
Chapter 4 

Distribution of sojourn times for 
wave reflection from a random 
potential 

4.1 Introduction 

When a wavepacket centered at an energy E is scattered elastically from a scattering 

potential, it suffers a time delay before spreading out dispersively. This delay is 

related to  the time of sojourn of the wave in the interaction region. Thus scattering 

delay time is the single most important quantity describing the time-dependent aspect 

i. e., physically, the reactive aspect of the scattering in open quantum systems, e.g. the 

chaotic microwave cavity and the quantum billiard (whose classical motion is chaotic) 

and the solid-state mesoscopic dots coupled capacitively to  open leads terminated in 

the reservoir. The delay time is described well in many situation by the energy(E) 

derivative of the phase shift (4) suffered in the scattering, fi(d$/dE), first introduced 

by Wigner [69]. This was later generalized to  the case of a scatterer coupled t o  N 

open channels leading t o  the continuum, where one defines the phase shift time delays 

through the Hermitian energy derivative of the S-matrix, -ifiS-laS/aE, the average 

of whose eigenvalues gives the Wigner-Smith delay times [112]. This aspect of time 

delay associated with waves scattered by disordered media has assumed importance in 

view of the recent measurements carried out in disordered waveguides for microwaves 

[I131 and mesoscopic systems. In fact,the delay time can be used as a diagnostic 

tool[ll4, 1151 for localization of light [44]. The static signature of localization, an 

exponential decay of the transmitted intensity with sample thickness, is non-unique 

since absorption can also give an exponential decay. This reason is a t  the heart of the 



controversy regarding the experimental demonstration of localization of light in three 

dimensions [45]. Localization and absorption would, however, give entirely different 

dynamical behaviour of the time delay of scattering. The delay time is, however, not 

self averaging and one must have its full probability distribution over a statistical 

ensemble of random samples. 

The distribution of these delay times for a wave reflectedltransmitted from/through 

a random medium has been a matter of intense research in recent years [116, 106, 

117, 118, 119, 120, 121, 122, 123, 107, 114, 1241. The distribution may be related er- 

godically to  the ensembles generated parametrically, e.g., by energy E variation over 

a sufficient interval. Thus we have the random matrix theory (RMT) for circular en- 

sembles of the S-matrix giving delay times for all the three Dyson Universality classes 

for the case of a chaotic cavity connected to  a single open channel [125]. Generaliza- 

tion to  the case of N channels corresponded to  the Laguerre ensemble [I261 of RMT. 

The RMT approach has been treated earlier through the supersymmetric technique 

for the case of a quantum chaotic cavity having a few equivalent open channels [127]. 

However it has been suspected for quite sometime that the RMT based results and 

the universality claimed thereby may not extend to a strictly 1-dimensional random 

system where Anderson localization dominates, and that  the 1D random system may 

constitute after all a different universality class [128]. This important problem has 

been re-examined recently by Texier and Comtet [116] who have derived the delay 

time distribution for a I D  co~iductor with the Frish-Lloyd model of randomness, in the 

limit of high energy / weak disorder and the sample length >> the localization length. 

The universality of the distribution is amply supported by numerical simulations for 

different models of disorder [116, 1201. 

In this work, we re-examine this question of universality of the delay time dis- 

tribution for a 1D random system and relate it to  the universality of distribution of 

the reflection coefficient, a quantity that we have direct access to  from the earlier 

work [55]. To this end, we will calculate the distribution of the literal sojourn times 

for a 1-D(one-channel) random potential using the 'Non-Unitary' clock discussed 

in Chapter-3. This involves adding an infinitesimally small but spatially uniform 

imaginary potential iV, t o  the 1-D random potential V,.l This obviates the  need t o  

lAs shown in Chapter-3, the effects of the 'spurious' scatterings associated with mismatch due 
to the imaginary potential are expected to cancel out for a random potential and we do not need 
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calculate the energy derivative of the phase to obtain the VC7igner delay time and its 

distribution [117]. We derive probability distribution of the reflection sojourn times 

in the weak disorder/high energy limit. The distribution derived by us agrees ex- 

actly with the universal Wigner delay time distribution of Texier and Comtet [116]. 

Besides, our new technique allows us to treat the sojourn time distribution for the 

important case of light reflected from a random amplifying medium equally well. In 

this case however, unlike the case for the passive random medium, all moments of the 

delay time are finite for long samples. We then re-examine an earlier calculation of 

the Wigner delay time distribution [117, 1191 using the method of invariant imbed- 

ding, where a slightly different expression was reported. We find that the difference 

arises due to  the inconsistency of the approximations involved within the random 

phase approximation (RPA) and find that when the approximations are carried out 

consistently, their expression reduces to ours. 

We will then examine numerically, the distribution of delay times for strong dis- 

order using the transfer matrix method for a one-dimensional disordered chain with a 

one-band tight binding Hamiltonian. We find that the distribution of Wigner phase 

delay times and the sojourn times clocked by the non-Unitary clock agree exactly 

even in the strong disorder regime for energies far away from a band-edge. We fur- 

ther examine the effect of a periodic background on the delay time by varying the 

energy within the band. We find that,  for energies close to  a band-edge and strong 

disorder, the Wigner delay time distribution differs considerably from that of the so- 

journ time given by the Non-Unitary clock. The Wigner delay time can even become 

negative under such conditions. The sojourn time, however, remains positive. 

4.2 The sojourn time for wave reflection from a 
random potential 

Consider first the electronic case for a 1D disordered sample of length L having a 

random potential V, , 0 < x < L, and connected to infinitely long perfect leads a t  the 

two ends. Let the electron wave of energy E = h2k2/2rn be incident from the right 

at x = L, and be partially reflected with a complex amplitude reflection coefficient 

to correct for these. Further, for the case of total reflection IRI cu 1, the dwell time is literally given 
by this qumtity and also it is related to the Wigner phase delay time. 
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R(L) = I R(L) 1 exp [iO(L)] and I R(L) l 2  = r (L), the real reflection coefficient. Inside 

the sample we have the Schrodinger equation, 

with ~ ( x )  = -V,(x)/E. 

As we will be interested in the reflection coefficient, it is apt t o  follow the in- 

variant imbedding technique [55, 117, 96, 129, 971 (see Appendix-A) and reduce the 

Schrodinger equation(4.1) to  an equation for the emergent quantity R(L) : 

We now introduce a uniform imaginary part iV,, with V,  > 0, and accordingly define 

q(L) = + i ~ ,  with 3 = -V,/E. For analytical treatment, we take for V , ( x )  a 

Gaussian delta-correlated random potential (the Halperin model) with < %(L) >= 0 

and < %(L)qT(L1) >= A2S(L - L'). The Fokker-Planck equation corresponding t o  

the stochastic equation(4.2) can be solved analytically in the limit L -+ cc giving 

with D = (8V,)/(EA2k). This result is obtained in the high energy / weak disorder 

limit. The result for an absorbing medium (V, < 0) can be similiarly written as 

4.2.1 The case of a passive random medium 

Now, clearly for a passive medium, i.e., with V,  = 0, the distribution P,(r) must 

collapse t o  a delta-function S(r - 1) as L + oo. However, with V,  # 0, for a short 

sojourn time T in the sample, the reflection coefficient r = IRI2 = exp(2V,T/h), 

giving r - 1 = 2V,T/ti to  first order in V,  as V,  is taken t o  be arbitrarily small. Thus, 

P,(r) can a t  once be translated into the sojourn time distribution P& ( r ) :  

Q 

P: ( r )  = - exp r 



Figure 4.1: The delay time distribution from a long disordered passive medium. 

where a = 4(A2k)-I and the dimensionless time T = ETITi. This is precisely the 

result of Texier and Comtet [116]. Note that V,, the counter, drops out in the limit 

V,  + 0, as it should. 

We show the distribution of the sojourn times in Fig. (4.1) for different values 

of the parameter a. The distribution has a maximum value at  T,,, = 0.5a and a 

T - ~  tail for large T (T + oo) giving a logarithmic divergence of the average sojourn 

time. In fact, all the moments of this distribution P;(T) are infinite. The counter 

introduced by us literally counts the time of sojourn in the interaction region for 

total reflection in the ID, i.e.,l-channel case. Large delay time is dominated by the 

dwell time when the wave penetrates deeper into the sample, which is true at  high 

energyllow disorder. It is this 'equilibrated' part of the reflected wave, and not the 

prompt part that is expected to give universality. Hence the universal 1/r2 tail in 

equation(4.5). Indeed, the universality of the delay-time distribution directly reflects 

that of the reflection coefficient given by equation(4.3) [57, 58, 631. Indeed, we have 

verified that Eqn.(4.3) is obtained for telegraph disorder also (see Chapter-2). The 

logarithmic divergence of the average sojourn time indicates the possibility of the 

particle traversing the entire (infinite) length of the sample before being reflected 

and is a manifestation (as indicated in [117]) of the log-normal distribution of the 

conductance in the localized regime caused by Azbel resonances [130]. It is to  be 
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remarked here that this universal delay time distribution as in equation(4.5), is not 

obtained for a chaotic cavity connected to a reservoir by a single open channel [125]. 

Here the localization picture may not hold. 

4.2.2 The case of an active random medium 

Encouraged by this result for for the electronic case, we now turn to  the case of a 

light wave reflected from a random amplifying medium (RAM). The latter is recieving 

much attention in recent years in the context of random lasers [16, 86, 541. To 

fix ideas, consider the case of a single mode optical fibre doped with Er3+, say, 

optically pumped and intentionally disordered refractively. For the case of light, 

q(L)  = %(L)+i% corresponds to the refractive index of the medium with the real part 

varying in space, while the imaginary part which causes absorption/amplification 

is spatially constant. All we have to  do now is to keep V,  finite, a measure of medium 

gain, and use T = (h/2) (a In r/aV,) for the sojourn time, and translate P,(r) into 

where J = 2V,/E. Again, P, vanishes in the limit T + oo as also for T -+ 0. Also, 

P,(T) -+ PL as V,  + 0. All moments < rn > are however finite in this case. An 

explicit expression can be obtained for the first moment as : 

I 
(T) = - [ln D + C - e D ~ i ( - D ) ]  , 

t 
where C is the Euler's constant [I311 and E i  is the exponential integral [131]. This 

expression diverges as V,  0. In Fig. 4.2, we show the delay time distributions 

given by Eqn.(4.6) for different values of the parameter J ,  while keeping a fixed, 

corresponding to different values of the imaginary potential V,  while keeping the 

disorder fixed. 

Some interesting points are to  be noted here. First we note that the distribution of 

sojourn times for an absorbing medium is the same as that for an amplifying medium. 

This is due to  the well-known symmetry between absorption and amplification [94]. 

The finiteness of the moments in the case of an absorbing medium is easily understood 

in that the longer paths are attenuated by absorption. In the case of the random 

amplifying medium, the effect is more subtle. The finiteness of all the moments is 
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Figure 4.2: The delay time distribution from an amplifying medium. 

essentially due to  the well known fact that amplification enhances localization and 

prevents deep penetration in the medium. Of course, there is also an enhanced 

prompt part of reflection resulting from the increased refractive index mismatch in 

respect of its imaginary part at  the sample-lead interface. 

4.3 Distribution of Wigner delay time for reflec- 
tion 

Here we will reconsider the earlier calculation of Jayannavar et al. [117, 1191 for the 

distribution of the Wigner phase delay time for total reflection from a one-dimensional 

(one-channel) disordered medium. Again, we will begin with the invariant imbedding 

equation for the reflection amplitude R(L) = Jr(  L) exp[D(L)] given by Eqn. (4.2). 

In the limit of large lengths (L >> I,, the localization length), the reflection becomes 

approximately unitary r (L)  21 1 and Eqn.(4.2) yields an equation for the phase 0(L) 

as 
d0 - 
dL 

= 2k + krl,(L)(l+ cos 0) (4.8) 

The equation for the phase delay time T4 = h(d0/dE) = l/c,(d$/dk) (where c, is the 

group velocity), is obtained by differentiating the above equation for 0 with respect 
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9 = 1 [2 + q,(L) (1 + cos 0 - kcgT4 sin 0)] . 
dL cg 

As before, we will assume that the random refractive index %(L) to be a Gaussian 

white noise with a zero mean, i.e., (qR(L)) = 0 and (T~J~(L)V,(L')) = A26(L - L'). 

Using the Novikov theorem [loo] (see Appendix-B), we can now set up a Fokker- 

Planck equation for the joint probability distribution function P(T4, 0; L) over the 

ensemble of rl,(L). However, we will be interested in the marginal probability dis- 

tribution P(T4; L) alone, which can be obtained by integrating over the phase an- 

gle 0. To this end, we make the random phase approximation (RPA) and set 

P(Td, 0; L) = P(T4; L)/27r, i.e., assume a uniform distribution over the phase an- 

gle 0. The RPA is a good approximation at  high energies and weak disorder. We 

obtain the equation for P(T4; L) as 

where the dimensionless length 1 = L/1, = 112 A2k2L. In the limit of large lengths, 

1 >> 1, the distribution saturates and we can set aP/a l  = 0. Hence, we obtain the 

solution 
x ~ X  tan-' T 

P&) = (eXxl2 - 1) (1 + r2) 

where X = 8 / & ~ ~ k  and the dimensionless time r = c , k ~ ~ / f i .  This expression 

also yields a rP2 behaviour for r + oo, but differs from the universal distribution 

of sojourn imes given by Eqn.(4.5). The main difference appears at  r = 0, where 

this expression for P,(r) yields a finite value in contrast to  Eqn.(4.5), which gives 

P&(r) = 0. 

This difference is easily traced to  the fact that the RPA is consistent only in the 

high energy, weak disorder limit. Indeed, if we explicitly take the high energy, weak 

disorder limit in Eqn. (4.11), i.e., cik2 -+ oo and A2/cg + 0, while keeping the 

product (A2/cg)(c:k2) = 4/a! a constant, we obtain the solution as 

This is exactly the Universal distribution of sojourn times obtained in Eqn. (4.5) for 

the case of a free electron with c, = hklrn. This again reconfirms the delay time 

distribution. We note that the approximations have to be carried out consistently 
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only for reasonably large group velocity c,, which is true for energies far away from 

the band edges. This also suggests that the condition of weak disorder A2k << 1 for 

the one parameter scaling which assumes a uniform distribution of the phase (RP,4), 

should be modified to  A2k/(c,/c4) << 1, where c4 is the phase velocity. 

4.4 Strong disorder and a periodic background: 
Numerical results 

The probability distribution of the sojourn times given by Eqn.(4.5) was derived in 

the limit of weak disorder and high energy when the RPA is valid. In this Section, we 

will numerically investigate the distributions of sojourn times for the case of strong 

disorder and will also compare the distributions of the sojourn times and the Wigner 

delay times. Further, the effect of a periodic background on the delay times will be 

investigated. 

In order to get beyond the RPA, we will use the transfer matrix method [I321 

to simulate the one-dimensional random medium using the one-band tight binding 

Hamiltonian with diagonal disorder [133]. The Hamiltonian describing the motion of 

a quasiparticle on a random lattice can be written as 

where In), E ,  and V denote the non-degenerate Wannier orbital at the nth site, the 

site energy at the nth site and the hopping matrix element connecting the nearest 

neighbours separated by a unit lattice spacing respectively. The site energies E ,  can 

be written in an equivalent form of E ,  -- iq, with the real part of the site energy 

assumed to be independent random variables uniformly distributed over the range 

[- W/2, W/2] (unless specified otherwise) for 1 < n < N and zero otherwise. This is 

so that the chain of N sites is imbedded in an infinite lattice. The imaginary part in 

the site energy (-iq) makes the Hamiltonian non-Hermitian and causes quasiparticles 

to be absorbed or amplified depending on the sign of q, which is taken to  be finite 

and constant only across the disordered segment 1 < n < N and zero otherwise. 

Since all the energies can be scaled with respect to V, we will set V to  unity without 

loss of generality. 

The reflection (R) and the transmission(T) amplitudes can now be calculated us- 
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ing the transfer matrix method[l32]. In order to calculate the Wigner phase delay 

time, the reflection (transmission) amplitude R(E) = J ~ ( E )  exp[-i0(E)] is com- 

puted at  two slightly differing values of the incident wave energy E = Eo and E = 

Eo + 6E for a conservative chain (7 = 0). The Wigner phase delay time is calculated 

as r, = A(d0ldE) = fi[O(Eo + 6E) - 0(Eo)]/6E. Similiarly, to calculate the sojourn 

time by applying the imaginary potential, the reflection (or transmission) amplitude is 

computed at  two values of the imaginary site energy (7 = 0 and 7 = 67). Now the so- 

journ time is given by rs = h/2(dl RI2/d7) = fi/2[1 R(E, 7 = 67) l 2  - I R(E, 7 = 0) 12]/67. 

Typically the values of 6E and 67 are and the stability of the results have been 

checked to their choice within the range < 6E < In this Section, we will 

deal with the delay times in a dimensionless form by'multiplying with V and set 

h = 1. For the calculation of the averages and the distributio~s, we have typically 

used lo5 configurations of the disorder. We will present results for a long sample 

(L >> 1, lengths much greater than a localization length). 

Using the above procedure, we will investigate first the distribution of the phase 

of the reflected wave from a long disorder medium (IRI + I) ,  for the cases of weak 

and strong disorder at different energies within the band. Then, we will turn to the 

distribution of the Wigner delay times and the sojourn times obtained by the 'Non- 

Unitary' clock for the above cases. The effects of the periodic background will be 

seen to have drastic effects for energies close to a band-edge. 

4.4.1 The phase distribution for the reflected wave 

First, we will present the results for energies well within the allowed band ( E  = 

1 
/ the di ribution is symmetric about 0 = 71 and two peaks are present. For higher P . 

_i diso der, the peaks move closer and in the limit of very large disorder, the two peaks / 
w uld eventually merge into a single 6 peak [134]. This reconfirms the distributions P 

Fbtained earlier by other workers [134, 1351. For the general case E = 1, we note 

/ similiar features, though the distributions have an asymmetry about 0 = 71. The 

/ distributions are shown in Fig. 4.3. Now for the case of the wave energy close to the 

/ band edge ( E  = 1.9, 1-99), and smell disorder (W = 0.1), we again find a uniform 

For energies near the middele of the band (E=O. 1) & small disorder levels, we find that the phase 
distribution is uniform. It should be noted that at exactly E=O, the phase randomization legnth 
diverges due to certain anamolies [I351 & a uniform phase distribution is never obtained for 
finite lengths. 

library
Text Box
For energies near the middele of the band (E=0.1) & small disorder levels, we find that the phase distribution is uniform. It should be noted that at exactly E=0, the phase randomization legnth diverges due to certain anamolies [135] & a uniform phase distribution is never obtained for finite lengths.
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Figure 4.3: The phase distribution for reflection from a long disordered passive medium for 
wave energy near the middle of the band (E = 0.1). 

phase distribution. For the case of strong disorder. we note a highly non-uniform 

distribution as before, with two peaks (Fig. 4.4). The peaks are, however. highly 

unequal with the asymmetry increasing with closeness to the band edge. It should be 

noted that in a continuum disorder model, an asymmetric distribution always results 

because onlv positive, non-zero energy solutions are possible. tliithiri this one-band 

model, we note that the distribution of the phase reflects about 0 = ir. as we go over 

to the negative E. as can be seen from Fig. 4 . 4 ~ .  

In passing, we observe that if the disorder is made asymmetric about zero with the 

same range (I.$'), for example, between (0, TV]. the uniform distribution of the phase 

does not result even for weak disorder (TV = 0.1). We plot the obtained distributions 

in Fig. 4.5, which can be seen to  be quite asymmetric about 0 = ir. This effect is 

most manifest for energies close to the bandedge. as can be seen in Fig. 4.5. The 

distribution has a single ~rnaximum. which tends to  occur at 0 = ?r at energies close to 

the band-edge. This results from the prompt part of the reflection arising from the 

mismatch in the potential at the boundaries. For strong disorder. again the  phase 

distribution is not sjmmetric about 0 = .ir for E = 0. There is still only one prak. 
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(a) W = 0.1, E =1.9 
0. 

(b) W = 1 .O, E =1.9 

0.4m 

I 
2 4 6 

0-3 

(d) W = 1 .O, E =1.99 
1.2-, 

Figure 4.4: The phase distribution for from a long disordered passive medium for 
wave energy at  the edge of the band (E = 1.9, 1.99). 

This behaviour just reflects about 8 = 7r if the one-sided disorder is made negative, 

i.e., between [-W, 0] as can be seen from Fig. 4.5b. 

4.4.2 Distribution of delay and sojourn times 

Now, we will turn to the distribution of the delay times for reflection from the random 

sample. We will, first, examine the case of wave energies far away from a band edge 

(E = 0.0, 1.0). In Fig. 4.6, we show the distribution of the Wigner phase delay time 

T, and the sojourn time rs for reflection from a long sample for different values of 

the disorder strengths (W = 0.1, 2). For weak disorder (W = 0.1), the distributions 

are identical to  each other and also correspond exactly to the universal distribution 

given by Eqn.(4.5). The two distributions also coincide for higher disorder  strength^.^ 

We also note that Eqn.(4.5) still describes the distribution reasonably well for strong 

disorder (W = 2.0, see Fig. 4.6b), though the RPA under which the expression was 

derived is not valid for these cases. The case of E = 1 shows similiar behaviour, 

though the peak occurs at  a different value, reflecting the smaller group velocity. In 

Fig. 4.6d, we plot the distributions of sojourn and delay times for cases of symmetric 

disorder ([- W / 2 ,  W/2]) and asymmetric disorder ([0, W] and [-  W, 01). The distri- 

=Note that though the two distributions over the ensemble might coincide, the phase delay time 
and the sojourn time for a given configuration need not be equal and, in fact, are not equal. 
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(a) Weak disorder ' (b) W = 2.0, E =0.0 
0.2, 0.4, 

(c) Weak disorder (W =0.1), Band-edge (E = 1.9) 

Figure 4.5: The phase distribution for from a long disordered passive medium for 
wave energy at  the middle of the band (E = 0.0) and asymmetric disorder. 

butions for the positive and negative one-sided, asymmetric disorder appear to  be 

the same, regardless of the sign. These, however, are different from the distribution 

for the symmetric case. The contribution of the prompt part of the reflection arising 

from the average potential mismatch at  the boundary is clearly seen for the cases 

of asymmetric disorder, in that,  the peak of the disorder occurs slightly earlier and 

there is more weight at  early times. 

Now, we will examine the case of wave energies close to the edge of the band 

(E = 1.9, 1.99). In Fig. 4.7, we show distributions of the delay time and sojourn 

times. For the case of weak disorder, again the Wigner delay time distribution and 

the sojourn time distribution coincide. There is, however, considerable discrepancy 

from Eqn.(4.5), as can be seen. We know that the RPA is valid for this case, as can 

be seen form the distribution of the phase in Fig. 4.4. Thus, the discrepancy can- 

not be an artifact of the RPA. 
The most probable reason is due to the reduced density of states near the band-edge and the 
wave never completely samples the randomness before getting reflected. Thus, the factor- 
ization of the joint distribution into the phase distribution and the delay time distribution 
separately becomes suspect. 

For intermediate and strong disorder (W = 1, 2, 3): a more inter- 

esting effect occurs. The two distributions, i.e., the Wigner delay time distribution 
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(b) E = 0.0; W = 2.0 

7 -  

(d) E = 0.0, W = 2.0 

Figure 4.6: The distribution delay and sojourn times for reflection from a long dis- 
ordered passive medium for wave energy at the middle of the band (E = 0.0, 1.0). 



' C -  

(d) E = 1.99; W = 1.0 

Figure 4.7: The distribution delay and sojourn times for reflection from a long dis 
ordered passive medium for wave energy close to the edge of the band (E = 1.9, 1.99). 

and the sojourn time distributions no longer coincide. The differences between the 

distributions increase with disorder strength and closeness to  the band-edge. The 

Wigner delay time distribution appears quite different from the universal distribu- 

tion at  E = 0. In fact, for E = 1.99 and W = 1, the Wigner delay time distribution 

is non-zero for even negative times. This is, of course, due to  the strong deformation 

of the wavepacket caused by the strong dispersion near the band-edge. The sojourn 

time distribution given by the 'non-Unitary' clock remains non-zero only for positive 

times (even though the 'spurious' scatterings have not been corrected for). We also 

note that the Universal T - ~  tail at  long times ( r  + oo) remains unaffected. 

4.5 Conclusions 

In conclusion, we have studied the distribution of the delay and sojourn times for 

reflection from a disordered medium. To this end, we have introduced a spatially 
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uniform imaginary potential as a literal counter for the time of sojourn in the sample 

successfully to  derive the distribution of sojourn times in terms of that of the reflection 

coefficient. The distribution of the sojourn times derived by us for a passive medium 

coincides exactly with the distribution of Wigner delay times for reflection derived by 

Texier and Comtet [116]. The distribution appears to be universal to one-dimensional 

disordered systems, i.e., independent of the nature of disorder (also see [116,120]) and 

is amply supported by numerical solutions. The distribution has also been recently 

confirmed analytically for discrete disordered systems described by a tight binding 

model by Ossipov et al. [122]. Our technique further allows us to  treat the important 

case of an active random medium with amplification/absorption. All the moments in 

that case work out to be finite, This technique has also been used by other workers, 

in particular Beenakker et a1. [107], to calculate the distribution of eigenvalues for 

transmission in the multimode case and the amplitude correlator. Beenakker has 

called it a mapping from the static case of an absorptive system to  the dynamic case 

of a non-absorptive system. 

We have also revisited the original calculation of Jayannavar et a1.[117], of the 

distribution of the Wigner delay time. We show by explicitly taking the high-energy 

limit in addition to the RP,4 that the same universal distribution of delay times 

results. In the course of the derivation, we note that the single parameter scaling 

ansatz for the RPA seems consistent under the condition A2k/(c,/c4) << 1 (A2- 

the disorder strength, c, -the group velocity and c4 -the phase velocity) instead of 

A2k << 1 which does not account for the effects of the group velocity. This is in accord 

with the recent results of Ref. [136, 1221. We have also investigated the distribution 

of delay times numerically and find the distributions of the Wigner delay time and 

the sojourn time to  coincide for energies far away from a band-edge for all disorder 

strengths. This, however, breaks down for energies close to the band-edge and strong 

disorder, when the dispersive effects of the band structure deform the wavepacket so 

much as to render the description of the motion of a wavepacket meaningless. Under 

such circumstances, the concept of a sojourn time clocked by a counter such as the 

imaginary potential appears more meaningful. 

Finally, we turn to the universality aspects of the distributions. We note that 

Eqn.(4.5)for the sojourn time/delay time appears universal for several models of 
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disorder for a one-dimensional disordered system under the assumptions of weak 

disorderlhigh energies. This has been obtained analytically for several models of 

disorder [116, 106, 122, 1191 and also numerically 1120, 1161. We also note that 

at high energies, the phase delay time and sojourn time almost become equal. The 

universal rP2 tail at  long times is thought to arise due to  configurations with resonant 

transmission (Azbel resonances). This behaviour is not obtained for a chaotic cavity 

connected to  a reservoir by a single open cavity [125]. This is presumably because 

the localization picture may not hold in this case. This suggests that the problems 

of the one-dimensional disordered systems and the chaotic cavity belong t o  different 

universality classes. 



Chapter 5 

Adapting the Ornstein-Uhlenbeck 
process to describe photon 
migration 

5.1 Introduction 

In Section 1.3.3, we described the inadequecy of the diffusion approximation when 

applied to the photon migration problem. The main lacuna of the diffusion approx- 

imation is that it neither accounts for a finite mean free path nor a finite speed of 

the diffusing particle. Thus, it fails to describe the persistence in the phase space. 

Therefore, it is important to  investigate stochastic processes which preserve these 

essential features of light transport in random media. In this Chapter, we exam- 

ine the application one of the earliest stochastic processes with persistence, viz. the 

Ornstein-Uhlenbeck (0-U) process of Brownian motion[l37] to photon migration. 

As will be seen, though the Ornstein Uhlenbeck process accounts for a finite mean 

free path of the particle, it makes the assumption of a distribution of speeds for the 

particle with a well defined mean speed. We will call this kind of a global constraint of 

a finite speed as the "weak constraint of fixed speed", where the speed of the diffusing 

particle is allowed to  fluctuate about a fixed mean. In this context, a Feynman 

path integral formalism has been developed recently [138], where it was attempted 

to describe these photon random walks with fixed speed. But the attempt was only 

partially successful in that,  the constraint of fixed speed could only be applied in the 

above global weak average sense. More recently, an explicit derivation of the Feyman 

path integral representation of the propagator for the radiative transfer equation has 
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been given [139]. Here it was again evaluated by truncating the cumulant expansion 

after the second order which basically amounts to  fixing the speed constraint in the 

mean while allowing Gaussian fluctuations about the mean. For comparision, we will 

first very briefly review this path-integral approach of Perelman et a1.[138] in Section 

5.1.1. Then, we will demonstrate that the constraint of fixed speed is relatively 

stronger in the 0-U process by writing down the path integral for the 0-U process. 

We also present approximate solutions for absorbing boundaries and compare the 

predictions with Monte-Carlo solutions of the photon random walk. We find the 0- 

U process to  be an approximate, but a more useful and accurate alternative t o  the 

diffusion approximation. 

5.1.1 The path integral approach to photon migration 

The path integral approach is based on the original work of Feynman (see Feynman 

and Hibbs[l40]), where the path integral was used to  deal with the randomly ac- 

celerated classical motion in the transverse direction of a high energy particle going 

through a medium. The path integral finds a direct application in such problems of 

probability due to  the ease and natural ability of the path integral t o  deal with the 

notion of a sample path and the probability associated with it. In our problem of the 

photon (particle picture) moving around randomly in a stochastic medium, a photon 

can propagate between two points in space (ri a t  time tl and r: a t  time t2) through 

several trajectories in the phase space. A few such possible paths in real space are 

shown in Fig. 5.1. With each one of these photon trajectories is associated a partic- 

ular probability. this probability summed over all the possible trajectories yields the 

total probability for the photon to  propagate between points ri t o  r:. This is pre- 

cisely what the path integral formalism accomplishes. In this sense the path integral 

approach is closest to  the Monte-Carlo simulation of the problem, where different 

paths are simulated. But one does not normally a priori estimate the probability of 

any particular path in the Monte-Carlo simulation. 

The original problem considered by Feynman and Hibbs[l40], was the deflection 

of a fast moving, high energy particle moving through a material slab. The velocity 

of the particle was considered to  recieve small random alterations in the transverse 

plane due t o  scattering by the fixed nuclei. Because only the transverse motion is 
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Figure 5.1: A few possible photon trajectories in real space (assumed to  be two- 
dimensional here). The particle is a t  ri at  time t l  and ri a t  time t2. 

considered, the random spatial distribution of fixed scatterers traversed at  a fixed 

longitudinal speed translates to a temporally stochastic process. Thus, it is a case of 

a particle randomly accelerated particle in the plane (xy-plane) perpendicular to the 

particle's initial velocity (along the z- axis, say). The resulting distribution shows 

a diffusion in the velocity space ((x2) -- t ) ,  while there is a highly non-diffusive 

behaviour in the real space ((x) - t and (x2) - t3). This non-diffusive behaviour 

manifests for the quantum-mechanical case as well [141]. In this case, we have an 

indefinite acceleration (stochastic heating) of the particle, much as the Fermi acceler- 

ation of cosmic-ray particles to ultra-relativistic energies by interaction with various 

plasma modes during collisions with galactic clouds in motion[l42]. Though this 

model of a randomly accelerated particle accounts for a finite mean free path, it is 

clearly inapplicable to  the photon migration problem. 

In the attempt of Perelman et a1.[138] to impose the constant speed of light using 

the path integral formulation, the photon was again considered to  be a randomly 

accelerated particle, but with the constraint of fixed speed. Taking the random de- 

flections to  have a white-noise distribution, the probability for a photon to propagate 

between the points (ri, t = 0) and (r: , t = T) can be written as an integral over all 

paths: 
1 

p(r;, 2; ill 01 = PO l ~ l [ i ( t ) ]  exp {-% /oT[<l2dt} x J I ~ ( ~ ) I  (5.1) 



5.2. Applying the OU process to light diffusion 89 

where Po is a normalization constant, V[r'(t)] is the infinitesimal function space ele- 

ment in the domain of all the possible path functions with the boundary conditions 

F(t = 0) = ~i and r'(t = T) = r;, and J[r'(t)] denotes the density of photon paths and 

constrains the photons to  propagate a t  a fixed speed (the local strong constraint), 

and is given by J[r'(t)] = 6([?(t)12 - c2). This non-Gaussian integral is not easy to  

evaluate. Perelman et al. approximately evaluated the path integral by applying, 

instead, the weak constraint of constant speed in the form: J,,{[?(t)12 - c2}dt = 0, 

i.e., the square of the speed averaged over the path was c2. The path integral with 

the weak constraint could then be evaluated by considering harmonic perturbation 

about the ballistic path in the case of isotropic scatterers, or about the most probable 

(classical) path of the randomly accelerated particle in the case of anisotropic forward 

scattering media. The path integral in this approximation converges by oscillation 

[140]. However, the absorbing boundary conditions in their work could not be im- 

plemented properly. It is to  be noted that a first-order improvement on this, i.e., 

imposition of the strong local constraint of fixed speed, a t  least on the most proba- 

ble path, is possible. However, the resulting non-linear differential equations for the 

motion are not amenable to analytical solution. Finally, in these approximations, it 

is not clear as t o  what basic stochastic process the above corresponds to  and what 

the corresponding Fokker-Planck equation in the phase space would be. Moreover, i t  

is non-trivial to  impose absorbing boundary conditions on such path integrals. 

5.2 The Ornstein Uhlenbeck process and light dif- 
fusion 

In this Section, we consider the Ornstein-Uhlenbeck(0-U) process[l37, 1431, which 

concerns the diffusion in phase space of a Brownian particle. In the case of the ran- 

domly accelerated particle considered earlier, there was an indefinite acceleration of 

the particle because of the absence of any dissipative mechanism, i.e, the particle never 

equilibrates with the "bath". In general, there must be a t  least a Doppler friction 

for the Brownian particle as it will experience more head-on collisions with the bath 

particles than from behind (More a priori collisions than a posteriori !! [144]). This 

drag on the Brownian particle of the stochastic medium may be characterized by a 

phenomenological friction force (-PC, where v' is the instantaneous velocity of the par- 
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ticle). Now, the stochastic Langevin equation(SLE) for the Brownian motion becomes 

?+ p? = {(t), where ,D is the friction coefficient and fit) is assumed to be a Gaussian 

distributed, &correlated random function with a zero mean (white-noise). This re- 

sults in a distribution of speeds of the Brownian particle, but with a finite mean speed. 

The friction coefficient ,B and the components of the concomitant Gaussian white 

noise f i t )  are related as (fi(t) fj(t  + T)) = F 6 ( r ) 6 ,  (the fluctuation-dissipation 

theorem)so as to be consistent, in the limit t -+ oo, with the condition of thermal equi- 

librium with the thermal bath at  temperature T, where kB  is the Boltzmann constant 

and m is the mass of the particle. The first and second moments of the velocity and 

displacement given by this SLE are (3 = Zoe-Bt, ((r) = %ec2Pt + f$/(2,B)(1 - ec2Pt), 

(fl = T; + .U;//3(1- e-pt), (P )  = 3 f i /P3(Pt - 3 + 4e-Bt - e-28t). We clearly see that 

a phase-space memory is retained for a time t N t* = P-l, and the process smoothly 

interpolates between the ballistic motion at  short times (t << t*) when (r2) - t2 and 

the diffusive limit at  long times (t >> t*) when (r2) N t. The marginal probability 

distribution for the spatial position of the particle undergoing the 0 -U process in a 

unbounded medium is given by[143]: 

where J(t) = 2Pt - 3 + 4e-Bt - ec2Bt. 

5.2.1 Adapting the 0-U process to light 

We expect that the 0 - U  process having phase space persistence may be able to  better 

describe photon migration than zero-persistence diffusion. The forward scattering 

(anisotropic scattering) is captured by describing it as a Brownian particle with a 

large inertia. Further, phase space (directional) memory is retained for a time - t*. 

Of course, it is recognized that there is no thermal bath and inertia for a pho- 

ton. We can, however, make the following identifications from merely kinematical 

considerations. We will equate the root mean squared (r.m.s.) speed as also the 

initial speed vo of the photons, to c, the speed of light in the medium, and obtain 

( p ) = C 2 = y , ~ = C I ' = M  3 mp 7 and = 2 - 1.. In terms of these, we rewrite the P P -  
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propagator(5.2) in an infinite medium as 

We note that the propagator yields the diffusive behaviour a t  long times. Further, 

note that the diffuse source is at a distance I* from the point of injection - often a 

major consideration in applying the diffusion approximation t o  the photon migration 

problem [l45]. 

5.2.2 How strong is the 'weak constraint' of fixed speed in 
the 0-U process ? 

As noted before, the 0 - U  process results in a distribution of speeds about a fixed 

r.m.s. speed (taken to  be c by us), implying thus the weak constraint of constant 

speed. The question is, how strong is this weak constraint now effectively imposed 

by the fluctuation-dissipation theorem? 

Let us write down the corresponding path integral for the 0 - U  process in our 

usual notation: 

where D[r'(t)] is the infinitesimal function space element in the domain of all the pos- 

sible path functions with the appropriate boundary conditions(i. e., linking the point 

of injection and the point of detection or of exit). This path integral is Gaussian and 

can be exactly evaluated. We notice that  the path integral converges by exponen- 

tial damping for paths far away from the classical path. Thus we conclude that  the 

global constraint on the mean speed imposed by the fluctuation-dissipation theorem 

is a much stronger constraint than the weak average constraint considered earlier 

by Perelman et al. [I381 in the form So dt = 0, where the path integral 

converges by oscillation. 

5.2.3 Comparision between the 0 -U process and the diffu- 
sion approximation 

The diffusion approximation is a Wiener process for the spatial position of the photon 

with no directional persistence while the 0 - U  process is more physical and describes 
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diffusion in the phase-space. Thus we have (?) N t for all times in the diffusion 

approximation, which is unphysically super ballistic for short times (t  << t*). On 

the other hand, the O-U process smoothly interpolates between a ballistic regime 

at short times (t  << t*) when (p) - t2 and diffusion a t  long times(t >> t*) when 

(p)  N t .  Thus the O-U process captures the ballistic aspect of transport a t  short 

times where diffusion utterly fails (It should be not'ed that  the propagator is Gaussian 

in both cases). In the case of diffusion approximation, where ( I *  -+ 0), this arises 

because of the unphysical infinite (unbounded) speed inbuilt into it. In the case of 

the O-U process, this arises due to  the Gaussian tail in the velocity distribution upto 

infinite velocities, even though the r.m.s speed is finite and fixed. One notes that ,  in 

the diffusion approximation, the 'diffuse' (isotropic) source is taken to  be a t  a point 

about a mean free path away from the point of injection, in the direction of injection 

(i.e., a t  l*fi). In the O-U process, this source 'moves' in time: it is a t  the point of 

injection a t  t = 0 (as it should be) and tends to l*fi a t  large times interpolating 

in between smoothly. Also note that such important 'dynamics' occurs mainly a t  

early time comparable t o  the mean free time when the randomization of the direction 

occurs. Though, the O-U process accounts for a finite mean free path and finite 

average speed, it does not strictly keep the speed of light fixed and hence, i t  does not 

preserve the light front. There exists a small acausal (faster than light) Gaussian tail 

due t o  the distribution of speeds. 

5.2.4 Approximate solution to the O-U process in the pres- 
ence of absorbing boundaries 

An absorbing boundary means that  when the particle arrives a t  the boundary, it 

becomes incapable of further motion (quenched), or it is removed immediately (ab- 

sorbed). Consider an absorbing boundary along the z = 0 plane, with the stochastic 

medium occupying the negative half space (see Fig. 5.2). For the case of pure dif- 

fusion, the absorbing boundary condition corresponds t o  requiring the probability 

density a t  the absorbing boundary t o  vanish, i.e., P ( x ,  y, z = 0; t) = 0[143]. This 

condition, however, was found to  be inadequate t o  describe most transport processes 

due t o  the non-Markovian nature. Recognizing the existence of a mean free path and 

a finite speed of propagation, the net particle flux given by Fick's law can be broken 

up into an outward(J+) and inward (J-) partial component, normal t o  the boundary. 
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Figure 5.2: Schematic diagram showing the absorbing boundary at the x = zo plane 
and the extrapolated boundary plane at  x = x, plane. The stochastic medium occu- 
pies the negative half-space 

The absorbing boundary condition is then interpreted as that the incoming partial 

flux (J-I,=o) is zero. Expanding the diffuse energy density near the boundary to  the 

first order in a Taylor expansion, one gets the boundary condition for the absorbing 

boundary as 

The effect of a (diffuse) finite boundary reflectivity (R) arising due to  the average 

change in the refractive index a t  the boundary can easily be incorporated by noting 

that J- = RJ+ at  the boundary. One can further approximate the derivative to  

linear order as 
a P ( x , y , z , t ) ,  - P(z,) - P(x  = 0) 

az z=o - , 
ze 

i.e., we linearly extrapolate the behaviour at  the boundary to the region outside the 

boundary and apply the absorbing boundary P(x,  y, z,, t )  = 0 a t  an extrapolated 

length (z,) outside the boundary. The value of the extrapolation length z, is about 

213 [146, 1471. Note that for pure diffusion ( l *  -+ 0), all these conditions reduce to  

P(x ,  y, z = 0, t)  = 0. 

For the 0-Tj  process, the absorbing boundary condition at  the z = 0 plane has to  

be implemented in the phase space as: 

P ( F ,  C,t; r',,v',, 0) = 0 for v, < 0, 
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where ?' = (x, y, 0), i.e, there are no incoming particles. The boundary condition is 

applied along the negative half line for the z component of the velocity. This problem 

was unsolved for a long time since 1945, when Uhlenbeck and Wang[148] proposed 

it. It  was not even clear whether the problem posed as such had a unique solution. 

It was solved only in 1985 by Marshall and VCratson[149] for a semi-infinite half-space 

with a single absorbing boundary by expanding for the solution in a complete set of 

functions which span the space with v, > 0 at the boundary. However, the solutions 

are not in closed form and it has only been possible to  evaluate asymptotic properties 

such as the persistence exponent [I501 and the first passage time [149]. 

Here, we propose the following approximate solution for a single absorbing bound- 

ary a t  z = 0. We use the method of mirror images which is exact for pure diffusion. 

The probability distribution function in the semi-infinite half space for x < O is is 

given approximately by 

where x' = -20 is the position of the (negative) image source. In the diffusion 

approximation, one imposes the absorbing boundary conditions not a t  the physical 

boundaries but a t  extrapolated boundaries a t  a distance z, = 21*/3 outside the slab 

[146]. At times long compared t o  the 'randomization time' (t  > t*), the above solution 

should match with the diffusion approximation. However, for short times (t  - t*),  

the photons are ballistic and traverse only the true thickness of the medium. In the 

absence of a comprehensive theory for the boundary position, we adopt the following 

interpolation scheme. The extrapolated boundary is kept at the physical boundary 

a t  short times upto t = t* after which it is smoothly moved t'o z, outside the physical 

boundary asymptotically as t -+ m, giving the image source position as 

where 6 is the Heaviside step function. It should be noted that a fitting parameter of 

the order of unity could have been used t o  determine the time a t  which the  boundary 

starts t o  move. However, only a qualitative understanding is being attempted and 

such a parameter is unnecessary. 

The above analysis can be readily extended to  a finite slab of thickness L (and of 

infinite extent along x and y directions). We can write the probability distribution 
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function for the photon density as 

where Lef f ,  the effective slab thickness is obtained by the same extrapolation scheme 

as 

Leff = L + 28(t - t*) (1 - exp[-(t/t* - l)]) z,. (5.11) 

This solution for absorbing boundaries holds only approximately in the limits which 

we explain below. The equation for the marginal probability distribution for the po- 

sition does not remain invariant when the initial velocity v< and the initial position 

r; are changed. In the 0-U process, paths retain for a time t*, due to inertia, a 

'memory' of their initial direction. Thus, at times short compared t o  the randomiza- 

tion time t*, or when the distance between the source and the absorbing boundary is 

less than the transport mean free path, the method of images is not strictly valid as 

there is an imperfect cancellation of forbidden photon paths and their mirror images. 

This error, however, decreases exponentially with increasing slab thickness and with 

increasing time. Also, as can be seen in our results, the errors are small enough to 

be neglected for the thicknesses we have considered (L 2 l* ) with the source located 

at  the centre of the slab. The series (5.10) is absolutely and uniformly convergent. 

The normalization J PL(?, t; r;, G ,  t = O)d3r decays with time, corresponding t o  the 

flux of probability density which leaks out of the slab. 

Now, we will compare the above approximate solutions for the 0 -U  process with 

Monte-Carlo solutions obtained for the photon migration problem. The details of 

the Monte-Carlo simulations can be found in[151]. Fig. 5.3(a) shows graphically 

the effect of the various boundary conditions. The circles represent the number of 

photons in the slab as a function of time, normalized to 1, obtained from Monte 

Carlo simulations for a slab thickness of L = 21* for nearly isotropic scatterers with 

g = 0.06. The curve marked 'a' shows the result when the extrapolated boundaries 

are maintained at  the physical boundaries of the cell. As can be seen, while this curve 

approximately captures the time at  which photons begin to  escape from the cell and 

the photon number density begins to  reduce, it completely fails to  fit the long time 

diffuse tail. The curve marked 'b', is one in which the extrapolated boundaries are 



5.2. Applying the OU process to light diffusion 96 

Figure 5.3: Comparison of results obtained by modelling photon transport using 
the Ornstein-Uhlenbeck process with those obtained from random walk simulations. 
Fig.(a) compares the rate at  which photons exit the slab when different boundary 
conditions are applied. The lower figures compare the mean square displacement cal- 
culated by integrating equation (5.10) with the random walk simulations for different 
slab thicknesse s. Fig.(b) shows a thin slab where the diffusion approximation is not 
valid while Fig.(c) is for a slab where the transport is mainly diffusive. 
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held a t  the extrapolation length z, = 21*/3 throughout. There is excellent agreement 

at long times with the Monte Carlo data but the pulse exits the medium much 

later than the ballistic pulse, a consequence of the ballistic pulse having to  traverse a 

medium whose thickness is L+2ze. The solid line is the result of our moving boundary 

conditions which fits curve 'a' almost exactly at short times and agrees very well with 

the Monte Carlo data a t  long times. It  is to  be noted though that  even when the 

extrapolation length is set to  zero, the ballistic pulse exits the slab faster than a 

true ballistic pulse would do. This is a consequence of the fact that  we model the 

photons as having a distribution of speeds. As a result, there are photons that are 

travelling with a speed greater than the speed of light in the medium resulting in 

this artefact of 'pre-ballistic' photons. As the slab thickness is increased this effect 

becomes vanishingly small since there are almost no ballistic photons in the medium. 

However, i t  is important t o  appreciate that the OU process describes most of the 

essential features of the simulation a t  short times which would not be possible using 

the diffusion approximation. 

Fig. 5.3(b) compares the results obtained for the mean square displacement of 

the photons from the point a t  which they are launched, as a function of time, for a 

cell of thickness L = 21*. At short times the transport is predominantly ballistic and 

the mean square displacement shows the characteristic quadratic behaviour. The 

kink in the curves occurs when the  ballistic photons exit the slab. At this point, 

the fastest moving photons are lost and thus the average value of the mean square 

displacement is sharply lowered. The OU process compares well with the Monte 

Carlo da ta  for nearly isotropic scatterers. Fig. 5.3(c) shows the same data but 

for a cell whose thickness L = 81*. Now the regime is one, where the diffusion 

approximation is valid, and excellent agreement is obtained between the OU process 

and Monte Carlo data for isotropic scatterers. The data for anisotropic scatterers 

appears t o  slightly deviate from that  of isotropic scatterers and the 0 - U  process. 

This could be due computational inaccuracy of truncation/round-off errors, as more 

number of computational operations are required to propagate the photons in the  

case of anisotropic scatterers. Thus, despite the fact that  the method of images 

is not strictly valid for early times, we find that the OU process proves reasonably 

effective in capturing most of the features of photon transport in confined geometries. 
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5.3 Conclusions 

In this chapter, we have examined some models to  describe photon migration in turbid 

media. In particular, we have adapted the Ornstein-Uhlenbeck process of Brownian 

motion for this purpose. These models incorporate a finite mean free path as well as 

implementing the constraint of a constant speed for the photon in a weaker 'average' 

sense. We also reviewed the path integral approach of Perelman et al. to  photon 

migration. The path integral approach suggests that the global constraint of a fixed 

speed in an average sense in the 0 - U  process is much stronger than that  in the earlier 

proposed model of Perelmen et al. Approximate solutions for the 0 - U  process with 

absorbing boundaries have been given using the method of images. These solutions 

have been compared with the diffusion approximation and Monte-Carlo solutions. 

They offer a reasonable solution in the intermediate scattering regime ( I *  < L < 8L*) 

between ballistic motion on one hand and diffusive trasport on the other. In view of 

the simplicity of the expressions, they should be a useful approximation. 




