
Lecture I1 

Diffraction of light 

principles of geometrical optics indi- 
cate that the propagation of light is 
influenced by the presence of obstacles 
in its path in a manner determined by 
the form and properties of the obstacles. 
A polished metallic sphere, for instance, 
would reflect the light falling upon it and 
hence would cast a shadow. More com- 
plicated would be the effects due to a 
transparent obstacle, e.g., a drop of 
water, as both the reflections and refrac- 
tions at its surface would have to be 
considered. The determination of the 
resulting light intensity everywhere in 

the field in a case of this kind is a problemin the theory ofdiffraction. It is evident 
that the indications of geometrical optics must be supplemented by those of the 
wave-theory, in view of the possibility of interference arising between rays of light 
which cross each other after traversing different paths. In the case of the metallic 
sphere, for instance, the entire field outside the region of shadow should exhibit 
interferences between the incident and reflected rays. Similarly in the case of the 
liquid drop, the interferences between the direct and refracted rays would, in 
addition, need to be considered. The question also arises whether the conclusions 
derived from ray optics remain valid in all circumstances. In the particular case of 
the metallic sphere, for instance, the geometric shadow is sensibly perfect in the 
vicinity of the sphere, but at a sufficient distance behind it, observation reveals the 
presence of a bright spot of light at the centre of the shadow. How is this fact to be 
reconciled with the concepts of ray optics? 

It is evident that the study ofdiffraction raises a fundamental issue, namely, the 
relationship between the ray and wave concepts of light. An adequate discussion 
of diffraction phenomena necessarily includes a consideration of these two 
aspects of optical theory and a reconciliation between them. t h e  geometric 
approach provided by ray optics has the merit of simplicity and enables us to 
obtain an intuitive grasp of the phenomena. Hence, instead of considering 
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diffraction phenomena as falling solely within the scope of wave-optics and as 
indicative of a failure of geometrical optics, it is a much more satisfactory 
procedure to bring diffraction within the scope of ray optics by appropriately 
framing our fundamental concepts. How this may be done is illustrated by the 
optical effects produced by a corrugated surface which we shall now consider in 
some detail. 

Refraction of light by a corrugated surface: The phenomena which we shall now 
consider may be experimentally studied with a ripple tank, utilizing the fact that 
the surface of a liquid agitated by a linear system of ripples of definite frequency 
and wavelength is a corrugated surface. A narrow slit illuminated by a mercury 
lamp and followed by a collimating lens may be used as the source of light. The 
beam after passing through the liquid surface or after reflection by it is viewed 
through a telescope focussed for parallel rays. We may consider here a parallel 
beam of light which passes vertically upwards through a ripple tank containing 

Figure 32. Rays emerging from ripple tank. 

water. Figure 32 represents the geometric courses of the rays of light on 
emergence from the liquid. The rays would be divergent over the concave areas 
and convergent over the convex areas of the surface, but at a sufficiently great 
distance would be divergent throughout. These elementary considerations of ray 
optics describe correctly the effects observed in the immediate vicinity of the 
surface. But at points sufficiently removed from the surface, they no longer 
represent the facts correctly. 

We may ask ourselves, why is the geometric theory valid near the surface of the 
liquid and why does it apparently fail at points sufficiently far removed from it? 
The answer to these questions must be found in the fact that the disturbance on 
emergence from the liquid surface is no longer a simple train of plane waves. As 
remarked earlier in our discussion on the interference of light, the principle of 
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rectilinear propagation of light and the principle of interference do not in any way 
contradict each other. But if apparent contradictions are to be avoided, it is 
necessary that we should recognise only waves of constant type on the one hand, 
and the rays normal to them on the other, as the proper basis for the description 
of the optical field. In our present problem, for instance, we should analyse the 
disturbance on emergence from the liquid surface into its component plane 
waves. The subsequent movement of such plane waves along their respective 
normals would furnish a description of the optical effects which is equally correct 
from the wave and the ray points of view and which is valid for every part of the 
field, both near and far from the surface of the liquid. 

We have already seen (figure 2) that two plane wave-trains superposed on each 
other result in a stratification of the amplitude and phase of the disturbance in the 
field. The spacing 2 0  of such stratifications measured in a plane bisecting the 
angle between the wave-fronts is given by the formula 2 0  sin $ = A. This relation 
may be readily generalised. The superposition of sets of wave-trains travelling in 
various directions lying in a common plane and making angles $, with some fixed 
direction in it, the relation 2 0  sin $, = nA being satisfied, (n = 0, + 1, + 2, etc.), 
would result in the most general type of disturbance in which the amplitude and 
phase vary periodically in the plane normal to the fixed direction. Hence, putting 
2 0  =A*, where A* is the wavelength of the ripples, we may represent the light 
emerging from the liquid surface by such a set of plane waves travelling along the 
directions en given by the formula A* sin JI, = ni, (n = 0, If: 1, f 2, etc.). Accord- 
ingly, when the light is viewed through a telescope focussed for infinity, a set of 
monochromatic images of the original light source would be observed on either 
side of the original direction of the light beam. The directions and intensities of 
these images would correspond to the plane waves into which the disturbance 
emerging from the liquid surface has been analysed. It will be noticed that the 
formula is the well known one for the diffraction spectra due to a grating, but it 
has been obtained here directly from fundamental concepts, without introducing 
the principle of Huyghens. 

Figure 2 gives us other useful indications regarding the geometric character of 
the optical effects to be expected in our problem. Consider the pair of wave-trains 
proceeding along the directions $,,. As shown by the figure, the space periods of 
the resultant disturbance perpendicular to the fixed direction and parallel to it are 
respectively A/sin $, and A/cos $,. Hence, the resultants of the wave-trains +,, 
$*,, $**, t,hks, etc., havespace periods co, A*, i*/2, A*/3, etc., along any plane 
normal to the fixed direction, thus being in strict harmonic relationship. Along 
the fixed direction, however, the "wavelengths" of the resultants are I., l./cos $,, 
A/cos $,, L/cos $,, etc. As these lengths are not identical the resultant disturbance 
would fluctuate as we proceed away from the liquid surface along the light beam. 
It can be readily shown that the disturbance would undergo a periodic cycle of 
changes, repeating itself completely when we advance a distance 2j.**/i. or any 
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multiple of it, away from the surface. This is verified on putting p2= 
( p  - n2)i2/cos $,, where p is an integer, and using the approximation 

cos $, = (1 - $,2/2) = (1 - n212/2i2*2). 

We obtain immediately pi2 = 2i2*'/1. In other words, the result of superposing the 
waves $*, on $o would repeat itself once when we advance a distance 21*2/A, 
while that of superposin3 $,,on $, would repeat itself n2 times within the same 
range. The appearance of the light field would, therefore, show fluctuations of a 
complex periodic character as we move away from the liquid surface, the spacing 
of the whole cycle being 21*'/i2. 

An expression is readily found for the amplitudes of the plane wave-trains into 
which the disturbance emerging from the liquid surface is analysed. The light 
vector in the emergent wave when the surface of the liquid is plane may be taken 
proportional to 

sin (27rvt - ~ A Z / A )  = sin Q. 

The retardation of phase produced at a given epoch by ripples of amplitude 'a' 
progressing along the y-axis is 

We shall denote this for brevity by v-cos 4. Accordingly, the expression for the 
light vector as modified by the presence of the ripples is proportional to sin 
(Q - vcos 4). This may be expanded and written in the form 

Jo(4 sin Q - J~(v)Jcos (Q + 4) + cos (Q - 4)1 
- J2(v)[sin (Q + 24) + sin (Q - 24)] 

+ Jdv) Ccos (Q + 34) + cos (Q - 3411 
+ J,(v)Csin (Q + 44) + sin (Q - 44)], etc. 

It is easily verified that the terms sin Q, cos (Q _f +), sin (Q + 24), etc., represent 
plane waves travelling along the directions we have already indicated as $,,$* ,, 
$,,, etc. The intensities of these waves are accordingly proportional to Jg(v), 
J:(v), J:(v), etc. As extensive tables of the Bessel functions are available, these 
quantities may be readily found for any assigned value of v. It may be remarked 
that, as is to be expected, 

so that the incident energy is merely redistributed amongst the different spectra. 

Experimental verification of theory: The behaviour of the Bessel function when 
the order and the argument are varied is well known.+ The changes in the 

'see, for instance, Jahnke-Emde, Tables of Functions, Second Edition, 1933, Section XVIII. 
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configuration of the diffraction pattern with increasing values of v can, therefore, 
be readily visualised. When u is zero, we have only the central component. As v 
increases, the first orders begin to appear and increase in intensity while the 
intensity of the central component steadily falls off. The second order spectra then 
begin to appear. With further increase of v, a stage is reached when the first order 
spectra are very conspicuous, the second order spectra fairly strong and the third 
orders begin to appear, while the central component has nearly vanished. For still 
larger values of u, the second orders are stronger than the first, while the central 
component has reappeared and the third orders are in fair strength. Further 
changes of the same general nature occur for larger values of v, the spectra 
fluctuating in intensity, and the higher orders gaining at the expense of the lower 
ones. 

Figure 33. Relative intensities of spectra due to corrugated wave. 

The relative intensities of the spectra for various values of v from 0 to 8 are 
represented in figure 33 which is taken from a paper by Raman and Nath,* 
dealing with the somewhat analogous case of a beam of light which has passed 
through a liquid column carrying ultrasonic waves. As will be seen from the 
figure, spectra of increasingly higher order? continue to appear as v becomes 
larger and take up the greater part of the energy, though some of the spectra of 
lower orders still have fair intensities. The fluctuations in the intensity of any 
particular order with varying v, and of the spectra of different orders with 
constant v are both characteristic features of the case. The disappearance of 
particular spectra corresponds to the zeroes of the Bessel function of the orders 
concerned and furnish a sharp criterion for the value of the maximum phase- 
retardation which is operative. It is worthy of remark that the increase in the 
number of spectra and consequent enlargement of the angular width of the 
pattern with the increasihg amplitude of the ripples, as shown by figure 33, 
roughly correspond with the increasing divergence of the rays on emergence from 

-- - 

*C V Raman and N S Nagendra Nath, Proc. Indian Acad. Sci., 1935, AZ, 406. 
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Figures 34 and 35. Diffraction of light by ripples on water. 

the liquid surface which is indicated in figure 32. Figures 34 and 35 reproduce a 
series of photographs* obtained with a ripple tank and exhibit a beautiful 
concordance with the theoretical results. It should be remarked that these 
pictures were obtained with progressive ripples, the boundaries of the tank being 
too far away to give a disturbing reflection. Theory indicates that the diffraction 
pattern by stationary ripples would be of a different character. This is readily 
understood, because the relative intensities of the different orders of spectra 
depend on the maximum retardation of phase produced by the ripples. This is a 
constant quantity for a progressive motion, but varies periodically with time for a 
stationary oscillation of the liquid surface. In the latter case, the diffraction 
pattern as recorded on the photographic plate would be a time average in which 
the special features depending on the particular value of v would have been 
almost completely smoothed out. It is noteworthy that in either case, the 
diffraction patterns can be seen without stroboscopic aid. Indeed, stroboscopic 
illumination would make no difference in the diffraction pattern as observed with 
progressive ripples. With a stationary ripple pattern, however, the diffraction 
pattern seen would change with the phase at which the flashes of illumination are 

* D  S Subbaramiah, PTOC. Indian Acad. Sci., 1937, A6, 333. 
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given. By altering this phase, it should be possible to follow the changes in the 
structure of the pattern corresponding to all the values of v from zero upwards to 
the maximum. 

As the corrugation of the liquid surface produces changes of phase but no 
appreciable changes of amplitude in the light beam on its emergence, a 
microscope focussed on the surface would fail to give any indication of the 
existence of the ripples. When the plane of observation is moved away from the 
surface, however, alternations of light intensity would develop, which may be 
observed with stroboscopic aid for progressive ripples, and without such aid for a 
stationary ripple pattern. In the latter case, what we observe is an average 
intensity effect. The spacing of the pattern seen would therefore be I*/2, while for 
progressive ripples, the spacing would have the full value I*. As remarked earlier, 
the nature of the pattern would vary in a cyclic manner with the movement of the 
plane of observation. The spacing of the complete cycle is 2I*'/I for a progressive 
wave, but if we ignore a lateral displacement of the pattern and consider only its 
general appearance, the period of the cycle would be one half of this, namely, 
I**/A. If, therefore, the plane of observation coincides with the liquid surface or is 
removed from it by a distance 1*2/1 or a multiple thereof, the ripples would be 
unobservable, while at intermediate positions, complex patterns would be seen 
the nature of which depends on the amplitude of the ripples. For stationary 
patterns seen without stroboscopic aid, the wavelength for the average intensity 
effect is effectively halved, so that the period of the cycle is only I*'/2I. The 
general theory of visibility of periodic structures including the case of ultrasonic 
waves of optical gratings for which I*  >> I has been given by Nagendra Nath.+ 

*I, 

Fresnel and Fraunhofer patterns: An application of the principle that the ray- 
optical and wave-optical descriptions of a light-field should be completely 
equivalent enables us to find the effect of restricting the aperture of a beam of light 
in any manner. To illustrate the essential features of the problem, we consider the 
comparatively simple case of the passage .of light through a plane diffraction 
grating made up of parallel strips of equal width which are alternately 
transparent and opaque. Exactly as in the case of a corrugated refracting surface 
discussed earlier, we analyse the disturbance emerging from the grating into sets 
of plane waves travelling in various directions, starting from the disturbance at its 
surface as determined by its assumed properties. 

The waves incident normally on the plane grating are represented by the 
expression A sin 2a(vt - z/I). At the plane of the grating (z = 0), this reduces to 
Asin2nvt, and we assume that this is also the disturbance emerging from the 
transparent strips, while over the opaque strips the disturbance vanishes. The 
light-field thus described is periodic over the surface of the grating with 

'N S Nagendra Nath, Proc. Indian Acad. Sci., 1936, A4,262. 
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wavelength A* and may be therefore represented by its Fourier expansion 

1 sin 2sny/A* 
-A sin 2nvt + 2A sin 2nvt 
2 s =  1.3.5, ... Sn 

We now reintroduce the co-ordinate z, and write the emerging disturbance in the 
form 

1 A 
- A  sin 2n(vt - z/A) + 1 -.cos 2n(vt - z/A T sy/A*). 
2 s= 1.3.5. ...sn 

The first term represents the undeviated plane waves of diminished strength 
emerging from the grating, while the others represent a series of diffraction 
spectra in which the even orders are missing. These spectra appear with equal 
amplitudes but with opposite phases in directions equally inclined to the primary 
beam on either side of it. The amplitudes of the diffracted plane waves are 
inversely proportional to the order of the spectrum, in other words, to the sine of 
the angle of diffraction. Considering the situation at the edges b = 0, _+ A*, + 2A*, 
etc., on the surface of the screen, we notice that the diffracted plane waves traverse 
each of these edges in various directions but in identical phases. The diffracted. 
disturbances may therefore be regarded as made up of sets of cylindrical waves 
diverging normally from these edges with an amplitude inversely proportional to 
the sine of the angle of diffraction. A similar situation also presents itself as the 
intermediate edges y = A*/2, f 3A*/2, etc., except that the phases are now 
reversed. It follows that the cylindrical diffracted waves diverging from an edge 
have opposite phases according as they appear on the illuminated or the dark side 
of it. The diffraction spectra emerging from the grating may be considered as the 
result of the interferences of these cylindrical waves. On this view, the non- 
appearance of the spectra of even order is a consequence of the cylindrical waves' 
from the equidistant edges being alternately in opposite phases. 

The result which thus emerges, namely, that the boundary between light and 
shadow at the edge of a screen is a source of diffracted radiation having opposite 
phases on its two sides, evidently does not depend on the particular disposition of 
the edges in the case considered nor on their being infinitely extended or straight. 
It is indeed valid generally, for edges of finite length as also for curved edges. 
Further, the assumption that the alternate strips are completely opaque is also 
not essential, since a sudden transition of any kind-in amplitude or phase or 
both-on the two sides of a boundary of arbitrary form in a light-field would give 
rise to similar effects. The recognition of these consequences of optical theory is 
the key to an understanding of the diffraction phenomena which arise from the 
passage of light through apertures or its obscuration by obstacles of arbitrary 
form and nature. They enable us to describe these phenomena in geometric terms 
related to the form of the apertures or obstacles. Further, they lead us naturally to 
an understanding of the more recondite aspects of diffraction theory, including 
especially the influence of the material and thickness of the screens, and the 
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configuration of the edges (viz., whether they are sharp, wedge-shaped or 
rounded-off) on the observed phenomena. 

A procedure closely analogous to that described above may be adopted to find 
the effect of passage of light through a single slit. We start by assuming a series of 
parallel slits of width a at regular intervals I* and then pass to the limit when 
A* + co. As in the case considered above, a Fourier expansion gives the result of 
the passage of the light through such a grating in the form of a series. It is readily 
shown that this may be written in the form 

sin (xu sin 8JI)  

S= 1.23. .... (nu sin 8JI)  I 3 

where I* sin 8, = sI. As I* tends to co, the diffraction spectra appear in more 
closely contiguous directions, and their number being great, we may neglect the 
first term in comparison with the rest. On squaring, we ohtain an expression of 
the familiar type for the intensity in the diffraction pattern given by a rectilinear 
slit. A' similar expression is also obtained if we consider the diffraction pattern as 
the result of the interference of the cylindrical waves having opposite phases 
emitted by the two edges. 

The validity of the treatment of diffraction problems outlined above is 
naturally subject to certain restrictions and in particular, depends greatly on the 
exactness with which the configuration and properties of any actual screen 
reproduce those assumed for the purpose of the Fourier analysis. It is evident also 
that the results of the analysis would progressively tend to deviate from the facts 
as the size of the structures considered approaches the wavelength of light. For, 
we would then actually have a terminated sequence of spectra and not an infinite 
sequence as assumed. These difficulties become much more acute when we 
consider cases in which the light is incident very obliquely on the screens or 
apertures. 

Instead of analysing the disturbance emerging from an aperture into sets of 
infinitely extended plane waves, we may follow a different procedure and express 
it as the summation of sets of spherical waves having their origins continuously 
distributed over the area of the aperture. This, in fact, is the familiar approach to 
diffraction theory based on the principle of Huygens due to Fresnel which is 
generally adopted in treatises on optics. In this treatment, the intensity at any 
point in the light-field is expressed as a surface integral taken over the illuminated 
area of the aperture and then evaluated. Apart from its historic interest and its 
usefulness in certain cases for purposes of computation, it is evident that this 
classic procedure has not much to recommend it from a physical point of view. It 
postulates secondary sources of radiation at points of space where there are no 
real sources and no material particles which can serve as secondary sources. 
Indeed, if we examine the matter closely, we find, on carrying out the summation 
of the effects of the postulated secondary sources, that they disappear from the 
picture, leaving only secondary radiations having their origins on the boundary 
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of the aperture. That this is the case will be shown a little later when we consider 
the problem of diffraction by apertures or obstacles with curvilinear boundaries. 

Diflaction by an equilateral aperture: The fundamental role played by the 
boundaries of an aperture in determining the physical and geometric characters 
of its diffraction pattern may be suitably illustrated by a simple case, namely, that 
of an aperture bounded by three sharp straight edges in the form of an equilateral 
triangle. 

The light from a point source passing normally through such an aperture 
placed at a distance from it and after diverging further falls on a photographic 
plate; the pattern thus recorded with short exposures is reproduced as figure 36 
and with large exposure as figure 37. Figure 38 is a greatly enlarged reproduc- 
tion of the pattern recorded when an image of the light source as seen through the 
aperture is brought to a focus on the photographic plate by a convex lens. On 
comparing figure 36 and figure 38, we notice that the former exhibits trigonal and 
the latter hexagonal symmetry. The complete dissimilarity of the Fresnel and 
Fraunhofer patterns which these pictures suggest is negatived by a comparative 
study of figures 37 and 38. We then realise that the fainter outlying parts of the 
Fresnel pattern which are recorded on a strongly-exposed plate present marked 
similarities with the features observed in the Fraunhofer patterns. 

The Fresnel pattern illustrated in figure 36 and figure 37 may be completely 
described by the statement that in the strongly illuminated triangular area, 

Figure 36. Fresnel pattern of equilateral aperture (weakly exposed photograph). 
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Figure 37. Fresnel pattern of quilateral aperture (strongly exposed photograph). 

Figore 38. Fraunhofer pattern of equilateral aperture. 

spherical waves of light passing directly through the aperture are superposed 
upon and interfere with the cylindrical waves diverging from each of its three 
edges, while in the fainter outlying regions, these cylindrical waves appear 
by themselves. The interference of the cylindrical waves from each edge 
with the primary spherical waves gives the bands of alternating intensity which 
are noticed running parallel to the same edge. Outside the central illuminated 
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area, an area of hexagonal shape is noticed where the cylindrical waves from all 
the three edges are seen superimposed. Further out still, we have a star-shaped 
hexagonal pattern where they appear superimposed in pairs; still further out, they 
appear individually as streamers. Running parallel to the edges of these faintly 
illuminated areas, we observe bands of alternating intensity which are most 
prominent in the vicinity of the vertices of the triangle; in this neighbourhood, 
they take the form of hyperbolic curves having their asymptotes normal to the 
sides of the triangle. 

The Fraunhofer pattern illustrated in figure 38 may be described as the result 
of the collapse and disappearance of the central illuminated area in figure 37, 
consequent on the lens bringing the spherical waves which pass through the 
aperture to a geometric focus. In other words, the Fraunhofer pattern is due 
exclusively to the radiations from the edges of the aperture. Where the radiations 
from all €he three edges are effectively superposed, we have the central hexagonal 
area of the pattern. Surrounding this, features are visible which are due to the 
cylindrical waves being superposed on each other in pairs and giving observable 
interferences. Further out still, the effect of each edge is observed by itself in the 
arms of the six-rayed star which forms the most conspicuous feature of the 
pattern. The rays of this star arise from the cylindrical waves diverging on either 
side of each edge; owing to the astigmatism of these waves, the broad streaks to 
which they give rise in figure 37 have contracted laterally (but not longitudinally) 
into the narrow streaks seen in figure 38. The fainter bands running parallel to the 
rays of the star are essentially similar in their origin to the bands running normal 
to the edges seen in the Fresnel pattern. They arisefrom the interference with each 
other of the cylindrical waves from diferent parts of the same edge. Along the 
central line of each ray of the star, the whole of the corresponding edge is 
effectively in the same phase. But when we move away from the central line, the 
radiations from different parts of the edge no longer agree in phase. We may then 
replace the line source parallel to the edge by point sources of diffracted radiation, 
one at each end; these give the interferences running parallel to the rays of the star. 
The Fraunhofer pattern may indeed with justice be described as arising from the 
interferences of radiations from three point sources placed respectively at the 
three vertices of the triangle. The amplitudes and phases of these radiations 
depend in a characteristic manner upon the angle of diffraction, thereby 
influencing the general appearance of the pattern to a notable extent. 

DzFaction caustics and foci: We shall now proceed to consider the special 
phenomena exhibited by apertures and obstacles with curvilinear boundaries. It 
is useful in the first place to remark upon the relationship between the effects 
produced by an opaque obstacle and by an aperture in an opaque screen when 
they have the same form and situation relatively to the source of light. The 
illuminated areas being complementary, the sum of the effects in the two cases 
would everywhere be the same, being that due to the source itself. Accordingly, if 
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we subtract from the undisturbed effect of the light-source, that actually 
observed at any point in the shadow in one case, the difference would be the effect 
observed in the illuminated area in the other, and vice versa. The form of the 
boundary being the common feature, this reciprocal relationship indicates that 
we are dealing in both cases with the same physical phenomenon, namely, a 
diffracted radiation having its origin at the boundary. That this appears as a 
positive contribution in one case and as a subtractive effect in the other, or vice 
versa, is readily understood, since the boundary radiation has opposite phases on 
the shadowed and illuminated sides respectively. 

We have now to define more precisely the character of the radiation from a 
diffracting edge of arbitrary form. Here again, the essential features of. the case 
may be deduced from the simplest assumptions. spherical waves are assumed to 
diverge from a point-source Q, and at a distance D from it, meet an opaque screen 
covering the wave-front except over an aperture bounded by a curve of arbitrary 
form. We represent the disturbance emerging from the aperture as a summation 
of spherical waves having their origins distributed continuously over its area.* 
Accordingly, the disturbance reaching a point P on a distant screen is written as 
the integral 

sin 2n(vt - R/A)dS, 

where dS is an element of area on the aperture at the point 0 (say), and R is the 
length OP. It is readily shown that 

dS = Rd Rds- DIPQ, 

where E is the angle between the plane OPQ and some fixed reference plane 
passing through PQ. Integrating with reference to R, we obtain 

cos 2a(vt - R/l.)ds. 
27r.PQ I""" 

R now signifies the distance from P of points on the boundary of the aperture and 
is, therefore, to be regarded as a function of E. The integration with respect to E 

from 0 to 211 may be written as an integration over a complete circuit of the 
boundary of the aperture; ds being an element of arc on the boundary, and c$ the 
angle which it makes with the plane passing through PQ and the element, we 
obtain 

I A sin c$ 
.cos 27r(vt - R/l.)ds, 

2nR sin 8 

*The variation of the amplitude of the assumed spherical waves with their direction of propagation is 
unimportant for our present purpose and is, therefore, ignored. 
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where 9 is the angle between the incident ray reaching the element ds and the 
diffracted ray starting from it and reaching the point of observation. Thus, it 
appears that each line-element of the boundary is a source ofdiffracted radiation, its 
strength being inversely proportional to the sine of the angle of diffraction and 
directly proportional to the sine of its inclination to the plane of diffraction. 

The foregoing result is quite general and may be used to evaluate the intensity 
in both Fresnel and Fraunhofer patterns, it being always remembered that the 
integral represents the disturbance originating at the boundaries of the aperture 
or obstacle, and does not include the undisturbed effect of the light source. The 
latter, if present, must therefore be added to the expression. It  will be noticed that 
the contribution from each element of the boundary becomes large and changes 
sign when 8 passes through zero. It is this reversal of phase of the radiation from 
the edge that secures the observed continuity of the illumination when we pass 
from the region of shadow to the illuminated region in diffraction patterns of the 
Fresnel type. The amplitudes of the radiations received at any point in the field 
from different parts of the edges depend principally upon the angles 8 and 4, while 
their phases vary with R. It follows that the resultant effect would be contributed 
mainly by the parts of the edge for which 8 is small and R is a maximum or a 
minimum. The latter condition automatically ensures that 4 is n/2 or 3n/2 and 
sin 4 is therefore numerically a maximum. Ordinarily, therefore, the diffracted 
radiation has its origin principally at the point or points on the edge where this 
runs perpendicular to the rays reaching the points of observation. If, therefore, we 
draw a series of normals at various points on the geometric boundary between 
light and shadow on the receiving screen, these normals also define the directions 
in which the corresponding points on the edge are most effective in diffracting 
light. 

In the language of geometrical optics, a focus is a point at which a set of 
reflected or refracted rays intersect, while a caustic is a curve to which a set of such 
rays is tangential. These concepts may evidently be applied mutatis mutandis to 
the rays diffracted by edges in the manner discussed above. Hence, provided the 
edges are sharp and smooth, besides being curved, we should be able to observe 
diffraction foci or diffraction caustics at the points where the normals to the 
geometric boundary of the shadow intersect or touch each other respectively. 

Perhaps the best known example of a diffraction focus is the bright spot 
observed along the axis of the shadow of an opaque circular disc thrown by a 
point source of light. A smooth spherical obstacle also gives a similar bright spot, 
but with a notably different colour and intensity, for reasons which we shall 
consider more closely later.* It is worthy of remark that the edge of a circular 
aperture also gives a bright spot along the axis which may be rendered visible by 
blocking out the superposed illumination received directly through the aperture. 

*C V Raman and K S Krishnan, Proc. Phys. Soc. London, 1926,38, 350. 
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It should also be mentioned that an incomplete circular edge also gives a bright 
spot, though naturally af inferior sharpness and intensity. 

The considerations set out above indicate that the evolute of the shadow of a 
curved boundary is the geometric figure along which its diffraction caustic is 
formed. That this is actually the case was demonstrated by observations with an 
elliptic boundary made by the present writer many years ago.* A circular opacity 
polished surface held so that it reflected light obliquely proved an excellent 
substitute for an elliptic aperture. Less satisfactory was a circular disc or a circular 
aperture with a sharp edge cut in a thin metal sheet and held obliquely. 
Qualitatively, the geometric evolute was found to be the locus of maximum 
intensity of the diffracted light. More exactly, the evolute represented the 
geometric limit'within which the radiations from the concave part of the curved 
edge were concentrated. The curve of maximum intensity lay along and inside the 
evolute being accompanied by other and weaker interferences running parallel to 
it (see figure 39). These are due to the diffracted rays crossing each other at various 
small angles inside the evolute. 

Figure 39. Diffraction caustic of elliptic aperture. 

Figure 40 shows the Fresnel diffraction pattern given by an elliptic aperture in 
monochromatic light. The intensity in the diffraction pattern outside the elliptic 
area is mostly concentrated within its geometric evolute as indicated by theory. 
The pattern is crossed by two sets of interferences, one of them running parallel to 
the evolute and arising in the manner already explained, while the other set is 

*C V Raman, Phys. Rev., 1919, 13, 259. 
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Figure 40. Fresnel pattern of elliptic aperture. . 

Figure 41. Diffraction by an undulating edge. 

transverse to the evolute and arises from the interference of the effects due to the 
convex and concave parts of the edge. 

Diffraction caustics are strikingly exhibited in the shadow of a disk with an 
undulating margin* (a nickel one-anna coin), two photographs of which taken 
with short and long exposures respectively are reproduced in figure 41. The 
diffraction pattern within the shadow which is recorded with the longer 
exposures follows the geometric form of the evolute of the undulating boundary. 
It exhibits a marked intensity at the cusps which may be regarded as foci, as well 
as a concentration of the luminosity along the branches of the evolute, with 
subsidiary interferences parallel to them. The effects in the vicinity of the cusps are 
very similar to those noticed when two branches of a caustic formed by refraction 
meet, e.g., in the case of an obliquely held transparent cylinder.' 

*S K Mitra, Philos. Mag.. 1919, 38, 289. Other cases of interest, notably that of a disk with milled 
edges are illustrated in this paper. 
'T K Chinmayanandam, Phys. Rev., 1918, 12, 314. 
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'Ihe heliometer diffraction figures: The case of a semi-circular aperture has a 
special interest in its application to the form of the star-images seen in the 
heliometer; this instrument is a telescope with a divided objective, the two halves 
of which are capable of displacement relatively to each other along their common 
diameter. The case also offers an excellent illustration of the power of the 
geometrical method in discussing the configuration of Fresnel and Fraunhofer 
diffraction patterns and the relations between them. We shall here first consider 
the Fraunhofer pattern; and show how its geometric features may be deduced 
from the semi-circular form of the boundary. 

We denote the angle between the incident and diffracted rays by 8, and the 
complement of the angle which the plane containing these rays makes with the 
diameter of the semi-circle by $. When $ = 0, the plane of diffraction is normal to 
the diameter; the radiations from the elements of the straight edge have then the 
maximum amplitude, while their phases are in agreement for all values of 8. 
Accordingly, these radiations give a long bright streak in the pattern along a line 
perpendicular to the diameter. When $ is not zero, the phases disagree, and the 
interferences then arising would result in alternate minima and maxima of 
intensity running parallel to the streak along $ =O. As in the case of the 
equilateral aperture considered earlier, we, may regard these interferences as due 
to point-sources of equal strength and opposite phases placed at the extremities 
of the edge. When $ = n/2, the radiations from the straight edge vanish 
completely. 

Considering now the curved part of the boundary, the amplitude of the 
radiations from a line element is a maximum at the point where the edge runs 
perpendicular to the plane of diffraction, and diminishes gradually to zero at the 
points where it runs parallel to that plane. The phases of the radiations from the 
line elements as received in the focal plane would, on the other hand, be 
stationary at the former point and alter at an increasing rate as we approach the 
two latter points. The resultant effect of all the line-elements may, therefore, be 
represented by that of a source placed at the point of stationary phase, 
supplemented by two equal sources located at the ends of the semi-circle. These 
latter vanish when $ = 0, but become increasingly important as $ alters in either 
direction; in the limiting cases when JI = f x/2, they represent the entire effect of 
the boundary. 

Thus, in general the radiations from the straight and curved parts of the edge, 
taken together, may be replaced by the effect of three point-sources placed at the 
positions indicated in figure 42, namely, one on the curved edge and two at the 
corners of the aperture. The optical paths traversed by the radiations from these 
sources in reaching the focal plane would differ from each other by the three 
quantities (a + a sin $)sin 8, (a - a sin $) sin 8 and 2a sin JI sin 8, as will be seen 
from figure 42. If we denote a sin 8 by (, the quantities ( and $ may be used to 
define the polar co-ordinates of a point in the focal plane. The interferences of the 
three sources, considered in pairs, would lie along the lines whose equations are 
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Figure 4 2  Diffraction by semi-circular boundary. 

Figure 43. Fraunhofer pattern of semi-circular aperture. 

2( sin J/ = constant, (( + sin r//) = constant, and (c - (sin IC/) = constant. The first 
equation represents the long streaks perpendicular to the diameter already 
mentioned, while the two latter represent sets of parabolae whose axes are 
parallel to the diameter of the semi-circle, but whose curvatures are oppositely 
directed with reference to the set of straight bands represented by the first 
equation. These features are beautifully exhibited by the photograph of the 
Fraunhofer pattern reproduced in figure 43. The three sets of interferences and 
their intersections completely determine the form of the pattern and the 
distribution of intensity in it. 

As already remarked, the effect of the straight edge vanishes when II/ = n/2, 
while that of the semi-circle is equivalent to two sources placed at the ends of the 
diameter. The situation is then the same as for a complete circular boundary, 
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except that we have only one-half its effect. In other words, in the plane of the 
diameter, the pattern is identical with that of a complete circular aperture with the 
intensities reduced to one-fourth their values. When $ = 0, the effect of the curved 
edge reduces to that of a single source placed at its midpoint; the interferences of 
this with the effect of the diameter would result in the straight bands due to the 
latter fluctuating in intensity along their length. These fluctuations diminish both 
relatively and absolutely, and ultimately disappear, as we move out along these 
bands. For, the elements of the straight edge remain in phase with each other, 
while those of the curved edge fall out of phase in an increasing measure as 8 is 
increased. The effect of the latter, therefore, falls off much more rapidly than that 
of the former. 

The line integrals over the straight and C U N ~ ~  parts of the boundary are 
readily evaluated and by their summation, the intensity variations in the pattern 
may be found quantitatively. The former integral is 

I:,, A/2n f asin 8 x cos (Z - 2ns.sin $.sin 8-/A) cos $ ds 

where f is the focal length of the lens, { stands for 2na sin $.sin 813, and Z for 
2n(vt - f/A). The latter integral is 

When @ is equal to f n/2, this reduces to 

xu2 J,(2na sin 8/A) A.-. .sin 2, 
f A (2na sin 1311) 

which is half the value for a complete circle. The effect of the semi-circular arc is 
evaluated very simply for the case when $ = 0. For, the point-source to which it is 
then equivalent must be such that together with an equal source at the opposite 
end of a diameter, it should give the effect of a complete circle. Using the well 
known semi-convergent expansion for the Bessel function J,(x) ,  the amplitudes 
and phases of the sources may be so fixed that their interferences give everywhere 
the required intensity.* 

Comparing the photographs reproduced as figures 43 and 44 respectively, we 
notice that the Fraunhofer pattern has both a horizontal and a vertical axis of 
symmetry, while the Fresnel pattern has only the former. This is an example of the 
general theorem that a Fraunhofer pattern always exhibits centro-symmetry, 
while the Fresnel pattern has no higher symmetry than the aperture itself. The 

*S K Mitra, Proc. Indian Assoc. Cultiv. Sci., 1920, 6, 1. 
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Figure 44. Fresnel pattern of semi-circular aperture. 

centro-symmetry of Fraunhofer patterns is explained by the circumstance that 
they are due exclusively to the boundary radiations, the angle of diffraction 
vanishing at the centre of the pattern for all the elements of the edge; this is not the 
case for Fresnel patterns. 

Various features are noticeable in figure 44 which may be explained by 
considering the radiations from the diffracting boundary and their mutual 
interferences. Those from the straight edge appear on both sides of the pattern as 
horizontal bands. Those from the curved edge are divergent on the left, but on the 
right converge to a focus and then diverge again. If longer exposures had been 
given, streamers O O U ~ ~  have been recorded diverging from the focus towards the 
right in various directions. The lack of symmetry of the Fresnel pattern about a 
vertical axis would then have been somewhat less conspicuous. The transverse 
bands seen in the fainter regions on both sides of the pattern arise from the 
interferences of the effects of the straight and curved parts of the boundary. 

Dzflacting apertures in the Foucalt test: The general view of diffraction pheno- 
mena outlined in the preceding pages is strikingly confirmed and illustrated by 
the effects noticed when an illuminated aperture is observed by the aid of the light 
diffracted by itself. To enable this, an achromatic lensof good quality is employed 
to form a focussed image of a point source of light. An aperture of the chosen form 
is placed immediately after the lens and restricts the area of the emerging beam. 
After reaching a focus, the light enters a second achromatic lens which forms an 
image of the illuminated aperture on a distant screen. The character of this image 
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is found to be greatly influenced by restricting the aperture of the second lens in 
any manner, the size and position of the openings in the focal plane through 
which the light enters the second lens determining the nature of the effects 
observed. The phenomena noticed are readily interpreted on the view that the 
light forming the Fraunhofer pattern in the focal plane of the first leus has its 
origin on the edges of the diffracting aperture. By varying the disposition of the 
openings which admit the light into the second lens, effects may be exhibited 
which demonstrate the various characters of the edge radiation to which 
reference has already been made, viz., the sudden reversal of its phase in passing 
from interior to exterior diffraction, the dependence of its intensity on the angle of 
diffraction and the concentration of the intensity at special points on the edge, 
namely, the poles of the point of observation and sharp terminations on the edge. 

When the opening of the second lens is not restricted in any manner, it gives an 
image of the illuminated aperture reproducing its form with full definition. A 
remarkable transformation of the image occurs when a small obstacle is placed at 
the region of maximum intensity in the Fraunhofer pattern, so as to block it out. 
The image then formed is a delineation of the boundaries of the aperture, the area 
within the boundaries appearing more or less perfectly dark. It should be 
remarked, however, that the edges of the aperture do not appear as bright lines in 
the image so formed. On the contrary, they appear as perfectly dark lines bordered 
by alternately bright and dark fringes on either side, provided the aperture of the 
second lens is symmetrically disposed with reference to the centre of the pattern. 
The reason for this fact is readily understood. As was remarked earlier, the 
Fraunhofer pattern is centro-symmetric by virtue of the interior and exterior 
diffraction by every element of the edge being of equal intensity but of opposite 
phases. Hence, when the light admitted into the second lens includes both interior 
and exterior diffraction to equal extents, the two radiations cancel each other by 
interference and given an image of zero intensity; the diffracted light appears in 
the interference fringes bordering the image of the edge on either side. If, on the 
contrary, the aperture of the second lens is not centro-symmetric but admits the 
light only on one side of the focus, this would no longer be the case. The image of 
the edge then appears as a bright line bordered by alternate dark and bright 
fringes. 

When the second lens is completely covered except for a small opening which 
admits the light reaching some chosen point in the pattern, the luminosity of the 
edge is, in general, observed only at the poles of this chosen point. Taking, for 
instance, the case of a circular aperture, only two bright spots are seen, one at each 
end of a diameter. The intensity of these spots falls off with the increasing angle of 

,diffraction as the opening is moved away from the focus. It is desirable that, in 
such observations, the opening used is not either too small or too large; in the 
former case the image becomes weak and diffuse, and in the latter case, the 
radiations from too great a length of the edge are admitted. Even when a small 
opening is used, the spots at the two ends of the diameter of a circular aperture 
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lengthen into bright arcs and finally appear as semi-circles when the opening is 
brought close to the focal point. In this limiting position, the edge appears 
brightest where it is perpendicular to the plane of diffraction and is of zero 
intensity where it is parallel to this plane, as required by theory: Observations of 
this kind serve to illustrate the geometric theory of diffraction discussed in the 
preceding pages. An aperture of polygonal form, for instance, exhibits a luminous 
point at each of its corners which brightens and merges with the luminosity of the 
edge observed when the opening in the focal plane lies on the corresponding 
streamer in the pattern. A semi-circular aperture exhibits, except in special cases, 
three bright spots on its boundary in the positions indicated by figure 42, the 
relative brightness of these spots varying greatly with the position of the opening. 
In the particular case when the chosen position is on the horizontal axis of 
symmetry (figure 43), the entire diameter appears luminous, while if it is on the 
vertical axis, only two bright spots are seen at the ends of the diameter, as in the 
case of a complete circular aperture. 

Figures 45(a) and 45(b) are photographs of apertures as seen by diffracted light, 

Figure 45. Qiffracting apertures in the Foucalt test. 
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Figure 46. Circular aperture in the Foucalt test. 

the central rays being blocked out at the focus by a small sphere of wax; the edges 
appear in each case as dark lines bordered by bright lines. Figures 45(c) and 46 
represent the appearance of the respective apertures when the direct rays are 

- - 

blocked out by a fine wire stretched across the Fraunhofer pattern through the 
focus. The broad fringes seen on either side of the edge in these two figures are in 
striking contrast with the extreme sharpness with which the geometric form of the 
edge itself is recorded as a dark line. These features become intelligible when it is 
recalled that the breadth of the diffraction fringes depends on the diameter of the 
wire stretched in the focal plane, while the whole effective aperture of the second 
lens determines the sharpness with which the edge is depicted. Figure 45(d) 
represents a circular aperture as seen in the usual form of the Foucalt test, a knife- 
edge cutting off the light at the focus. It will be noticed that the edge now appears 
as a bright curve which is intense on the horizontal diameter and fades off 
towards the vertical. 

The theory of the effects observed in the Foucalt test is readily worked out in 
the relatively simple two-dimensional case* of a rectangular aperture. The light 
vector at any point in the focal plane of the first lens is, in this case, proportional 
to 

2 sin Z.sin (~~/A.LY.X)/X, 

where a is the semi-angular aperture of the opening which limits the area of the 
beam, and x is the co-ordinate of any chosen point in the focal plane. We consider 
this disturbance as effective over the aperture of the second lens, and to find the 
effect due to it at the focal plane of the latter, we integrate it over the area, paying 
due regard to the phase differences which arise between the effects due to the 
elements of this area when the observation is in a direction making an angle P 

*Rayleigh I, Scientific Papers, 6, 455. 
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with the axis of the original light beam. The integral to be evaluated is 

2 [dxesin (Z + 2nlA.P.x) sin (2n/A.a-x)./x, 

which may be written as 

sin Z {kxesin 211/~.(~ + B)x/x + dx-sin Zn/A.(a - B)x/x I 
+ cos Z { ~ d x - c o s  2n'/A-(a - B)x/x - dx-cos 2n/A.(a + B)x/x S 

The integrals have to be taken between the limits x ,  and x2 of the aperture 
covering the second lens. They reduce to the well known Si and Ci functions of 
which complete tables are available.* By assuming particular values for x,and x,, 
the distribution of intensity in the focal plane of the second lens may be 
numerically worked out. In the case of the simple knife-edge test, for example, x2 
would be taken large and x, small, both having the same sign. The calculations 
showt that when the edge has covered only half the central band, the luminosity at 
the edges of the aperture is already six times greater, and when it has covered the 
whole of the central band, about 80 times greater than the illumination at the 
centre of the aperture. The computations also show that the luminosity of the 
areas between the edges alternately increases and diminishes, the successive 
maxima becoming smaller, as the knife-edge advances. The fluctuations of colour 
which are observed simultaneously over the whole area of the aperture are thus 
satisfactorily explained. When the knife-edge traverses an ultra-focal plane of the 
first lens, the two edges of the aperture appear of different intensity-as is to be 
expected, since we are then dealing with the Fresnel pattern of the aperture.: The 
great brightness and sharpness of the luminosity at the edges appear in these 
calculations as mathematical consequences of the behaviour of the Ci function 
which falls very steeply to an infinite negative value when its argument tends to 
zero. The intensity thus becomes very great in the directions a = f P, provided x, 
is small and x,  is large, both being of the same sign. On the other hand, when the 
apertures are symmetrically disposed, the Ci's being even functions of the 
argument cancel each other in the expressions for the intensity, while the Si's 
which are odd functions vanish for a zero value of the argument and reach a finite 
limitingvalue for large arguments. That the edges then appear as dark lines in the 
directions a = f /I is thus readily explained, as also the sharpness of these lines 
when the full aperture of the second lens is operative. The case of a circular 

'Jahnke-Emde, Tables of Functions, 1933, p. 83. 
' ~ a ~ l e i g h  I, loc. cit. 
'S K Banerji, Astrophys. J. 1918, 48, 50. 
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aperture can very similarly be dealt with in terms of the Si and Ci functions when 
the aperture of the second lens has a symmetric opening.* 

Dtffraction by sharp metallic edges: The edge of a razor-blade held in a beam of 
light is observed to diffract light through large angles, appearing as a luminops 
line, when viewed either from within the region of shadow or from the region of 
light. The light thus diffracted is found to be strongly polarised, but in 
perpendicular planes in the two regions. Gouy, who was the first to notice these 
effects, experimented with edges of various metals and discovered that both the 
colour of the light diffracted into the shadow and its state of polarisation depend 
in a remarkable manner on the material of the edge and on the extent to which it 
has been rounded off in the process of polishing. When viewed through a double- 
image prism from within the shadow, only that image of the edge appears 
coloured which is more intense and is polarised with the magnetic vector parallel 
to the edge. The second image which is fainter and is polarised with the electric 
vector parallel to the edge, appears perfectly white. When the incident light is 
polarised in any arbitrary azimuth, the diffracted light is, in general, elliptically 
polarised. The explanation of these phenomena will now be discussed.+ 

Earlier in this lecture, it was shown from theoretical arguments that the edge of 
an opaque screen functions as a source of cylindrical waves; these diverge both 
into the region of shadow and into the region of light, but in opposite phasks in 
the two regions, their amplitude being inversely proportional to the sine of the 
angle of diffraction. In establishing this result, the edge was regarded as a line of 
discontinuity between the area in which the full effect of the incident primary 
waves is present and the area in which it is completely cut off. An aperture with 
sharp edges in a very thin sheet of metal makes a fair approach to the situation 
here contemplated. It should be remarked, however, that such a sheet would also 
reflect backwards such of the light falling on it as is not absorbed. The boundary 
of such an aperture is, therefore, a discontinuity in two distinct ways, firstly in 
respect of the light passing through it, and secondly in respect of the light reflected 
by the surrounding area. Diffraction effects have, therefore, to be considered 
arising out of these two distinct processes. The reflection of light was ignored in 
our earlier discussions, but if it is taken into account, the colour and polarisation 
effects discovered by Gouy find a natural explanation. 

We shall, in the first instance, consider the case of a plane metallic screen 
bounded by a straight edge. Plane waves of light travelling towards the edge and 
incident on it in the direction 4 = 4, (see figure 47) may be represented by the real 
part of the expression 

exp [ikp cos ( 4  - 4,) + ikct]. 

*S K Baneji, Philos. Mag., 1919. 37, 112. 
' C V Raman and K S Krishnan, Proc. R. Soc. London, 1927, A116, 254. 
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Figure 47. Reflection by half-plane. 

The waves reflected by the upper surface of the screen and receding from it are 
given by the real part of 

- (C, + ID,) exp Cikp cos (4 + 4,) + ikct] 
or of 

+ (C, + iD,) exp [ikp cos (4 + 4,) + ikct]. 

The complex amplitudes for the reflected wave are those characteristic of the 
metal for the particular angle of incidence. The alternatives refer to the cases in 
which the electric and magnetic vectors respectively are parallel to the edge of the 
screen for both the indident and the reflected waves. 

We have now to find expressions for a set of cylindrical waves radiated from the 
edge of the screen, the superposition of which on the incident and reflected wave- 
trains would give in the vicinity of the planes 4 = A + 4, and 4 = n - 4,, effects 
which are the same as those indicated by elementary theory, but which would be 
valid also for large angles of diffraction. These requirements are met if we multiply 
the foregoing expressions by the factor S given by the equation 

exp(in/4) " s= Jn J- ; exp ( - i a 2 ~ a ,  

where 

a = f i  cos i ( 4  - 4,), for the incident waves 
and 

a = &cosf (4 + 4,), for \he reflected waves. 

It is easily verified that the resulting products are solutions of the wave-equation 
in cylindrical co-ordinates. S tends to different values, namely, unity and zero, 
when a is positive and negative respectively and is sufficiently large. The result of 
the multiplication is, therefore, to restrict the appearance of the incident and 
reflected wave-trains to the particular regions indicated in figure 47. The 
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multiplier S is, however, not exactly unity or zero as the case may be; its difference 
from these values is given with all needful accuracy by the following expression 
(obtained by integration in parts): 

- exp (in/4) exp ( - ia2) 
J;; 2io . 

Substituting the values of a in this expression and multiplying it with the 
expressions for the incident and reflected wave-trains, we obtain finally, by 
addition, the result 

I F.exp [ - i(kp - kct + n/4)]- 
1 C, + iD, + 

47~ P [cos+(4-60) 

Lf exp[-i(kp- kct +n/4)]- 
1 C ,  + iD, + 

4n P 

These expressions represent cylindrical waves diverging from the edge and having 
an amplitude varying with the direction of the observation, the angle of incidence 
of the light and its state of polarisation, and also dependent on the optical 
constants of the metal. The latter appear in the complex reflection amplitudes 
which are given by the formulae' 

a - cos$ 
- (C, + iD,) = 

a+cos$  

~ ~ c o s I C / - a  + (C, + iD,) = 
W ~ C O S + + ~ '  

where $ is (7112 - 40), w = n (1 - ik) and a2  = (oZ - sinZ 4); n and k are the index 
of refraction and the absorption coefficient, respectively, of the metal. It will be 
seen that the cylindrical waves have large amplitudes near the boundaries of the 
geometric shadow and of the geometric reflection, and that the phases of the 
components which become large are reversed in crossing these boundaries. 
Further, the components bear the same relation of amplitude and phase to their 
respective parent waves. Their interference with these waves would, therefore, 
correctly describe the diffraction fringes observed in the vicinity of these 
boundaries. The expressions being also valid for the large angles of diffraction, 
they contain within themselves the explanation of the experimental facts 
concerning the intensity, colour and state of polarisation of the light diffracted by 
sharp edges. 

The foregoing treatment of the problem of diffraction by a straight edge is 
based upon Sommerfeld's solution for the physically unrealisable case of a 
perfectly reflecting half-plane, but differs from it in taking the actual properties of 
the screen into account. It might be remarked that a metallic knife-edge is more 
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appropriately regarded as a wedge than as a half-plane. The theoretical 
expressions (due to Poincare and others) for a perfectly reflecting wedge may, 
however, be modified in the same way by considering the actual reflecting power 
of the material of which it is made. Taking the wedge to be bounded by the 
surfaces 4 = 0 and 4 = X, the edge effect is given by formulae similar to those for a 
half-plane, 1/4n being replaced by sin ( 7 ~ ~ / ~ ) / 2 ~ ,  and the expressions within the 
square brackets by 

1 

[c0s44 - &I -cos- n2 - cos 4 4  + 40) - COS- 

X X " +  X iDs X 

1 C,  + iD, + i cos 4 4  - 40) n2 4 4  + 40) 7r2 - cos- cos - - COS- 1 
as the case may be. Writing x = 27r, we immediately regain the preceding 
expressions for a half-plane. 

The new feature introduced by considering the optical properties of the screen 
is that the edge radiation appears as a summation of two distinct effects. For 
normal incidence ( t j  = O), the components due to reflection are numerically 
identical but are different in sign for the two possible states'of polarisation. If, 
therefore, the incident light be unpolarised, the light diffracted through large 
angles would be partially polarised, and this effect would be most marked in 
directions nearly parallel to the surfaces of the screen or wedge, since the 
quantities added or subtracted would then be nearly equal numerically. The 
electric vector parallel to the edge would be the stronger component in the region 
of light or exterior diffraction, and would be the weaker component in the regibn 
of shadow or interior diffraction. 

The incident light being white, the colour of the radiation diffracted by the edge 
would be determined by two considerations. The wavelength appears as a factor 
in the expression for the intensity, and thus would tend to make the diffracted 
light reddish, irrespective of the state of polarisation of the incident radiation. The 
colour would also be influenced, and in quite a different way, by the appearance of 
the optical properties of the metal explicitly in the expressions. Since the 
amplitudes of reflection occur with opposite sign in the two cases, the 
wavelengths strengthened in one case will be weakened in the other, and vice 
versa. Thus, in the region of shadow, the colours for which the reflecting power of 
the metal is greater would appear strengthened in the electric vector per- 
pendicular to the edge and weakened in the electric vector parallel to the edge. 
This effect would increase with the angle of diffraction, so much so that the 
favoured colours would become more and more marked in one component, and 
less and less marked in the other component, the further we proceed into the 
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region of shadow. Similar effects should occur in exterior diffraction, but with 
the parallel and perpendicular components exchanging places in respect of both 
colour and polarisation. 

If the incident light be plane-polarised in an azimuth inclined to the edge, the 
diffracted light would exhibit a rotation of the plane of polarisation as well as 
ellipticity, the latter appearing as a consequence of the change of phase in metallic 
reflection. From what has already been remarked about the effects observed 
when the incident light is unpolarised, it follows that both the rotation and 
ellipticity would depend on the nature of the screen, and in the case of strongly 
coloured metals would be notably a function of the wavelength of the light. The 
determination of these two quantities gives us both the ratio of intensities of the 
parallel and perpendicular components and the difference of phase between them, 
and would, therefore, enable a more stringent test of the theory to be made than 
would be possible when incident unpolarised light is employed. 

The results of the foregoing theory are in general agreement with the original 
observations of Gouy. Quite recently, the subject has been very carefully 
investigated by M Jean Savornin,* in whose memoir will be found also a 
complete bibliography of the subject and a detailed discussion of the earlier 
results of other workers. Savornin has quantitatively studied the phenomena and 
compared them with the results expected theoretically on the assumption that the 
screens are perfectly conducting half-planes or wedges, as also according to the 
modified formulae in which the optical properties of the material are taken into 
account. The evidence is decisively in favour of the latter procedure. Indeed, 
Savornin's data for the variation with the wavelength of the rotation of the plane 
of polarisation and the ellipticity ofthe light diffracted by a razor edge, and by the 
same when covered with gold by cathodic deposition, show such a striking 
resemblance with the curves deduced from the theory and the known optical 
properties of steel and gold respectively, as to leave no room for doubt of the 
essential correctness of our formulae. The ellipticity for a steel edge is found to be 
small and to diminish towards the red end of the spectrum, while the rotation 
increases at the same time, though only slowly. In the case of gold, the ellipticity 
shows a pronounced maximum at about 5,200A.U., dropping off to smaller 
values at both smaller and longer wavelengths, while the rotation exhibits a 
minimum at about 4,900A.U., and rises very steeply towards the red end of the 
spectrum. These observations are in full accord with the indications of our theory. 

The formulae are equally successful in other respects. They completely explain 
the striking difference in colour of the two components of the diffracted light. 
They account for the rapid increase in the rotation of the plane of polarisation 
and in the ellipticity produced by tilting the plane of the diffracting edge away 
from the symmetric position in one direction or the other, the deviation of the 

*J Savornin, Ann. Phys., 1939, 11, 129. 
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diffracted rays remaining constant. They also explain in a quantitative manner 
the variation of these quantities and of the intensity of the diffracted light with the 
angle of diffraction. In making the comparison between theory and experiment, it 
is necessary to consider not only the optical constants of the material, but also the 
angle of the wedge, since the latter is found to influence the results very markedly, 
especially when this angle is at all considerable. It is also necessary to remember 
that the theory is strictly applicable only in the case of a perfectly sharp and 
straight edge-a-state of affairs to which the observations show that a fresh razor 
blade may be a remarkably good approximation. It may be mentioned that the 
optical phenomena exhibited by such an edge are so striking and so easily 
observed that they should be personally familiar to every student of optics. 

Diffraction by semi-transport laminae: As is well known, metals are ordinarily 
opaque to light, but in extremely thin layers transmit light. By cathodic 
deposition, or preferably by evaporation in vacuum, it is possible to obtain metal 
films of controlled thickness and consequently of any desired degree of transpa- 
rency. By protecting part of the surface of a plate of glass or quartz by a razor edge 
held obliquely in contact with it, it is possible to coat the plate with a metallic film 
partially transmitting light and terminating in a straight edge,* leaving the rest of 
the plate clear. The same technique is also applicable for obtaining non-metallic 
films by evaporation in vacuum. The diffraction patterns of the Fresnel class due 
to semi-transparent laminae bounded by a straight edge exhibit interesting 
features not observed either with opaque screens or with transparent laminae. In 
the familiar diffraction pattern due to an opaque screen with a straight edge, we 
have a few fringes of rapidly diminishing visibility.running parallel to the edge in 
the region of light, and a continuous illumination falling off 'steadily to zero 
intensity in the region of shadow. A semi-transparent film, on the other hand, 
exhibits a great number of interference fringes in the region of shadow, besides the 
f;nges of moderate visibility in the strongly illuminated region. As the thickness 
of the film is increased and its transparency thereby diminished, the first few 
fringes in the region of shadow become less clear, while the subsequent ones gain 
visibility in spite of the diminished intensity of light in the field. The fringes having 
the maximum visibility move further into the region of shadow with increasing 
thickness of the film, until ultimately they disappear altogether. Another 
interesting feature is that the appearance of these patterns alters greatly with the 
colour of the light. This is a consequence of the marked variation of the 
transparency of the films with the wavelength. 

Figure 48 reproduces the Fresnel fringes due to the edge of a semi-transparent 
silver film. To enable the effects observed on both sides of the edge to be seen 
simultaneously, a photometric wedge was set across the pattern when it was 

*N Ananthanarayanan, Proc. Indian Acad. Sci., 1939, A10,477. 
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F i p e  48. Diffraction by a thin metallic half-plane. 

Visible 3250 Ultra-violet 

Figure 49. Diffraction by silver in the vicinity of 3250 A.U. 

photographed. The fringes of low visibility on the strongly illuminated side, and 
the numerous fringes of high visibility in the shadow were thus recorded 
respectively in the upper and lower parts of the photograph. To exhibit the 
changes in the pattern with wavelength, the fringes may be set transversely on the 
slit of a spectrograph. The dispersion by the instrument then indicates how the 
position and intensity of the fringes alter with wavelength. Silver has a region of 
comparative transparency in the near ultra-violet at about 3,250A.U. The 
measurements by Minor show that the optical constants n and k change rapidly 
in the vicinity of this band, n falling steeply and k rising equally rapidly with 
increasing wavelength. The influence of these changes on the configuration of the 
diffraction fringes is shown by the spectrogram reproduced in figure 49. A 
marked displacement of the fringes on the two sides of the band at 3,250 A.U. and 
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their practical disappearance inside it are the notabe features revealed by this 
record.* 

The phenomena described above become intelligible when we regard the 
Fresnel pattern as arising from the interference of the cylindrical waves having 
their origin at the edge of the film with the plane waves regularly transniitted on 
either side of it. The high visibility of the interferences observed in the region of 
shadow is a consequence of the light transmitted by the film and that diffracted by 
the edge being of comparable intensity. The thicker the film, the further we have 
to move into the region of shadow for this situation to occur, while both nearer 
and still farther, the interfering waves differ greatly in amplitude, thereby 
diminishing the visibility of the resulting fringes. The positions occupied by the 
maxima and minima of intensity depend on the geometrical differences of path 
between the interfering plane and cylindrical waves, due correction being made 
for their initial phase-difference, and especially for the change in phase of the light 
transmitted through the film. These considerations also serve to explain the 
remarkable variations in the positions and visibility of the fringes noticed in 
figure 49 as we pass along the spectrum, and especially in the vicinity of the band 
of transparency at 3250 A.U. 

By exposing a silver film having a sharp edge to the action of iodine,' it may be 
completely converted into a film of silver iodide which transmits the red end of the 
spectrum freely, but is nearly opaque at the violet end. Figure 5qa) reproduces 
the Fresnel pattern given by such a film in red light. Its approximately symmetrical 
character indicates that it arises, at least in part, from a difference in phase 
between the waves transmitted on either side of the edge. Figure 5qb) which 
reproduces the Fresnel pattern observed in violet light is a striking contrast. Here, 
the part covered by. the film appears as in deep shadow; the photographic 
exposure necessary to record the fringes seen resulted in those of low visibility 
appearing in the strongly illuminated part of the field being effaced by over- 
exposure. Figure 5qc) is the Fresnel pattern of a somewhat thicker and therefore 
less transparent film in red light; this shows the fringes more clearly on one side 
than on the other. Figure 5qd) illustrates the importance of a sharp edge by 
exhibiting the effect of its absence on the Fresnel pattern due to a film of Canada 
balsam; it will be noticed that the fringes have completely disappeared from one 
side and show rapid changes in visibility on the other side. This is the result of the 
film sloping off at its termination instead of having a sharply-defined edge. 

Colours of the striae in mica: As is well known, mica has a perfect cleavage, and the 
sheets obtained by splitting the mineral exhibit a remarkable uniformity of 
thickness, as is shown, for instance, by the perfection with which they exhibit 

*N Ananthanarayanan, Pcoc. Indian Acad. Sci., 1942, A14,85. The photographs reproduced in figure 
50 are also frbm his work. 
'A tiny crystal of iodine placed on a silver film gives beautiful rings of colour. 
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Figure 50. Fresnel patterns of semi-transparent laminae. 

Haidinger's rings, and by the uniform colour and brightness of large areas of the 
surface of the sheet as seen by the reflected light of a niercury lamp. Whenever a 
variation of brightness or colour appears, it is sudden, indicating a sharply 
defined boundary at which a change of thickness occurs. These changes of 
thickness become vividly apparent when the mica is examined by the method of 
the knife-edge or Foucalt test. They then appear as bright lines, often exhibiting 
brilliant colours.* Observed in the same test but with a symmetrical aperture, the 
striae are seen as dark lines bordered by bright coloured fringes on either side, 

*C V Raman and P N Ghosh, Nature (London), 1918, 102,205; see also P N Ghosh, Proc. R. Soc. 
London, 1919, A%, 257. 
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indicating a reversal of phase of the edge waves analogous to that we have already 
noticed in the case of other diffracting boundaries (see figure 51). Microscopic 
examination shows that the laminar boundaries may be single or multiple.* and 
the phenomena which the striae exhibit are found to depend on their precise 
nature in this respect. Single striae are extremely sharp laminar edges and are, 
therefore, well suited for a critical study of the diffraction effects due to such edges. 
They diffract light through large anglest, exhibiting colour and polarisation 
effects which, in some respects, are analogous to and in other respects differ from 
those observed with sharp metallic edges. Examined by direct light in critical 
focus under high powers of the microscope, the edges appear as dark lines 
bordered by bright fringes: but as we shall see presently, the observed facts are 
not reconcilable with elementary notions of diffraction theory. These circum- 
stances lend interest to a detailed study of the phenomena and justify an attempt 
to explain them on the basis of more exact theory! 

Figure 51. Mica striae in the Foucalt test. 

*P N Ghosh, Proc. Indian Assoc. Cultiv. Sci., 1920, 6, 51. 
'I R Rao, Indian J .  Phys., 1928, 2, 365. 
IN K Sur, Proc. Indian Assoc. Cultiv. Sci., 1922, 7,  125. 
#C V Raman and I R Rao, Proc. Phys. Soc. London, 1927,39,453. 
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When a sheet of mica is held in the path of a beam of light and the field of view 
behind it is examined through a lens, the striae render themselves evident by the 
diffraction fringes of the Fresnel class to which they give rise. From the character 
of these fringes, it is evident that they arise principally from the difference in phase 
of the waves transmitted on either side of the boundary, though the difference in 
amplitude consequent on the difference in thickness also requires consideration. 
The central fringe in the Fresnel pattern is often brightly coloured. If, however, 
the difference in thickness be considerable, no colour is noticed, but the central 
fringe then appears darker than the rest of the field. When the slit of a pocket 
spectroscope is set transversely across the pattern, alternate dark and bright 
bands may be seen running obliquely through the spectrum at the centre of the 
fringe system. The bright bands determine the colour of the central fringe and if 
their number is not too great, it may be noticed that they correspond to the 
wavelengths at which the outer diffraction fringes are very weak. These oblique 
bands in the spectrum indicate that the position of the central dark fringe shifts 
laterally with the change of wavelength. Using white light and a stria giving a 
suficiently large path difference, this asymmetry averages out and should cease to 
be evident in the absence of spectroscopic aid. In practice, however, the fringes are 
often more prominent on one side of the pattern than on the other. There is little 
doubt that this is due to a disturbing factor, namely, the finite width of the striae. 
Instead of a single sharp edge, we have a series of them like an echelon. In such a 
case, the diffraction fringes are stronger on the retarded side of the wave-front 
than on the other, a circumstance which is readily understood if we consider the 
form of the wave-front after its passage through the echelon. 

The Foucalt test is the most suitable way of examining the light diffracted by 
the striae at comparatively small angles with the primary beam. The colours 
exhibited are complementary to those observed in the central fringe of the Fresnel 
patterns, and the changes produced by tilting the plane of the mica with reference 
to the incident light are also of a complementary character in the two cases. Thick 
striae appear white in the Foucalt test. Spectral examination, however, which 
discloses an alternation of intensity with wavelength. This is readily explained, as 
the difference in phase of the waves transmitted on either side of the boundary 
would have a maximum effect when it represents an odd number of half 
wavelengths and would have no effect when it represents an integral number of 
wavelengths; only the small differences in amplitude would then be left to give any 
observable diffraction effect, according to the elementary theory. 

For examining the light diffracted at larger angles, it is convenient, as in the 
case of metallic edges, to illuminate the stria and view it through a low-power 
microscope focussed on it. It then appears as a bright line exhibiting colour, but 
the latter is found to alter with the angle of diffraction in a mannet which depends 
on the character of the stria, viz., the phase-retardation on the two sides of the 
boundary and its micro-structure. The most striking and interesting results are 
those shown by single striae. Seen in a direction nearly coinciding with the 
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incident light, the colour is the same as when it is observed in the Foucalt test, viz., 
complementary to the colour of the central fringe in the Fresnel pattern. But on 
tilting the microscope away from this direction, the colour alters in a continuous 
sequence which is not symmetrical with respect to the direction of the incident 
light. The stria is brighter when viewed from the retarded side of the wave-front, 
but the colours are more striking on the other side; the stria appears achromatic 
when viewed rather obliquely from the retarded side of the wave-front. 

It is found that the light diffracted by the individual striae is partially polarised. 
The percentage of polarisation increases with increasing angle of diffraction, the 
electric vector of the favoured component being perpendicular to the edge on the 
retarded side of the wave-front and parallel to it on the other side. The partial 
polarisation is, however, less marked on the retarded side of the wave-front, while 
on the other side, it is easily observed and in some cases is found to be nearly 
complete at an angle of diffraction of 90". A quantitative comparison with the 
case of a steel razor blade shows, however, that the radiation by the laminar 
boundary is less perfectly polarised. Examination by a double image prism shows 
that the two images of the striae may exhibit a difference in colour as well as of 
intensity. More detailed studies of this effect and of the elliptic polarisation to be 
expected when the incident light is polarised in any azimuth are, however, 
lacking. 

The visibility of the striae under the high powers of the microscope is a 
consequence of their being extremely sharp boundaries which diffract light. 
Under low powers, the mica striae appear as bright lines on a dark ground when 
viewed under oblique illumination and as dark lines on a bright ground when 
seen in direct light. The diffraction of light by a stria and its visibility under the 
microscope are thus closely connected. The stria, seen by direct light and out of 
focus, exhibits the usual Fresnel pattern. If the retardation be not too great, this 
has a coloured centre, and the fringes on either side of it have a spacing which 
progressively diminishes from the centre outwards. As the focus is approached, 
the fringes become narrower, and the character of the pattern also alters. At 
critical focus the stria appears as a perfectly black line with equally spaced dark 
and bright fringes bordering it, these being often more numerous and distinct on 
the thicker side of the stria than on its thinner side. To investigate whether this 
pattern is influenced by the phase difference on the two sides of the edge, a 
monochromator may be used as the light source, and the wavelength conti- 
nuously varied. The surprising and interesting observation* is then made that 
apart from a narrowing down of the fringes with diminishing wavelength, the 
nature of the pattern as seen at critical focus does not notably alter as the 
wavelength of the light is changed over the whole range of the spectrum from red 
to violet (see figure 52). On the other hand, the Fresnel patterns 6f the same striae 

*Previously unpublished observation by the author. 
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when seen out of focus show striking changes, appearing very prominently at 
some wavelengths, and nearly disappearing at the other lengths, these being 
different again for the different striae (see figure 53). It thus appears that the 
phase-relation of the wave-fronts on the two sides of a stria does not notably 

54001j 6200 A 
Figure 52. Mica striae in the microscope (in focus). 

5400 A 6200 A 
Figure 53. Mica striae in the microscope (out of focus). 



478 c v R A M A N :  OPTICS 

influence its microscopic aspects when seen in focus, and that the latter depends 
on the actual difference of thickness of the mica on the two sides of the stria and on 
its unresolved micro-structure. The asymmetry of the diffraction pattern at 
critical focus appears to be variable. In some cases, hardly any fringes are seen on 
the thinner side of the mica, while in others, several may be seen, though generally 
fewer than on the thicker side. 

Very significant also are the effects noticed when the microscope is put slightly 
out of focus one way or the other. In the case in which the pattern at critical focus 
is strongly asymmetrical, it is found that when the microscope objective is slightly 
pushed towards the mica, a bright band of light forms on the thicker side of the 
pattern and moves into the thinner side. This effect is analogous to the well 
known Becke phenomenon, and the observations indicate that it is a consequence 
of the unsymmetrical diffraction of light through large angles by a laminar 
boundary, for which direct evidence is forthcoming, as already set out. The nature 
of the pattern seen at critical focus also alters and in an unsymmetrical way when 
the incidence of the light on the mica is made oblique. The fringes crowd up 
towards one side of the edge, becoming very fine and numerous and remaining 
well-defined, while on the other side, they recede from the edge, and become 
fewer, broader and more diffuse. The effects are reversed when the incidence is 
altered from one side to the other, the fringes being better seen in either case when 
they are on the thicker side of the mica. 

It is evident from the observed polarisation of the light diffracted through large 
angles, the variations of its colour and intensity and especially from the 
microscopic phenomena described above, that a theory of laminar diffraction 
which considers only the differences in phase and amplitude of the waves 
transmitted on either side of the boundary can, at best, give only a very imperfect 
account of the phenomena. By proceeding somewhat on the same lines as those 
adopted in the case of sharp metallic edges earlier in this lecture and considering 
also the waves reflected at the boundary, the position may be somewhat 
improved. In particular, we may get at least a general indication of the nature of 
the polarisation effects to be expected. Such a treatment, however, fails to explain 
the asymmetry with respect to the direction of the incident rays which is an 
essential and important feature in the observations. It is evident, therefore, that a 
satisfactory theory of laminar diffraction is, as yet, lacking. 

TalbotS and Powell's bands: These bands are observed with white light in a 
spectroscope under certain conditions when one half of the aperture of the 
instrument is covered by a retarding plate. The theory of these bands accordingly 
depends on the nature of the Fraunhofer diffraction pattern due to a rectangular 
aperture, one half of which is covered by a retarding plate. This is evidently the 
same as the pattern due to the separate halves of the aperture, but modified by 
their mutual interference. The intensity in the pattern may be found in the usual 
way by integrating over the area of the aperture, and comes out (omitting a 
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constant factor) as 

where q = na sin8/l, a being the half width of the aperture, 8 the angle of 
diffraction, and 26 the retardation produced by the plate. In the particular case 
when 6 is zero or any multiple of n, the pattern is identical with that of the 
complete aperture of width 2a. More generally, the pattern is crossed by the 
interference bands expressed by the factor cos2 (6 - q), the values of 8 for which 
the resulting intensity is zero being given by 

sin 8 = (p  - l)t/a - (n + *)l/a, 

t being the thickness of the retarding plate and p its refractive index. The angular 
separation of the interference bands is thus inversely proportional to the 
aperture. Considering the particular interference band appearing within the 
central fringe of the pattern, the shift of its angular position with a change of 
wavelength d l  is given by 

and is thus proportional to the thickness of the plate and inversely proportional 
to the aperture. 

This shift of the interference fringes with wavelength may be exhibited by 
setting the focussed pattern for white light transversely on the slit of a 
spectrograph. The interferences then appear as bands obliquely traversing the 
spectrum,* one such band being visible within the central fringe at any given 
wavelength (see figure 54). The inclination of the interference bands to the 
direction of the spectrum is determined by the ratio of the shift d0/dl parallel to 

Figure 54. Spectral analysis of laminar diflraction. 

*N K Sethi, Phys. Rev., 1920, 16, 519. 



480 c v R A M A N :  O P T I C S  

the slit and of the shift d$/dil perpendicular to it due to the dispersion of the 
instrument. The separation of the successive interferences along the spectrum is 
determined by the quantity 

and is thus inversely proportional to the thickness of the plate. If I/dA excceds the 
resolving power of the spectrograph, the bands would naturally cease to be 
observed. The visibility of the interferences produced by a thick retarding plate 
thus provides a test of the resolution available. It can easily be arranged that the 
retardation giving the diffraction pattern arises from the difference of the 
refractive indices of two media. For instance, a glass plate of thickness t and 
refractive index p, may be immersed in a cell of liquid of refractive index p, 
covering half the aperture; the path retardation would then be (p, - p,)t and the 
shift of the interferences with wavelength would be given by 

Thus, when the fringes given by this arrangement are set transversely on the slit of 
a spectrograph, whether the interference bands in the spectrum slope up or slope 
down, is determined by the sign of the difference between the quantities 
(p - A(dp/dA)) for the two media which are their group refractive indices and not 
by the difference of their wave refractive indices p. Only at the particular 
wavelength for which the group indices for the glass and the liquid are the same, 
would the fringes run horizontally in the spectrum. On either side of this 
wavelength, the bands would slope in opposite directions (see figure 55). 

If the central fringe of the diffraction pattern in white light is set on the 
spectrograph parallel to the slit and not transversely, the interference bands 
would now appear crossing the spectrum in the direction of the slit. Their 

Figure 55. Spectral analysis of laminar diffraction. 
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separation along the length of the spectrum would, however, be the same as 
before, and their visibility would be subject to the same condition, namely, the 
suffciency of the resolving power of the instrument. If now the slit of the 
spectrograph is opened wide, very remarkable changes would be noticed in the 
visibility of the interferences, depending upon which side of the aperture forming 
the diffraction pattern is covered by the retarding plate.* In one position of the 
retarding plate, the visibility of the fringes in the spectrum rapidly diminishes to 
zero when the slit is opened and after some feeble reappearances finally vanishes. 
In the other position of the retarding plate, the slit may be opened wide, and 
though this necessarily diminishes the purity of the spectrum, the interference 
bands continue to be seen in it, and indeed in favourable cases suffer no 
diminution in their visibility. These results are readily understood when we 
consider the two directions of march of the interferences, proportional respec- 
tively to dO/dl and d+/dl which are superposed in the spectrum. In one position 
of the retarding plate, these movements are in the same direction. Hence, the 
displacements are added and at any given point of the spectrum, the maxima and 
minima of illumination are superposed to an increasing extent with the opening 
of the slit. The rapid diminution of the visibility to zero after minor reappearances 
follows as a necessary consequence. In the other position of the retarding plate, 
the two directions of march of the fringes are opposed and if they are numerically 
equal, compensate each other. The interferences, therefore, remain fixed in the 
spectrum and suffer no diminution in their visibility when the slit is opened wide. 

The distribution of intensity in the central fringe of the pattern is shown in 
figure 56 for a series of values of 6 and exhibits the lateral movement of the 
interferences by the slope of the line A, A, A, A, A, joining the zeroes of 
illumination in the successive curves. If, as remarked above, this slope is exactly 
compensated by the dispersion of the spectrograph, the interference fringes are 
rendered stationary and are, therefore, seen with perfect visibility. From the 
diagram it is also evident that if the dispersion of the spectrograph is diminished 
to about one-half of that required for such perfect visibility, the minimum A, in 
the fifth curve would be superposed on the maximum B, of the first curve, and the 
visibility of the fringes would, therefore, be completely destroyed. On the other 
hand. if the dispersion is greater than that required for perfect visibility, the 
straight line drawn through the minimum A, would slope over to the left and 
traverse the region outside the central fringe where the intensities are much 
smaller. The interferences would, therefore, continue to be visible in the spectrum 
though with diminished visibility. 

It may be remarked that the foregoing discussion practically covers the theory 
of Talbot's and Powell's bands. We have only to remark that in the usual form of 

*N K Sethi, Philos. Mag.. 1921, 41, 218. 
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Figure 56. Graphs of function (sin2 tf/q2)cos2 (6 - tf). 

these experiments, the retarding plate is inserted within the spectrograph, which 
itself simultaneously forms the diffraction pattern and disperses it into a 
spectrum. The conditions for obtaining Talbot's bands under these conditions 
immediately follow from the foregoing theory and may be stated very simply. The 
visibility of Talbot's bands is perfect when the resolving power of the spectrograph at 
full aperture is twice the minimum required for separating the bands. The bands are 
invisible when the resolving power of the instrument is only suficient to separate 
them. The conditions for observing the bands are much more flexible in the form 
of the experiment discussed above in which the laminar diffraction pattern is first 
formed outside the instrument and then focussed on the slit of the spectrograph. 
The focal length of the lens which forms the pattern and its aperture which is half 
covered by the retarding plate are entirely at our disposal and may be quite 
different from those of the dispersing instrument. It is, therefore, possible to 
obtain what are essentially Talbot's bands with maximum visibility under almost 
any desired conditions. 

Perhaps the most remarkable feature of Talbot's bands is that they involve an 
alteration of the colour sequence in the spectrum of white light.* Under 
favourable conditions, a spectrum traversed by the bands appears as an echelon 

'N K Sethi, Philos. Mag.. 1921, 41, 211. 
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of colour, presenting as many discrete steps as there are bands instead of the 
progressive change of hue normally seen in the spectrum. This effect is best 
exhibited by the bands when the conditions are slightly different from those 
required for their perfect visibility. Referring again to figure 56, it will be noticed 
that the line B, B, B, B, B, drawn through the successive maxima of intensity has 
a slightly greater slope than the line A, A, A, A, A,. If, therefore, the dispersion of 
the spectrograph is about four-fifths of that required for perfect visibility, the 
intensity maxima in the bands come into coincidence in the spectrum. The dark 
bands are then not perfectly black, but the proportions of the various 
wavelengths contributing to the intensity between one minimum and the next 
remain constant. The result is that the band exhibits a uniform hue, and when we 
cross from one band to the next, there is a jump in the colour. The effect is most 
striking when the number of colour steps in the whole spectrum is small, say 3 or 4 
or 5. A spectrum of this kind may be obtained by forming the diffraction pattern 
with a thin plate of mica and resolving it by a prism or grating with relatively 
small dispersion. With the ordinary arrangements for observing Talbot's bands, 
the colour jumps may be effectively demonstrated even with as ?any as 25 or 30 
bands in the spectrum, by arranging to move the latter over a slit behind which 
the eye is placed so as to view the surface of the dispersing prism or grating. 

Before leaving this subject, attention may be drawn to the fact that the 
dispersive power of the retarding plate appears explicitly in the theory of Talbot's 
and Powell's bands. The significance of this is that, as in all interference 
experiments with non-homogeneous light, the observed phenomena are deter- 
mined by the group velocity and not by the wave-velocity of light in the material 
media. This is very prettily illustrated with Powell's bands when the strongly 
dispersive mixture of benzene and carbon disulphide is employed to fill the cell in 
which the retarding glass plate is immersed.* The refractive index of the mixture 
may be steadily diminished by addition of benzene. Fairly thick plates may be 
used as the retardations involved depend only on the differences between glass 
and liquid. The point at which there is equality of refractive index between glass 
and liquid may be nicely judged by viewing a source of light obliquely through the 
edge of the plate. It is found that the bands are visible throughout the spectrum at 
that stage, and continue to be visible until the refractive index is further lowered 
and the group indices for the glass plate and the liquid mixture are equalised for 
some particular point in the spectrum. This corresponds to the wavelength at 
which the bands curve round in figure 55, and as it advances further into the 
spectrum, the bands on one side of it disappear. If, now, the position of the plate in 
the cell is reversed, the bands become visible in the part of the spectrum in which 
they were previously invisible, and vice versa. 

*N K Sethi, Phys. Rev, 1920, 16, 519. 
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It may be mentioned that spectra crossed by interferences analogous in 
principle to Talbot's bands and Powell's bands may be obtained when we have a 
succession of light beams differing in path by equal amounts (instead of only two) 
interfering with each other. These .may be obtained by using a number of 
retarding plates in echelon order, or by multiple reflection between parallel 
surfaces as in a Fabry-Perot etalon or a Lummer-Gehrcke plate. In the latter 
case, it is necessary to immerse the plate in a dispersive medium.* 

Oblique reflection and refraction: The surface of separation between two media 
differing in their properties is the seat of familiar optical phenomena, viz., 
reflection, refraction and total reflection. These appear in the electromagnetic 
theory of light as consequences of the difference in dielectric constant of the two 
media. By considering the conditions which have to be satisfied at the boundary, 
which is assumed to be of unlimited area, the laws of reflection and refraction and 
the intensities of the reflected and refracted beams may be deduced. In the case of 
total reflection, the theory also leads to the conclusion that there is a superficial 
disturbance in the second medium. In practice, however, the surface of separation 
between the two media is of finite extension, and it follows that reflection, 
refraction and total reflection are necessarily accompanied by diffraction 
phenomena. We shall now proceed to consider the special features arising in these 
cases. 

The diffraction patterns resulting from the reflection of light at a plane optical 
surface are easily observed.+ A prism is set on the table of a spectrometer, and the 
slit of the collimator is viewed by reflection at one of the surfaces of the prism 
through the observing telescope. As the incidence of the light on the surface is 
made more oblique, the image of the slit broadens into diffraction pattern, the 
extension of which depends on the wavelength of the light employed, the width of 
the prism face and the angle of incidence. At moderate incidences, the pattern is 
indistinguishable from that of a rectilinear slit held normally in the path of a 
parallel beam of light. With increasing obliquity, however, the pattern progres- 
sively changes in character and becomes unsymmetrical (see figure 57). The 
fringes increase in width and at an accelerated rate as we pass from one side of the 
central fringe to the other. It is evident that on the side of the pattern where the 
fringes are narrower, there is no specifiable limit to their number, while on the side 
where they are broader, their number is finite. This limitation of the number of 
fringes on one side arises from the fact that the pattern does not extend beyond its 
intersection with the plane of the reflecting surface. Another noteworthy features 
is that the corresponding bands on either side of the central band are of very 

*N K Sethi, Phys. Rev., 1921, 18, 389. 
'C V Raman, Phiios. Mag., 1906, 12, 494. 
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Figure 57. DiNraction patterns of obliquely reflected light. 

different intensities. The fringes on the side where they are broader and fewer are 
much fainter than the corresponding narrow bands on the other side. This 
difference becomes more conspicuous when the bands compared are respectively 
nearer and farther from the limit of the pattern. It is also evident that on the side of 
the pattern remote from this limit, the successive fringes fall off in intensity more 
slowly than in the normal diffraction pattern of a rectangular aperture.* 

Very similar effects are also noticed in oblique refraction at a plane surface. It is 
well known that an ordinary prismatic spectroscope may be adjusted to give a 
large dispersion by placing the prism on the table of the instrument in such a 
position that the light falls at nearly the critical angle of incidence on its second 
face and emerges in a direction almost parallel to it. There is, however, no gain of 
resolving power by placing the prism in this position, as the image in the focal 
plane of the observing telescope is greatly broadened by diffraction. The image is 
also strongly curved, the deviation being appreciably different for the rays which 
have passed in slightly different planes through the prism. Owing to the large 
dispersion produced by the prism, it is necessary to use monochromatic light to 
observe the diffraction pattern of the obliquely emergent light in the viewing 
telescope. 

Except for the curvature of the fringes and their greater width, the diffraction 
photographs reproduced in figure 58 for two different angles of emergence are 

- -- 

*C V Raman, Philos. Mag.. 1909, 17, 204. 
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Figure 58. DifTraction patterns of obliquely refracted light. 

very similar to the patterns for oblique reflection discussed above and illustrated 
in figure 57. The fringes show a progressive increase in width from one side of the 
pattern to the other. Their number on one side is limited by the fact that the plane 
of the surface of the prism limits the extension of the pattern in that direction. 
There is also a striking difference in the intensity of the corresponding fringes on 
either side, the wider fringes being also the fainter. The great number of narrow 
fringes visible on one side of the pattern indicates that on this side they diminish in 
intensity more slowly than in the normal diffraction pattern of a rectangular 
aperture. 

With exactly the same arrangements as those used in obtaining the diffraction 
photographs reproduced in figure 58, if the incidence is increased beyond the 
critical angle, all the fringes on one side of the pattern and the central fringe move 
out and disappear, but those on other side persist.* As the angle of incidence is 
further increased, more fringes move out of the field, but other fringes move into 
it, with the result that the general appearance of the pattern remains much the 
same except for the diminished intensity and width of the fringes. Indeed, it is 
clear that the diffraction phenomena at incidences less and greater than the 
critical angle form a continuous sequence. The slow diminution in the intensity of 
the successive fringes observed in figure 59 has evidently the same origin as the 
corresponding feature in figure 58. 

The patterns illustrated in figures 57,58 and 59 are explicable as interferences 
of the radiations diffracted by the edges of the surface at which reflection or 

*C V Raman, Philos. Mag.. 1925, 50, 812. 
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Figure 59. Diffraction pattern in the second medium in total reflection. 

refraction occurs. Alternatively, we may consider them as interferences of the 
secondary radiations having the elements of area of the reflecting or refracting 
surface as their origin. Accepting the latter view, we obtain by integration over the 
surface the expression for the intensity in the pattern, namely, 

a2/ f I.cos2 +.sin2 (/;/r2 

where 

;/r = aa(sin + - sin +,)/I (for reflection) 

( = na(sin + - p sin +,)/A (for refraction). 

+, and + are the angles of incidence and diffraction respectively. The zeroes of 
intensity appear at the values of 1/1 found by making ( = f a, f 2n, + 3a, etc. 

A remark is necessary regarding the factor cos2 + appearing in the foregoing 
expression for the intensity in the pattern. It results from assuming that the 
amplitude in the hemispherical secondary waves from the elements of the surface 
is proportional to the cosine of the angle of diffraction, in other words, that it is 
greatest at the vortex of a hemisphere and zero at its base. The introduction of this 
obliquity factor in the law of the secondary wave is found to be necessary for an 
explanation of the observed distribution of intensity in the patterns. Photometric 
studies* have confirmed its correctness in the case of reflectiont as well as of 
refraction' at individual plane surfaces, as also at a whole series of surface 
elements lying in a plane and forming a diffraction grating. That the inclusion of 
the obliquity factor cos2 t,h in the expression for the intensity in the pattern is 
necessary is also indicated by a consideration of the total energy appearing in it. 
To show this, we may take the case of a perfectly reflecting surface on which light 
is obliquely incident. The energy received by the surface is that passing through 

*C V Raman, Philos. Mag., 191 1, 21, 618. 
'S K Mitra, Philos. Mag., 1918, 35, 112. 
IB N Chakravarty, Proc. R. Soc. London, 1921, A99, 503. 
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an area a cos*, of the incident beam, and the same should appear in the 
diffraction pattern. The energy actually appearing inJhe latter according to our 
formula is 

and this may be written in the form 

This permits of being equated to a cost++,. For, the integral of sin2(/t2 with 
respect to < when a sufficient number of fringes is present on both sides of the 
pattern is .n; in such an integration, we may without sensible error write I) equal to 
$,, its value for the central fringe which contains the largest part of the total 
energy. On the other hand, when some of the fringes in the part of the pattern 
where II/ > t,hO have disappeared, the loss of their contribution to the integral 
would be compensated for by the increased intensity of fringes for which I) < $,. 

It is worthy of remark that the diffraction of light obliquely emergent from a 
plane surface plays an essential role in the operation of the well known and 
valuable instrument known as the Lummer-Gehrcke plate. It is not unusual to 
find this described as an interferometer. The theory of the instrument as actually 
employed is, however, far from being that of a simple interference plate. In 
practice (see figure 60), the light is admitted into it through a reflecting prism 
cemented or optically attached to one end, and the reflection at the external 
surface of the plate is .thus avoided. This makes the plate a "direct-vision" 
instrument and results in a large gain of illumination. As a result of this 
arrangement, also, we have exactly similar patterns on both sides of the plate, and 
the complementary character of the results as observed by transmitted and 
reflected light is no longer in evidence. In other words, the Lummer plate functions 
as a diffraction grating and not as a simple interference plate. Corresponding to a 
definite direction of incidence within the plate, the direction of emergence of the 
light may coincide with any one of several orders of interference. That this should 
happen is not surprising, as the individual beams emerging from the plate very 
obliquely are necessarily of limited aperture and are, therefore, immensely 
widened by diffraction. Though, in practice, a n  extended source of light is 

Figure 60. Diagram of the Lummer-Gehrcke plate. 
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Figure 61. Lummer patterns at different incidences. 

employed, this is not essential and the pattern may be observed even with a 
narrow slit, and indeed even when the light is' incident within the plate at more 
than the critical angle. This is shown by the photographs reproduced in figure 61 
which were obtained with the full aperture of the plate and with various 
incidences, using the 4358 A.U. radiations of the mercury lamp. 

Figure 61 shows that the position of the interferences remain unaffected, 
though the distribution of intensity amongst them alters, when the angle of 
incidence of the light is varied. This circumstance which enables an extended 
source of light to be used for observing the interferences follows as a consequence 
of the Fermat principle of stationary path. If 8 and are the glancing angles of 
incidence and emergence of the light beams for a given order of interference, 3, and 
p being respectively the wavelength of the light and the refractive index of the 
plate, it is readily shown that d@/dl has the same value whether we regard the 
arrangement as an interference plate or as a diffraction grating. In the former 
case, we vary both 8 and 4 and maintain the geometric relation cos 4 = p cos 8 
between them. In the latter case, we keep 8 constant and vary 4 maintaining the 
path-difference between the successive diffracted beams as a constant multiple of 
the wavelength. In either case, we obtain the same result, namely, 

The aggregate aperture of the emerging pencils is 1 sin 4, where 1 is the length of 
the plate; the ratio of this to the wavelength determines the angular width of the 
diffraction maxima and, therefore, also the resolving power of the instrument. 
The latter may be evaluated by writing d 4  = l / l  sin 4 in the preceding formula, 
and we thus obtain 
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The phenomena of total reflection: Total reflection was first explained on wave- 
principles by Huygens. Assuming that secondary wavelets issue from the surface 
into both media, he showed that when the incidence is beyond the critical angle, 
no common envelope can be drawn to the wavelets in the second medium and no 
resultant wave can, therefore, emerge into it. Supplementing this argument by the 
principle of interference, it can be rigorously proved that there should be a 
superficial disturbance in the second medium. It will be useful first to show this in 
an elementary way by the familiar method of the Fresnel zones. To mark out the 
form of the zones on the surface, we consider some particular point of observation 
in the second medium and drop a perpendicular from it on the surface. Around 
the foot of this perpendicular as centre, circles are drawn of which the distances 
from the point of observation increase successively by units of half a wavelength. 
Parallel and equidistant straight lines are similarly drawn perpendicular to the 
plane of incidence and indicating the points on the surface at which the phase of 
the incident plane waves differs by halfa period. Both the circles and straight lines 
are serially numbered, and by adding these numbers at the points of intersection, 
the points of constant total path may be found and curves drawn through these to 
represent the Fresnel zones on the surface for the particular point of observation. 
The form of the zones thus derived and the changes,in their configuration with the 
angle of incidence and the position of the point of observation enable us to obtain 
a general and comprehensive view of the case.* The zones are closed curves only 
when the angle of incidence is less than the critical angle; at and beyond the 
critical incidence, they open out and assume approximately hyperbolic forms. It 
is evident that there are no poles or points of stationary phase on the surface at 
such incidences, and the disturbance in the second medium is, therefore, a 
residual or diffraction effect. 

Considering the disturbance at some point fairly close to the surface, it is 
evident that the contribution to this from distant parts of the surface is 
insignificant. For, the obliquity factor being the cosine of the angle which the 
diffracted ray makes with the normal to the surface, the effect of such parts of the 
surface becomes vanishingly small. On the other hand, the parts of the surface 
near the points of observation have the maximum value of the obliquity factor, 
namely, unity. In this region, remarkable changes in the form of the Fresnel zones 
are observed if the point of observation is at or near the surface. Figure 62 shows 
the form of the zones for a case in which the incidence is at 60", the critical angle 
being 45", while the point of observation is on the surface itself. Figure 63 shows 
the zones for the same case when the point of observation is at a distance of 4% 
from the surface. A sudden discontinuity in the width of the Fresnel zones to the 

*C V Raman, Proc. Indian ~ s s o c .  Cultiv. Sci., 1926,9,271 and 330, (The second reference contains 
some remarks on the sharpness of the boundary of critical reflection as affected by diffraction when 
the aperture is limited.) 
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right and left of the origin will be noticed in figure 62. Accordingly, there must be 
a large resultant effect at this point. In figure 63, the discontinuity has 
disappeared, there being now a steady increase in the width of the zones as we 
pass from one side of the origin to the other. Accordingly, the effects of the Fresnel 
zones should cancel each other out by interference. The configuration of the 
Fresnel zones thus clearly indicates that there is a strong superficial disturbance 

Figure 62. Form of Fresnel zones on surface. Incidence at  60" (critical angle 45"); point of observation 
on surface. 

Figure 63. Form of Fresnel zones; incidence at 60" (critical angle 45"); point of observation 41  from 
surface. 
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in the second medium, and that this diminishes rapidly as we move away from the 
surface. The further we are from the critical incidence, the more quickly does this 
diminution occur. 

When the point of observation is sufficiently removed from the surface, the 
contribution from the neighbouring parts of the surface becomes entirely 
negligible. On the other hand, the effects arising at the margin of the illuminated 
area of the surface then come into prominence. The magnitude of these effects 
depends on two factors, namely, the width of the uncompensated zones at the 
edges, and the obliquity factor. These factors work in opposite directions, since 
the width of the zones would be greatest when the direction of observation is 
parallel to the surface, while in this direction the obliquity factor actually vanishes. 
The most suitable way of observing the edge effects is to view them obliquely from 
a point entirely outside the surface and in a direction nearly parallel to it. Both the 
rear and front edges then appear as fine luminous lines and are seen to be of equal 
intensity. The interference of the edge radiations gives rise to a diffraction pattern 
which can be recorded photographically with sufficiently long exposures* (see 
figure 59). 

Returning to the effects observed at a point P near the surface, we may derive 
an expression for the superficial wave in the second medium. The perpendicular 
drawn from P to the surface is taken as z-axis, its foot as the origin, and the plane 
of incidence of the light as the XZ plane. The light vector in the first medium 
along the surface may be assumed to be of the form 

Ao,.cos (Q, - 2nx sin $,/A), or simply Aao.cos Q 

for brevity, a, being an undetermined constant. The surface is divided up into 
elements of area pdpd4 in polar co-ordinates, r the distance of the element from P 
being (zZ + pZ)'12. The effect of the secondary wave from such an element at P is 

pdpd' cos (Q - 2n)r.p sin (lo coo 4/I - 2nr/I). Au,.-. 
I r  

The obliquity factor is taken as unity, since the effect at P is mainly due to 
elements on the surface near the origin. Integrating with respect to 4 between the 
limits 0 and 2n, we obtain the resultant effect at P as 

Aoo(C cos Q + S sin Q) 

- - -  

*C V Raman, Philos. Mag., 1925,50, 812. 
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where C and S respectively stand for 

2npp sin $, 2nr pdp 
C=?J;J.( )CoSTT 

2npp sin $, . 2arpdp 
S=?[:Jo(  -)sm--. 1 r 

These are well known integrals.* When ,u sin 4, > 1, S vanishes and the effect at P 
reducest to 

= Aa cos Qeexp (- 2 a z J m / ~ )  

thus appearing as a superficial wave Aa cos Q at the surface and travelling along 
the x-axis, the amplitude of which decreases exponentially with the distance z 
from the surface. The disturbance at the surface in the first medium is due jointly 
to the incident and totally reflected waves. If these are individually 

A cos (Q - 612) and A cos (Q + 6/2), 

their resultant is 2A cos 612 cos Q. The continuity of the disturbance at the surface 
parallel to the y-axis requires that a = 2 cos 612, thus showing that the amplitude 
a of the superficial wave and the phase change 6 in total reflection are closely 
connected with each other. To evaluate a and 6,  we require a second relation. This 
is obtained by considering the continuity of the disturbance parallel to the x-axis 
on the two sides of the boundary. If the electric vector in the incident waves is 
parallel to the y-axis, then the magnetic vector H,, i.e., aE,,/az must be the same on 
the two sides of the boundary. If, similarly, the magnetic vector in the incident 
waves is parallel to the y-axis, then the electric force Ex must be the same on the 
two sides; in other words 

Applying these conditions, the values of a and 6 in these two cases are respectively 

*Bateman's Electrical and Optical Wave-Motion, p. 72; and Watson's Treatise on Bessel Functions, 
1922, p. 416. 
t~ V Raman, Trans. Opt. Soc. Am., 1927,28, 149. 
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found to be 

4 cos2 $, Jp4 sinZ $, - pZ 
, tan 38, = 4 = (1 - p2) + b4 - 1) sin2 $o cos $0 

It is readily verified that at the critical incidence, 6, = 6, = 0 and os = o, = 2. In 
other words, the amplitude of the superficial disturbance which is then a 
maximum is the arithmetic sum of the amplitudes in the incident and reflected 
waves. At grazing incidence, 6, = 6, = z, and a, = a, = 0. In other words, the 
surface is a nodal plane and the superficial wave vanishes. At intermediate 
incidences, 6, is greater than 6, and this results, when the incident light is plane 
polarised in an azimuth inclined to the plane of incidence, in the reflected light 
being elliptically polarised. 

The existence of a superficial wave in the second medium may be demonstrated 
in several ways. A direct method which has the advantage of enabling us to 
determine the distribution of intensity in depth as well as direction of energy flow 
and the state of polarisation, is to use the well known property possessed by a 
sharp metallic edge of diffracting a stream of radiation falling upon it.* A fresh 
safety razor-blade is held normal to the surface of a totally reflecting prism and 
with its edge exactly parallel to it. A fine slow-motion of the kind provided in 
interferometers enables the blade to be moved forward or backward by fractions 
of a wavelength. The razor edge is viewed through a microscope focussed on it. If 
the axis of the microscope is in the plane of incidence of the light, and the razor- 
blade is perpendicular to it, the edge when slowly advanced to within a very small 
distance of the surface, becomes visible as a fine luminous line. The intensity is 
greatest when the axis of the microscope is as nearly as possible parallel to the 
surface. The distance from the surface within which the luminosity of the edge is 
perceptible is a measure of the thickness of the superficial disturbance. It is known 
that a diffracting edge is only luminous when seen along the surface of a cone 
having the edge as axis and the ray incident on it as a generating line. Hence the 
observations indicate that the direction of energy-flow in the superficial 
disturbance is in the plane of incidence and parallel to the surface. When the 
incidence is just at the critical angle, the intensity of the superficial wave is found 
to be a maximum and comparable with that of the incident and reflected waves. 
As the incidence is increased, the intensity falls off very quickly. The decrease of 
intensity with increasing distance from the surface is also rapid. When the 
incidence is not much greater than the critical angle, say about 50" for glass, the 

*C V Raman, Trans. Opt. Soc.. Am., 1927,28, 149. 
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luminosity is perceptible when the edge is within a wavelength or so from the 
surface. For larger angles of incidence, the decrease is much more rapid, and the 
luminosity is perceptible only when the edge.is practically in actual contact with 
the prism. When the incident light is polarised, the edge radiation is found to be 
partially polarised, the stronger component of the electric vector being per- 
pendicular to the edge. This is in accord with the theoretical expectations. 

Difiaction of light by curved surfaces: A convex rognded edge on which light is 
incident reflects the light falling upon it, and the superposition of this on the 
exterior diffraction increases its apparent intensity, and makes it perceptible over 
larger angles. On the other hand, the light bending into the region of shadow is 
diminished in intensity by reason of the curvature of the edge and its visibility is 
restricted to smaller angles. This effect may be observed with edges having a 
curvature which may lie within wide limits and is expressible in microns or 
centimetres or even metres. The angles involved and the magnitude of the effects 
would, however, naturally depend on the radius of curvature. A typical 
experiment demonstrating the effect under consideration is the comparison of the 
intensities of the bright spots seen at the centre of a shadow of a circular disk and 
of a spherical ball of the same radius.* To make the comparison significant, the 
disk should have a sharp edge, while the ball should be an accurately made sphere 
with a highly pdished surface. The ball and disk may be set side by side and held 
in the path of a beam of light from a point-source of light. The spots at the centre 
of their respective shadows may then be directly viewed and their intensities 
photometrically compared. 

S~hcre Disk 

Figure 64. Diffraction by sphere and disk of equal diameter (1.5 cm) and at (a) 40cm, and (b) 12Ocm 
distances from them. 

*C V Raman and K S Krishnan, Proc. Phys. Soc., 1926,38,350. 
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A great difference is noticed in the brightness of the two spots. This difference 
increases as we approach the objects (figure 64); the intensity of the spot for the 
sphere falls off more quickly than for the disk, becoming a very small fraction of it. 
At a distance of 120 centimetres, the difference of the intensities is still perceptible, 
while at greater distances, the two spots tend gradually to approach equality of 
brightness. 

The diffraction of light by convex cylindrical edges similarly shows interesting 
features. If the radius of curvature of the edge is of the order of a few centimetres, 
the phenomena in the vicinity of the edge may be conveniently studied with a 
distant slit parallel to the cylinder as the source of light and a microscope for 
viewing the fringes.* The effects are, however, more striking when a strip of mirror 
glass, 3 centimetres wide and 75 centimetres long, is bent into a cylindrical shape 
of large radius of curvature. The diffraction fringes produced by it can be seen 
directly on a screen or viewed with an ordinary magnifier.+ The general nature of 
the case will be evident when we consider the rays of light which pass by the 
cylinder without meeting its surface and those which fall on it and are reflected. 
These form the two branches of a cusped wave-front which is fully developed at 
the edge of the cylinder grazed by the incident rays. The two branches interfere, 
giving fringes parallel to the edge, their number and visibility being greatest when 
the plane of observation is that of the edge itself. As we move away from this 
plane, the intensity of the reflected rays diminishes more quickly on account of 
their divergence. The visibility of the fringes, therefore, falls off until, finally, they 
are scarcely distinguishable from the usual type of diffraction bands along the 
boundary of the shadow of a straight edge. The law of the spacing of these fringes 
may be readily deduced. If a is the radius of the cylinder, and d the distance of the 
plane of observation from its edge, the distance x of the maxima and minima of 
the illumination from the edge of the geometric shadow may be found by 
eliminating 8 from the two equations 

x = 2cd + 3c2a/2 and n/Z = 4 ~ ~ d  + 4c3a. 

When d is much larger than a, we have x = ,m, and the ~ositions of the fringes - 
differ oniy slightly from those in the diffraction pattern due to a straight edge for 
which we have x = ,/-. Indeed except in the vicinity of the cylinder, the 
spacing ofthe fringes is scarcely different from that due to a sharp straight edge, the 
principal difference being in the greater number and the visibility of the fringes. 
Phenomena of the same nature are also observed in the exterior diffraction by 

*N Basu, Philos. Mag.. 1918, 35, 79. 
'T K Chinmayanandam, Philos. Mag,  1919,37,9. The same procedure may be used for observing the 
optical analogue of the whispering gallery effect with a concave surface. 
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reflecting obstacles of other forms having a convex surface, e.g., cones, spheres or 
ellipsoids.* 

The rapidly diminishing intensity of the light entering the region of shadow and 
its restriction to smaller angles with increased radius of curvature of the surface 
are facts of observation which require explanation. Some light is thrown on the 
matter by a consideration of the facts regarding the diffraction of light by metallic 
screens dealt with earlier in this lecture. An examination of the formulae shows 
that the nature of the results to be expected is greatly influenced by the angle of 
incidence of the light on the surface of the screen.+ When the incidence is 
sufficiently oblique, both components of the electric vector in the diffracted rays 
parallel to the surface of the screen become of equal intensity, and are quite small. 
This indication of theory is in accord with observation: and may be expected to 
be true for all reflecting surfaces whether metallic or not. In our present problem, 
we are concerned with the diffraction of light which is incident very obliquely or 
actually grazes the surface of the obstacle. Hence, unless the radius of curvature of 
the obstacle is very small, the polarisation effects would be negligible and both 
components of the diffracted light would be weak along its surface. The greater 
the radius of curvature, the longer the arc of the surface which the diffracted ray 
has to graze before it can emerge at any desired angle. Hence, the attenuation of 

Distance behind the obstacles (crnl 

Figure 65. Comparison of theoretical attenuation factor and experimental data. 

*A B Datta, Bull. Calcutta Math. Soc., 1922. 
'C V Raman and K S Krishnan, Proc. R. Soc. London, 1927, 116,254. 
:S K Mitra, Phifos. Mag., 1919, 37, 50. 
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the diffracted light must increase rapidly with the radius of curvature. The 
problem here considered is evidently analogous to that of the bending of electric 
waves around the surface of the earth. The attenuation factor for the amplitude in 
this case* is exp( - 0.70(2n~/1)"~-8), where a is the radius of the earth, 1 the 
wavelength and 8 the angle which the waves have to creep round. The formula 
indicates a rapid fall in the intensity of the radiation as it bends round, ifthe radius of 
curvature of the edge is large compared with the wavelength, and this is in accord 
with actual experience in the optical problem. 

The measurementst made of the relative intensity of the bright spots in the 
shadow of a sphere and a disk of equal diameter at different distances along the 
axis enable a quantitative test to be made of the attenuation formula quoted 
above. The arc over which the diffracted waves have to creep may be taken as zero 
for the sharp-edged disk. For the sphere, it is the arc on the surface between the 
circles of contact with the tangent cones drawn to it respectively from the point- 
source oflight and from the point of observation. Figure 65 shows the theoretical 
attenuation curve for this case, the experimental data being indicated by dots. 
The general agreement leaves little doubt that the explanation of the facts which 
has been put forward is on the right lines. 

*Riemann-Weber, Diflerential-Gleichungen Phys., 1927,2, 594. 
'C V Raman and K S Krishnan, Proc. Phys. Soc., 1926,38,350. 


