
for 4 T  >4i, (2.15) 

where y = J 1 2 4 ~ l ~  - 24i1 and Po is a normalization constant given by [JF P(r, oo)dr]-'. 

The limit 1 + oo implies physically L >> 2,. This expression goes over straightfor- 

wardly to  the result of Pradhan and Kumar[55] in the limiting case of pure real 

disorder (4i = 0). Thus the statistics qualitatively differ in the two regimes for an 

amplifying medium : (i) when the real part of the disorder dominates (4, > 24i) and 

(ii) when the imaginary part of the disorder dominates (4, < 24i). 

We have also solved equation(2.12) numerically for a finite length to investigate 

the approach to  the asymptotic forms given by eq.(2.15). The parabolic differential 

equation(2.12) was solved by discretizing the equation and using a numerically stable 

implicit scheme [156]. In Fig. 2.2, the plots of P ( r ,  I) for the case of real disorder 

dominating (4, > 24i) for different lengths of the medium are shown. The prob- 



Figure 2.3: The probability distribution P ( r ;  1) in the case of the white-noise disorder 
given by eqn.(2.12), and a pure imaginary mismatch (4, = 0) for different lengths 
of the sample. The line joining the dots is the analytic result for P(r; m). The 
amplification parameter is A = -1. 

ability distribution for the case of a pure imaginary mismatch (4, = 0), with the 

real part 77, being index-matched is shown in Fig. 2.3. The line joining the dots 

in both the figures corresponds to the asymptotic P(r; m) solution. In the case of 

amplifying medium, the value of reflectivity (r,,,) at  which P(r; I )  peaks increases 

with the average value of the amplification factor IAl. For the case of the imaginary 

part disorder dominating, P ( r ;  I )  has a peak at  small values of the reflectivity even 

for moderate values of the amplification. In the case of an absorbing medium with 

the imaginary disorder dominating, the probability distribution has a monotonic de- 

creasing behaviour and is maximum at r = 0. A finite probability of reflection a t  

r > 1 in the absorbing case and at r < 1 in the amplifying case (A < 0) is recognized 

to be a consequence of the two-sidedness of the white-noise process for the complex 

refractive index, which allows the imaginary part of the refractive index (.~ii + q) to  

take on locally both positive and negative values for any given value of the average. 

It should be noted that this limiting form of P ( r ,  m )  gives a weak logarithmic di- 

vergence for (r)  (for q5i # 0 ), regardless of the sign of A for both absorption and 

amplification. Thus, amplification has a much more drastic effect on the reflectivity 

than attenuation. The white-noise process allows the local fluctuations in rl, t o  be 

very large and the effect of a finite mean value is small. It is thus a case of the 
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fluctuations dominating over the mean. We also find that the numerical solutions 

saturate to  the limiting forms for 221. So most of the reflection occurs from within a 

localization length. This enhanced backscattering is quite different from that caused 

by light diffusion[86, 891. In the latter case, the distribution of optical path length, 

because of exponential growth of wave amplitude due to  coherent amplification in 

one-dimension, gives P D( r ;  oo) N ln(r)ll2/r for r >> 1. This decays much slower 

than the P(r; oo) for r + oo, as given by eq.(2.15). 

2.3.2 Correlated telegraph disorder 

In the case of the white-noise disorder, the imaginary part of the refractive index was 

allowed to  take on both positive and negative values i.e., the medium could be locally 

both amplifying or absorbing. With a view to studying purely amplifying/absorbing 

random media, we use the telegraph disorder model to describe the fluctutations in 

the refractive index. Moreover, since the gain/absorption coefficient is physically al- 

ways bounded from above, the fluctuations in the imaginary part of the refractive 

index are better described by this dichotomic Markov process (i. e., spatial Telegraph 

noise). Further, we recognize that in discrete random media such as microparticles 

suspended in a laser dye solution used in experiments, the real and the imaginary 

parts of the refractive index fluctuate spatially in the same manner and can, there- 

fore, be described by the same stochastic process. A telegraph noise with a finite 

correlation length is most appropriate to describe such a situation. Accordingly, we 

will choose %(L) = ax (L)  and %(L) = Px(L) with an average value for the imagi- 

nary part G. Here x(L) is taken to be a dichotomic Markov process which can take 

on the values f x such that (x(L)) = 0 and (x(L)x(L1)) = X2 exp (-r lL - L1l),where 

r-' is the correlation length in the medium. 

Now, defining as before, P ( r ,  8; L) = (II(r, 8; L)), and W (r,  8; L) = (x(L)n(r ,  8; L)),, 

and using the "formulae of differentiation" of Shapiro and Loginov[lOl] (see Appendix- 

C) to  average over the dichotomous configurations of x(L), we obtain 
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where the linear operators L1 and L2 are : 

We thus get a closed system of equations for P(r, 8, L) and W (r, 8, L) . These equa- 

tions go over correctly to  the corresponding eq.(2.12) in the white-noise limit obtained 

by taking the limit x2 + oo, r -+ oc while keeping x2/r = A2 constant. In this 

limit, the equation for P ( r ,  8; L) becomes autonomous i.e., it gets decoupled from 

W (r, 8; L) . 

In the RPA (P)e = 0 arid (W)e = 0, and in the asymptotic limit L + oo, these 

equations simplify to  

where LR and LI are given by eq. (2.13) and eq.(2.14) and A = 21'%lx2. Interestingly 

in the case of the pure real part disorder (P = O),  the form of the telegraph noise 

equation for P ( r ;  GO) is identical to  that for the white- noise case, but with the 

coefficient A = 2r%/kX2. Similiarly, in the case of the pure imaginary part disorder 

(a = O) ,  the form of the telegraph noise equation for P ( r ;  m) is again identical to  that  

for the white-noise case, but with the coefficient A = 2 I ' ~ / k ( ~ ~  - . ~ i i ~ ) .  However, for 

,Bx < I ? & / ,  the imaginary part of the refractive index is always positive (absorbing) or 

negative (amplifying). Hence the solution for these two cases is also given by eq. (2.15), 

the solutions being valid in the interval 0 < r < 1 for the absorbing medium, and 

1 < r < cm for the amplifying medium. Outside the intervals, the probability density 

P(r; L) vanishes. 

A complete solution for the eq.(2.21)and eq. (2.22) is obtained as 
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where & = a2 + P2 i- @fji/x, & = [10(,B2 i- Pti,/x) - 2a2]/[1 k \/p + a2], r f )  = 

-1/2[<+ + (<: - 4)'12] , r f )  = -1/2[<* - (5: - 4) 'I2] and Po is a normalization 

coefficient. These expressions become the same as given by eqn.(2.15) in the white 

noise limit (x2 + m, r + m and X2/l? being constant). 

The solutions for one-sided disorder in the imaginary part exhibit three qualita- 

tively different behaviours corresponding to  choices of the parameters a, P and (X 

is an arbitrary constant and can be set to  unity without loss of generality). First, we 

note that the case of a2 +P2 - Plqil/x = 0, corresponds to a singular perturbation of 

the differential equation for P ( r ;  m ) .  This condition can be interpreted as a threshold 

condition by noting that the localization length is given by 1;' - (a2 + P2) and the 

effective amplification length is given by l;:, - PG. This condition then corresponds 

to a matching of length scales in the problem, 1, = I,,,. In the regime where the am- 

plification dominates the localization (a2 + P2 - PIG 1 < 0 or 1, > la,,), the solutions 

exhibit a monotonic decreasing behaviour in the region of interest (1 5 r < m). Here 

the disorder in the real part (a) is small and does not affect the statistics appreciably, 

as can be seen from Fig. 2.4a. For (a 2 + P2 - P 1 ~ l  > 0 or I, < I,,,), a natural bound- 

ary arises for the solutions of the equation at r(2) which falls in the domain of physical 

interest (1 5 r < oo). Now the solutions given by the expression(2.23) are valid in 

the range r(2) 5 r < m with P ( r ;  m) = 0 outside. In this regime the localization 

dominates (1, < I,,,), if 2A/[J-((:I - 4)-'1'1 > 1 and we have a broad distribution 
(2) (2) with peak a t  r,,, > r- and P ( r -  ;m)  = 0 (Fig. 2.4b). The value of r,,, is large 

for small disorder in the real part (a2 + P2 - P 1 %  1 2 0) , and decreases as a increases. 

The behaviour in this region is dominated by the disorder in the real part of the 

refractive index. A third qualitatively different behaviour occurs for 1, < I,,, and 
(2) 2A/[J-((1 - 4)-'I2] < 1. Then the expression given by eqm(2.23) diverges at  r- . 

This divergence is, however, normalizable implying that P(r; oo) is peaked (in fact, 

sharply) at  that point. This behaviour can be readily understood by noting that the 

second condition which can be rewritten as ~~(I'llc)~ < 3,f?(l~I - P) [a2 +2P(l%I - @ ) I ,  
is basically a condition on the correlation length (l,,, = I'-I). This condition is sat- 

isfied for small r (large I,,,). Then the reflection is essentially from a single potential 

barrier and thus has a sharply defined value. It should be noted that ,  as a + m, 

P ( r ;  m) -+ 6(r - I ) ,  as expected. 
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(a) @=0.3;1i= 1.0;r=1.0 (b) p = 0.5; = 1 .O; r = 3.0 

Figure 2.4: The probability distribution P ( r ;  I )  in the case of the correlated telegraph 
noise. (a) I ,  > lamp and (b) I ,  < lamp are for one-sided disorder (,B < [ G I )  with 
disorder in both the real and the imaginary parts. (c) 1, > lamp and (d) 1, < lamp are 
for two-sided disorder (,B > 1 ~ 1 )  and pure imaginary mismatch (a = 0). 

(c) a=O.O;ii= l.O;r=l.O (d) a=O.O;<=l.O;r=l.O 
I 0.25 r 

The solutions for the case of a two-sided disorder for the imaginary part (,B > 1 %  1 )  
are similiar to  the solutions for the white noise case. I t  should be noted that there 

does not exist real r!? which falls into the physical region of interest (0 < r < 
a). In this case the large disorder in the imaginary part (,B) causes the effects of 

localization to  dominate. However, in all cases of amplification, for a finite A and 

a2 + ,B2 - I # 0, there is a universal l/r2 tail for the P ( r ;  GO).  For the case of pure 

imaginary disorder(a = 0), we similiarly see a monotonically decreasing behaviour 

of P ( r ;  m) with r for one-sided disorder (,B < or I ,  > lam,) (Fig. 2.4c), and a 

P(r; m) with a peak for two-sided disorder (,B > or I ,  < l a m p )  (Fig. 2.4d). With 

increase in ,B for two-sided disorder, the peak shifts to  smaller values of reflectivity as 

the effects of absorption show up, until for large enough ,B, the peaks occurs at  r = 0 

and we again have a monotonically decreasing P ( r ;  GO). It should be mentioned that 
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all these effects are seen for the case of absorption also, with the roles of r?) and r?) 

interchanged. 

2.4 Conclusions 

In conclusion, we have studied the statistics of super-reflection from a one-dimensional 

disordered system with spatial randomness both in the real and the imaginary parts of 

the complex refractive index. We have discussed the models of disorder qualitatively 

applicable to  experimental systems such as intentionally disordered optical fibres 

with gain (Er3+-doped) and obtained the probability distribution function of the 

reflectivity for the cases of a white-noise disorder and a correlated telegraph disorder. 

In both cases, an enhanced reflection results because of coherent feedback due to  

Anderson localization and coherent amplification. In the case of white-noise disorder, 

the statistics are qualitatively different in the two regimes of the real part disorder 

dominating (A: > 2A:) and the imaginary part disorder dominating (A: < 2A3.  

In the case of telegraph disorder, we obtain three qualitatively different behaviours 

for P(r; oo) depending on threshold conditions involving the localization length, the 

amplification length and the correlation length. Thus the fluctuation in the imaginary 

part of the refractive index is seen to  have a non-trivial and qualitatively different 

effect on localization and lasing from such random media. 

Finally, it is to be noted that the domain of validity of our treatment and the 

results therefrom, for the super reflection from a random amplifying medium is re- 

stricted to operating conditions corresponding to below the threshold of lasing, i. e., 

to the parameter regime I, < lamp. Indeed the random amplifying medium operating 

in the reflection mode acts as a one-sided cavity of size 1, essentially open (hence 

leaking) in the direction of the incident beam (Of course, deep inside the medium, a 

photon injected, for example, through spontaneous emission will undergo indefinite 

amplification in an effectively closed cavity of size 1,. Such an amplified spontaneous 

emission will lead to large storage of photons which will eventually be limited by 

non-linear effects in real systems). As 1, approaches lamp from below (lc.5+lamp), the 

statistical weight for the reflection coefficient moves to higher values of reflectivity 

as indeed can be seen in Fig. 2.4b and Fig. 2.4d, and finally a t  1, > lamp, we would 

expect the random amplifier to become a random oscillator with self-sustaining os- 
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cillations a t  the eigenmodes of the system. Thus one may suspect the results for 

1, > I,,, (Fig.2.4a and Fig.2.4~) t o  lie outside the validity of our treatment. We 

have shown in Section(2.2) that the treatment based on the TIWE is indeed valid t o  

describe an amplifying system as well and hence, give an operational meaning (in the 

sense of a response t o  a probe at that  frequency) to the results given by eqn.(2.23) 

in the above-the-threshold regime. 

In our case, the imaginary potential not only causes the coherent amplifica- 

tion/absorption of the wave but also scatters the wave due to  mismatch in the complex 

potential. It  is t o  be noted that the amplification/absorption can also be modelled 

by using additional fake channels connected to  reservoirs [49] or by stochastic am- 

plification/absorption [102], where the amplification/absorption is introduced by an 

amplification/absorption constant per unit-length in the free propagation region be- 

tween scatterers. In these cases, there will not be any extra scattering due to  the 

amplification/absorption and the different cross-overs between the regimes of real 

disorder dominating or the imaginary disorder dominating in our case, might not 

carry over t o  the case of stochastic amplification/absorption. Here, we should per- 

haps point out that coherent amplification/absorption due to  the imaginary potential 

is more applicable to  the case of light, while the models of stochastic absorption are 

more applicable to electron (fermion) propagation. 

Finally, as the phenomenon considered here is concerned with the issue of sta- 

tistical fluctuations (noise) in a random amplifying medium, we propose for it the 

acronym RAMAN (Random Amplifying Medium And Noise). 



Chapter 3 

Correcting the quantum clock: 
The sojourn time in a scattering 
potential 

3.1 Introduction 

The time scales associated with the motion of a deformable object, such as a quantum- 

mechanical wave packet, scattered by a potential are operationally not context-free 

and raise some fundamental questions of interest for mesoscopic systems (for recent 

reviews see [67, 66, 681). This is due essentially to the fact that for a deformable 

object in motion, there are no sharply defined starting and finishing lines, even 

classically! This problem is further accentuated for the case of quantum tunneling 

(evanescent waves), where the wave vector becomes imaginary and even the velocity 

of propagation is ill-defined. Thus, for example, the well known Wigner phase delay 

time [69], (defined in analogy with the problem of the group velocity) based on an 

identifiable fiducial feature, such as the peak of the wave packet, becomes meaning- 

less under the conditions of strong distortion of the wave packet by the scattering 

potential[70, 103, 1041. Perhaps, the most striking manifestation of this feature is 

seen in the recent claims for superluminal propagation of a light pulse[66, 1051. 

One of the time scales relevant for many physical situations is what may be aptly 

called the sojourn time that literally measures the time of sojourn of a particle in 

the spatial region of interest, under given conditions of scattering. Clearly, this time 

must be positive definite. One can, of course, define the conditional sojourn times 

separately for the transmission and the reflection in the context of barrier crossing, 

e.g., we have the traversal (or tunneling) time for transmission through a barrier. 



3.1. In t roduc t ion  53 

We could also generalize the sojourn time to  include the dwell time for a parti- 

cle initially prepared in a spatially confined state - this covers the decay time of a 

metastable state(see Section-1.6 for other possible time scales). The sojourn time is 

clearly distinct from the Wigner phase (4) delay time, h&b/dE, which can in fact, 

go negative. Operationally, the local sojourn time can be defined meaningfully by 

invoking a mathematical artifice called a "clock" involving attachment of an extra 

degree of freedom that co-evolves with the sojourning particle. Thus, we have the 

Larmor clock[76, 751 that involves the precessional angle accumulated by a spin asso- 

ciated with the particle in an infinitesimal magnetic field introduced for this purpose 

over the scattering locality of interest. Another 'clock' involves the time-harmonic 

modulation of the potential, and the timescale of traversal is identified with a certain 

(adiabatic to  non-adiabatic) crossover phenomenon that  occurs when the traversal 

time matches the period of modulation[70] (see Section-1.6.1 for details). 

In this chapter, we will investigate yet another 'clock' (a 'non-unitary' clock), 

[79, 78, 106, 1071 wherein the absorption/amplification caused by an infinitesimal 

imaginary potential formally introduced over the spatial region of interest, acts as a 

physical clock to  'count' the time of sojourn within the locality of interest. A rather 

subtle problem, however, associated with the 'non-unitary' clock, and possibly also 

with the Larmor clock, is that  the very clock mechanism affects the sojourn time 

t o  be clocked finitely even as the perturbing clock potential is infinitesimally small 

(V, + 0 limit). This raises the question "Can the quantum-mechanical sojourn time 

be clocked without the clock affecting the sojourn time?". Thus, for instance, the 

conditional sojourn times calculated for certain non-random potential scatterers turns 

out to  be negative. We recognise that  the scattering concomitant with the mismatch, 

however weak, due t o  the very clock potential(iV,) would affect the propagation of 

the wave in the sub-interval of interest. We propose a formal procedure by which 

the sojourn time can be clocked ideally using the non-unitary counter by correcting 

for these spurious scattering effects. The resulting sojourn time for traversal is then 

positive definite, has the proper high- and low-energy limits, and for a wide barrier 

goes over to  the Biittiker-Landauer traversal time given by the Larmor clock. In the 

case of reflection, we find that  the partial waves corresponding t o  the prompt part 

of the reflection have to  be removed (suppressed) in order to  obtain meaningfully a 
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positive sojourn time in the region of interest. This procedure is justified in that  

the partial waves corresponding t o  the prompt part of the reflection arising from the 

surface mismatch, would not have sampled the sub-interval of interest in order t o  get 

affected by the imaginary potential. In the case of a random potential, we find that  

the effects of the 'spurious' scatterings average out (due t o  the very random nature 

of the scattering) and hence, remains hidden. We have also worked out the delay 

times of reflection using the WKB approach, which suggests that the delay time for 

reflection is the same as the traversal time [73] within the WKB approximation. 

3.2 Imaginary potential as a counter of sojourn 
time 

The idea of the imaginary potential clock is simple and physically appealing. In 

the presence of an imaginary potential, a wave grows (or attenuates) exponentially. 

Thus, for an arbitrarily small imaginary potential, we expect that  the sole effect of the 

imaginary potential would be that,  the reflection or transmission coefficient becomes 

exponential with the time endured in the presence of the imaginary potential and thus, 

provides a natural counter for the sojourn time. Mathematically, the Schrodinger 

equation for the wave function $(F, t) of a particle in the presence of an imaginary 

potential is 
a$ fi2 2 iii- = --V $ + [V,(q + iV,]$ 
a t  2rn 

can be transformed to  a Schrodinger equation without the imaginary potential for 

the function +(?, t) = exp(-V,t/ii)$(?, t). Hence, we write for the stationary (time- 

independent) case, l$(?JI2 = exp(2&rvi/ii) l$(f12, and interpret rvi as the time of 

sojourn in the sub-region where the imaginary potential is present. Now, we will fur- 

ther intuitively define the conditional sojourn times for the reflected and transmitted 

waves (in 1-D) as: 

ti a1nIRl2 
T: = - lim 

2 x 4  av, ' 
T ii rVi = - lim 

d l n  ITI2 
2 v,+o av, ' 

where 1 ~ 1 ~  and [TI2 are the reflection and transmission probabilities respectively in 

the presence of the imaginary potential 2%. In the limit V, + 0, the imaginary 
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potential was expected not t o  affect the dynamics of the wave propagation. In this 

approach, the local dwell time in any part of the scattering potential can also be 

calculated, by applying the infinitesimal imaginary potential only over that  region of 

space. It  is to  emphasized here that  the growth or attenuation of the wave is still a 

classical concept, but it is such an "irreducible" concept, that it is difficult t o  doubt 

its physical significance even a t  the risk of appearing naively realistic. 

3.2.1 The average dwell time 

Let us now consider the reflection and transmission from an arbitrary real potential 

with an added spatially constant imaginary potential (in 1-D). In the stationary case, 

the Schrodinger equation for the wavefunction 1 yields an identity 

where [ ]i indicates the difference of the quantity within the brackets evaluated a t  

L and 0 respectively. This yields that  the sum of the reflection and transmission is 

greater (lesser) than unity for an amplifying (absorptive) potential. We can further 

write that 

where r d  is the average dwell time defined earlier and is positive definite. Note that  in 

the case of equal reflection and transmission times, they become equal to  the average 

dwell time as well. This can be generalized in a straight-forward manner t o  the case 

of multi-channels and higher dimensions. This time has been claimed t o  represent the 

actual time of dwell [74, 681. This quantity, however, scales differently a t  low energies 

(sub-barrier energies) compared to  timescales obtained by other methods such as the 

Larmor clock [75]. 

3.2.2 The case of unitary reflection 

It follows from the previous discussion that the sojourn time for reflection is positive 

definite in the case of unitary reflection (IRI = 1). In this case, it can be literally 

interpreted as the time of sojourn in the region. Further an interesting relationship 

between this dwell time and the Wigner phase delay time arises due t o  the analytic 
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properties of the S-matrix, corresponding t o  unitary wave reflection. The S-matrix 

in this case is simply the complex amplitude reflection coefficient, R ( E )  = exp[iO(E)] 

with I RI2 = 1 for real E .  Now from the analyticity of the S-matrix in the complex 

energy plane, we have d(Re 8)/a(Re E) = d ( I m  8)/d(Im E), where Re and I m  

denote the real and the imaginary parts respectively. As we approach the real axis, 

i.e., in the limit I m E  + 0, we have d(Re 8)/d(Re E) = T / h  (Wigner time delay), 

while d ( Im O)/d(Im E) + I m  8/V, as V, + 0 (along with I m  8). Thus we have 

I RI2 = exp[2KT/h] giving I RI2 - 1 = 2V,T/h in the limit V,  + 0 (the latter corre- 

sponds to  treating our electronic problem as a limit of vanishing imaginary part of 

the scattering potential). 

It  is t o  be noted that in the above, the variation of V,  was assumed t o  be global, 

i. e., over the entire space (-00, oo), as is the variation in the wave energy ( E ) .  

However, the imaginary potential is applied only locally within the region of interest 

in our proposal for the non-unitary clock. The two times are not strictly equal. 

The non-Unitary clock acts as a local clock compared t o  the Wigenr phase delay 

time which is a global quantity. From the Feynman path integral point of view, the 

particle (virtual) paths could go several times in and out of the region of interest 

(see Fig. 3.1). The imaginary potential amplifies/absorbs locally only the part of the 

id Global fbl Local 

Figure 3.1: A schematic diagram showing a possible trajectory in the Feynman path 
integral sense. (a) shows the portion affected by a global variation of the potential 
and (b) shows the portion (solid line) affected by a local variation of the potential. 
The dotted portion of the trajectory is not counted. 

path which lies within the region of interest. Hence, it can be taken t o  count only 

when the particle is inside the region. The variation of wave energy is by comparison 

global. It  affects all parts of the path (inside as well as outside the region). 
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Figure 3.2: The potentials considered here (a)The rectangular barrier and (b)The 
S-dimer. The hatched region indicates the presence of the clock potential (iV,). 

3.2.3 Negativity of the conditional sojourn times 

Though the average dwell times is positive definite, there is no such restriction on the 

conditional sojourn times, which can be positive or negative. Indeed, it turns out that 

the conditional sojourn times calculated as defined above, can become negative for 

certain deterministic potentials. For example, an absorptive potential can increase 

the transmission, instead of reducing it - a manifestation of the Borrman effect in the 

context of X-ray scattering [108]. Below, we will consider the one-dimensional case 

with two output channels for a rectangular barrier and a 6 dimer (two &potentials 

separated by a spatial interval; see Fig. 3.2) and explicitly verify that the conditional 

sojourn times, indeed, go negative. 

We calculate the reflection and the transmission coefficients for a plane wave 

of energy(E) incident on the barrier, by solving the Schrodinger equation (in the 

presence of iV,, the clock potential) in each case and obtain the following results. 

The sojourn time in the entire barrier T:?~, defined as above, for reflection(R) / 
transmission(T) for the case of the rectangular barrier of height (V,) and thickness 

, r T I R  s - 2(2 - v,)p - v,/kL sin(2pkL) 
-- 

4 - 4v, + v,2 sin2 (pk L) , 
TBL 

where p = JK, v, = V , / E ,  TBL = rn~/hk&- 1 I (the Biittiker-Landauer time) 
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and k = d m / f i .  These reflection and transmission sojourn times are equal, and 

equal t o  the average Smith dwell time. Thus, the imaginary potential was thought to  

be incapable of distinguishing reflection/transmission. The ratio however, 

tends t o  zero for barrier penetration in the low-energy limit, and thus, does not give 

the proper low-energy limit[7O]. We note though, that the sojourn time, so calculated, 

remains positive for this particular case. However, when we proceed to  calculate the 

local dwell time in any given sub-interval of the rectangular barrier (e.g. in (so, xo+S), 

see Fig. 3.2a), we obtain different sojourn times for transmission and for reflection 

5 - - 2(2 - vT)p - 2vT/k6 sin(pk6) cos[pk(2xo + S)] cos(pkL) 
TBL 4 - 471, + v,2 sin2 ( p k ~ )  , (3.7) 

We check that  these expressions correctly go over to those for the entire barrier when 

xo = -L/2 and S = L. In this case, T: = T: when xo = -612, i.e., when the region 

we are interested in is symmetric about the center of the potential. But importantly, 

we note that T: can now become negative, and can even have negative (and positive) 

divergences a t  the resonances of the barrier (for plcL = n ~ ) .  We note that  the local 

sojourn times in different parts of the barrier add up (in spite of negativity etc.) to  

yield a positive sojourn time in the entire barrier. 

Similiarly, we obtain the sojourn times for the transmission and the reflection 

from the 6-dimer potential as 

where Pl,2 = 2rn~1,2/kfi~.  We note that  T: and T: are now different in general, and 

are equal only for P1 = P 2  (the symmetric 6-dimer). Again, we observe that the 

sojourn times for reflection so obtained can become negative. Unlike the phase delay 

time which only compares the arrival of the peak in the presence of the potential t o  

the potential-free case and is allowed t o  go negative, the negativity of the sojourn 

time (which is more like an interaction time) is clearly unacceptable. 
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3.3 Correcting the 'non-unitary' clock 

In the following, we will trace this 'unphysical' feature to  the 'spurious' scattering 

concomitant with the very clock potential (iV,). We will first consider the case of 

transmission for the above-the-barrier wave energy(non-tunneling) and sub-barrier 

wave energy (tunneling) separately. The case of reflection where a further refinement 

of our proposal was required will be considered separately later. 

3.3.1 The case of propagation (non-tunneling) 

Let us first consider the case of propagation (non-tunneling), i.e., the wave energy t o  

be above the barrier (E > V,). For this, we calculate the transmission and reflection 

amplitudes using the method of partial waves by multiple reflections arising from the 

interfaces of the rectangular barrier (See Fig. 3.2). In the case of propagation we 

obtain [47] 

where k' = , / 2 r n ( ~  - V, - il/;)/h and, r12, r23, r2l and t12, t 2 ~ ,  t 2 ~  are the reflection 

and the transmission amplitudes a t  the interfaces respectively (See Fig. 3.2). The 

transmission coefficient has a generic form T = Ck Akei4*eakL, where Ak, +k and a i k  

are real numbers representing the amplitude, phase and the growth of the partial 

waves. Consider, now, the sojourn time associated with this quantity 

The imaginary part iV, of the clock potential modifies the reflection / transmission 

coefficients (rjk, tjk) a t  the interfaces, where there is mismatch due t o  the imaginary 

clock potential. Now, the derivative with respect to the imaginary potential would 

cause terms of first order in V,  to  contribute to  T:~, even in the limit of an infinitesi- 

mal potential V,  + 0. Thus, the counter modifies 'spuriously' the propagation of the 

wave itself in a non-trivial manner, in addition to  the amplification or attenuation of 

the wave, for which it was introduced. 

This analysis immediately suggests the key to  correct the 'quantum clock' for the 

'spurious' scattering. The whole point is that  the presence of the imaginary potential 
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modifies the reflection and transmission coefficients at any point where the imaginary 

potential changes abruptly. We have to, therefore, devise a method by which the clock 

potential (iV,) causes only the intended effect (amplification/absorption) without 

causing the 'spurious' scattering, i.e., it must be well apodized. A little thought of the 

perturbative structure of the scattering processes should convince one that  the clock 

related growth/attenuation would only involve the paired combination V,A (A being 

the spatial interval of interest) while the 'spurious' scattering would involve unpaired 

V,. This motivates the following formal procedure to eliminate the 'spurious' effects. 

Treating V,  and V,A = < as independent variables, we keep J formally constant and 

let V,  + 0 in the expression for T. The sojourn time is now obtained as 

T: = hA/2 lim a In /T(V, = 0, <)I2/8J. 
E+O 

The same result is obtained by considering transfer matrices that explicitly suppress 

the 'spurious' scattering due t o  the clock potential iV,. 

Using either of the procedures, the sojourn times for the rectangular barrier can 

now be calculated. Thus, in the case of propagation (v, < I) ,  we have 

where P is the real part, k, = \ / 2 m ( ~  - T/,)/h, and the r j k  and tjk are the scattering 

amplitudes as before but with V,  = 0. We note that since lrjkl < 1 for any real 

potential, the above sojourn time for transmission is always positive. For the case of 

the symmetric rectangular barrier [r21 = r23 = (k - k,)/(k + k,)], the transmission 

and reflection sojourn times are equal and we explicitly obtain, 

where p = d E .  We show plots of the sojourn time of transmission in a rectan- 

gular symmetric barrier and the S-dimer as a function of the potential strength in 

Fig. 3.3 (for v, < 1). 

We note that the expression given by equation (3.15) is a general expression for 

a general class of problems. This is because the rjk can be the scattering matrices 

for any arbitrary potential, with the only condition that the real potential within the 

sub-interval, where we seek the time of sojourn, should be constant (see Fig. 3.4). 
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Figure 3.3: The corrected sojourn times for transmission versus (a) v, = V,/E for 
the rectangular barrier and (b) P = 2mV/kh for the symmetric 6- dimer. The times 
are normalized with respect to  the Biittiker-Landauer traversal times (rBL). 

This is, however, not a real restriction as it  can be straight-forwardly verified that  

the local sojourn times for traversal in different parts of the potential add up t o  

give the total sojourn time (a schematic is shown in Fig. 3.4b). Since any arbitrary 

potential can be constructed out of piece-wise constant potentials (in the limit of the 

width going to  zero), we realize that  the sojourn time for transmission given by this 

procedure is positive definite for any arbitrary potential. 

3.3.2 The case of wave tunneling 

For the case of tunneling (energies below the barrier energy E < V,), we note that 

the wave vector becomes imaginary within the barrier. The real part of the potential 

sets its own length scale for the exponential decay / growth with distance inside the 

barrier. Essentially the roles of the real part and the imaginary part of the potential 

get interchanged. The imaginary part to  first order in V,  causes an oscillation of the 

wave function with distance. Thus, the paired combination [ = V,A, would affect 

the phase of the wave, rather than the amplitude. Mathematically, we are unable t o  

analytically continue the expressions for propagation, i.e., for v, < 1, t o  the case of 

tunneling (v, > 1). This is due to  the fact that in determining the complex wave 

vector, we used an expansion where we assumed vi/ll - v,( << 1. In the limit of an 
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(c) 

......................... 

index-matched with 
12 the continuum 

Figure 3.4: The general potential considered here (a)The region of interest is bounded 
by two arbitrary potentials whose scattering matrices are shown and (b) Shows two 
such regions, the local sojourn times of which add up to  give the total sojourn time. 
The hatched region indicates the presence of the clock potential (iV,). (c) The mod- 
ified potential of (a), index matched to the continuum on the right from Region-2 
onwards to  have a reflection amplitude rl2. 

infinitesimal vi, this is true everywhere except a t  v, = 1. Thus, there is a branch 

cut at  E = V,  in the complex energy plane. Indeed, if we analytically continue the 

expression for the traversal time in Eq. (3.15) to the case of tunneling, we would 

obtain a sojourn time which could be positive (v, > 2) or negative (1 < v, < 2). 

Motivated by the success of using the paired combination for the case of propa- 

gation, we will define the sojourn time for transmission in the case of tunneling as 

the derivative of the phase with respect to the paired combination < = V,A: 

a 
T: (vr > 1) = ihA/2 lim - ln[T (K = 0, <)IT* (K = 0, t)] 

<+o a< 
For the general case of Fig. 3.4a, we obtain the sojourn time of traversal as 
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where kT = 4-/h now. We note that this traversal time is positive definite 

for any arbitrary potential. Further, as before, the local sojourn times in different 

parts of the potential add up to  give the total dwell time. For the case of the 

rectangular barrier we obtain 

The sojourn time is plotted in Fig. 3.3 (for v, > 1). For an opaque barrier (L >> k;' 

or v, >> I ) ,  i.e, in the low energy limit, the sojourn time in the above expressions 

tends to  the Biittiker-Landauer traversal time for tunneling (7: -+ rBL). Finally, 

regarding the local sojourn time in any part of the rectangular barrier, we find that  

the ratio of the time spent in the interval [xo, xo + A] t o  the time spent in the entire 

barrier is AIL,  irrespective of xo in both the rectangular barrier as well as the S- 

dimer. We conclude that in these cases, the wave spends an equal amount of time in 

equal intervals of the barrier region. 

3.3.3 The conditional sojourn time for reflection 

Now, let us consider the sojourn time for reflection in the cases of the over-the-barrier 

propagation and sub-barrier tunneling. The sojourn time for reflection can be defined 

as for the case of transmission: 

a 
r:(~ > T/T) = hA/2 lim -[ln IR(K = 0, <) 1 2 ] ,  

e+o a< 
a 

T:(E < T/T) = ihA/2 lim - ln[R(K = 0, <)/R*(K = 0, <)I .  (3.21) 
t+o at 

The reflection sojourn time for the general case of Fig. 3.4a straightforwardly works 

out as, 

This expression is not positive definite and in fact, beconies negative as we go across 

a transmission resonance (IRI = 0). In the case of tunneling, we obtain 

r,R(E < Vr)  - T:(E < VT) Ir23 12e-2k~L - lrql 12e2k~L 
- + (3.23) 

~ B L  TB L lr23 12e-2k~L + lr2112e2k~L - 2R(rzleiar23) ' 

which is again not positive definite. 111 fact, even for the case of a symmetric rectan- 

gular potential, this time is negative. 
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Now, if we look at the partial wave expansions for the transmission and the 

reflection amplitudes in Equation(3.12), we would realize one difference between the 

transmission and the reflection. All the partial waves of the transmitted wave sample 

the region of interest and correspondingly pick up the paired combination = V,A 

in the amplitude, or the phase. In the case of reflection, however, there is one partial 

wave corresponding to the partial reflection from the front edge of the potential upto 

the region of interest (see Fig. 3.4), due to the element rl2 in the partial wave 

expansion, that never samples the region of interest where the imaginary potential 

is applied. This part corresponds to the prompt part of the reflection. Arguably, if 

this partial wave never enters the region where the imaginary potential is applied, 

it should never have been affected by it and the weightage corresponding to this 

partial wave should be eliminated out of reckoning. But, it istclear from the above 

expressions that this partial wave interferes with the rest of the partial waves, and 

1 thus affects the time to be clocked spuriously. This problem can be overcome by 
I 
I explicitly removing this prompt part of the reflection. 1 
I 
I n . n  , 1. Now we obtain the sojourn time 
I 

ctinn ffnr F: \ V an W P I  as for E < V,) as 
l ~ h i s  can be accomplished by explicitly 

The reflection time in this interpretation is the sum of the transmission time and 

removing the term r12 in the hand side of 
Eq. (3.12) in the 1D case. 

a propagation time across the sub-interval. Consequently it is always greater than 

r: = r: + TBL. 

the transmission sojourn time. But now the reflection time is also positive definite. 

In fact, an experimental implementation of this procedure is also possible. One can 

cause the reflection from a modified potential whose reflection coefficient is equal to 

7-12 to interfere destructively with the reflection from the potential in which we seek 

the sojourn time. For example, one can use the same potential but index matched to 

the continuum beyond from the point where the imaginary potential is applied (as 

shown in Fig. 3 . 4 ~ )  as the modified potential. 

The reflection delay time in the WKB approach 

The sojourn time problem can also be dealt with using the WKB wave function 
2 

$(x) [log] within the barrier region. Using the particle current density j ( x )  = 

library
Text Box
This can be accomplished by explicitly removing the term r12 in the hand side of Eq. (3.12) in the 1D case.
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Figure 3.5: A schematic of the potential showing the classical turning points and the 
partial reflections in the WKB approach. 

(h/2im)[$*(d$/dx) - $(d$*/dx)], the total velocity field v(x) is given by the rela- 

tion j (x) = v(x)$* (x)$(x). Evaluating the total velocity field using the WKB wave 

function yields an expression [73] in which the total velocity field can be split into a 

sum of the forward velocity field and a backward velocity field. The forward velocity 

field is given by vf(x) = p(x)/m, giving the traversal time as .rT = Ji m/p(x) dx, 

where a and b are the classical turning points and p(x) = \/2m(1/,(z) - E. This time 

is consistent with the Biittiker-Landauer time for a rectangular barrier. Using this, 

the reflection sojourn time for tunneling can be written as a properly weighted sum 

over the partial reflections from each point within the barrier (See Fig. 3.5) as (there 

is no multiple scattering here): 

where R(x)  is the (probability) reflection coefficient of the barrier extending from 

only x upto a ,  and in the WKB approximation is given by [110] 

R(x)  = 1 - exp [-2 [p(xl')/h dx"] . (3.26) 

Using the above expression, we will now proceed to calculate the delay times for two 

symmetric potentials, vix., the rectangular potential barrier of height V, and width 

L, and a parabolic potential barrier V(x) = - 1/2w2x2. For the rectangular barrier, 

we obtain the reflection delay time as 
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where N = [l + A/2poL(1 - e-2~0Ll"] and p, = Jw. We note that for a 

sufficiently wide barrier poL/h >> 1 and the reflection time can be expanded in powers 

of h/po. To the zeroeth order, rR  = rT = mL/po, i. e., the reflection time is the same 

as the transmission time. In the case of the parabolic barrier, the transmission time 

is rT = ~ J m / w  and the reflection time is 

where 

R(x)  N 1 for a reasonably small w or a broad potential. Then the second part of 

the expression for rR  is negligible, giving r R  = rT. For R(x)  < 1, the reflection time 

is slightly lesser than the transmission time. But within the validity of the WKB 

approach, it appears that the reflection and transmission times are equal in this case 

also. 

3.5 The case of the random potential 

Coming now to the case of the random potentials, let us consider Eq.(3.13). The 

first part on the right hand side consisting of the diagonal terms represents mainly 

the growth of the wave, while the second part consists of the off-diagonal terms 

representing the interferences. For a disordered potential, we will expect the phases 

to be random, and for any typical configuration of the random potential, the off- 

diagonal terms to contribute very little. Thus, we do not expect the problem of 

the negative times for a random potential. Due to the random phases of the partial 

waves, the problem of the random potential becomes similiar to the classical diffusion 

problem. We will deal with the problem of the distribution of sojourn times from a 

random potential further in Chapter-4. 

3.6 Conclusions 

In conclusion, we have pointed out that the non-unitary clock involving the imaginary 

potential (iV,) can lead to a negative sojourn time for non-random potentials. This 
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negativity can be traced t o  the 'spurious' scattering caused by the very clock potential 

introduced for clocking the sojourn time through coherent amplification/attenuation. 

A simple, formal mathematical procedure has been given to  remove the effects of this 

spurious scattering. In the case of reflection, we further needed to remove the prompt 

part of the reflection. With these corrections, the sojourn times are positive definite, 

in general. We also find that the corrected non-unitary clock yields a sojourn time 

with the proper low-energy limit in agreement with the Buttiker-Landauer traversal 

time. We have also given an expression for the reflection delay time within the WKB 

approximation. It  is also clarified why the problem of spurious scattering effectively 

does not arise for a random potential. 

This problem of the 'clock' mechanism affecting the time t o  be clocked is not 

special to  the non-Unitary clock alone. It  also affects the Larmor clock [75] and 

possibly every clock where the perturbation due to the clock mechanism couples to  

the Hamiltonian. Indeed, we have explicitly verified the case for the Larmor clock 

and have found that the corrected Larmor times for traversal, T~ and T~ corresponding 

to  spin precession and spin-rotation [75] are exactly our sojourn times for traversal in 

the case of propagation (E > V,) and tunneling (E < V,) respectively. Additionally, 

for the Larmor clock, there is a relation between the z-component of the spin of 

the transmitted and the reflected waves due to  conservation of angular momentum. 

This makes it difficult to  define separate conditional reflection and transmission times 

using the spin-rotation (G). 

The problem of negative conditional sojourn times calculated by different proce- 

dures has been noticed by several authors, notably Golub e t  al. [79], Buttiker e t  al. 

[Ill] and Hauge and Stq5vneng [68]. Golub e t  al. [79], while proposing that  absorp- 

tion could act as a clock, noticed that  the scattering due to  mismatch in the clock 

potential would affect the performance of the clock, but decided that conditional so- 

journ times might not make any sense. The sojourn time is a useful conceptual tool 

and the sojourn time, defined in our sense as more of an interaction time, should 

not only be real [68], but positive definite as well in order t o  be physically meaning- 

ful. Any other quantity, though experimentally meaningful, such as the precession 

of a spin in a magnetic field, cannot be interpreted as the time of sojourn, unless it 

yields a positive definite quantity. Coming to  the experimental implementation of 
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the corrected non-unitary clock, it can be readily realized, in principle, in electron 

tunneling through a mesoscopic barrier as absorption through fake channels (inelastic 

electron-electron or electron-phonon scattering processes), where only the coherent 

part of the transmitted/reflected wave is measured by an interference detection. 

The main problem in defining a meaningful sojourn time for a quantum system 

is because of interference between partial waves (the alternatives) that defies naive 

realism or objectification of the alternatives. Thus, it is clear that there exists no 

self-adjoint operator in quantum mechanics for the sojourn time and it is not an 

observable[64]. But it is a calculable intermediate quantity (like a matrix element 

for a transition), which is practically useful for calculating other quantities, and for 

deciding for or against certain conditions. For example, in a given mesoscopic device, 

we would need to compare the dephasing/decoherence time to  the time of sojourn in 

order to  see if the dephasing would affect device performance. We view our correction 

of the quantum clock in this spirit. For example, when we suppress the prompt part 

of the reflection while calculating the reflection time, we take the view that the partial 

waves corresponding to  the prompt part would never sample that region where there 

is dephasing, in order to  get affected by it. To re-emphasize, in order for the sojourn 

time to  be a conceptually and practically useful tool, we require a prescription which 

yields a sojourn time which is (i) real, (ii) positive, (iii) additive (time spent so 

calculated for different parts should add up to give the total time), (iv) calculable, 

(v) measurable, even if not observable as an operator in quantum mechanics, and (vi) 

it should causally relate to the region of interest, i.e., the partial waves should have 

traversed that region. Hopefully, we have provided such a prescription here, in that 

the sojourn time so calculated has the above properties. It only helps matters that 

the experimental realization of this procedure is possible in principle. 




