
\ 

J .  Dept. Sci. Univ. Calcutta 1 15-22(1919) 

The kinematics of bowed strings 

C V RAMAN, M.A. 

1. Introduction 

It has long been known that if a string be bowed exactly at one of its points of 
aliquot division, the harmonics having a node at that point fail to be elicited, but 
that if the bow be moved to a point only slightly distant from the node and 
applied with suitable pressure, the same harmonics are elicited with great vigour, 
and in certain circumstances may even transcend the fundamental component of 
the vibration in their intensity. This fact attracted the attention of experimenters 
early in the history of the subject and naturally assumes prominence in any 
exposition of the theory of bowed strings. Among the more recent workers who 
have studied the phenomenon may be mentioned Krigar-Menzel and Raps,' and 
also Davis2 who noticed a similar effect in the casepf the longitudinal vibration of 
rubbed strings. Neither these experimenters nor later theorists such as Lippich3 ' 
and Andrew Stephenson4 have however succeeded in clearing up the nature of 
the transition between the cases in which the partial vibrstions fail to appear, and 
those in which they reassert themselves with grkat intensity. The question is of 
considerable interest in relation to the mechanical theory of the action of the bow, 
and has (along with various other problems) been discussed by me in the first part 
of a monograph on bowed stringed instruments which has recently been 
publi~hed.~ The treatment of the theory given in the monograph is largely of a 
graphical character, and though the formulae for the harmonic analysis of the 
motion were given, they were not fully discussed. It is thought that an exposition 
of the subject from a more strictly analytical point of view may be of advantage. 
This is given in the present paper. 

2. Analysis of discontinuous wave-motion 

It is useful to commence by deriving the formulae which give the amplitude and 
phase of the harmonics of a vibration involving only discontinuous changes of 

'Sitzungberichte of the Berlin Academy, 1891. 
2Proc. Am. Acad. Sci., 1906. 

Wien Berichte, 1914. 
'Philos. Mag. January, 191 1. 
sBull. Indian Assoc. Cultio. Sci., Calcutta, 1918, No. 15. 

398 



THE KINEMATICS  OF BOWED STRINGS 399 

velocity. The distribution of transverse velocity over the whole string at any 
epoch may be represented by a diagram (which we shall refer to as the velocity 
diagram) in much the same way as the configuration of the string at any instant 
may be represented by a displacement diagram. Since, by assumption, the 
vibration at every point on the string is determined solely by discontinuous 
changes of velocity, the velocity diagram of the stringmust consist of a number of 
straight lines inclined to the x-axis at the same angle and separated by 
discontinuities which move to the right or the left according as they belong to the 
positive or the negative wave, and on reaching an end of the string suffer reflection 
and return. The transverse velocity of every point on the string remains unaltered 
except when a discontinuity passes over it in one direction or the other, when it 
suddenly alters by a quantity equal to the magnitude of the discontinuity. 

Let dl, d2, d3, etc. be the magnitudes of the discontinuities and let their 
positions on the string at time t be given by x = c,, c2, c3 etc. If y be the transverse 
displacement at any point on the string, it is readily shown by applying the 
Fourier analysis to the velocity diagram that 

nltx ($), = $ A,, sin - 
1 ' 

where 

The quantities el, c,, c3 etc. are not constant but vary with time. Accordingly, we 
may write c, = (c, + at), or 21 - (c, + at) according as the discontinuity d, belongs 
to the positive or the negative wave. On making the necessary substitutions, and 
separating the sine and cosine components, we get as the equation for the 
vibration 

where 

and 

It will be seen that, generally speaking, both sine and cosine functions of the time 
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are involved in the expression for the displacement, and that it is not possible to 
get rid of the cosine terms by merely changing the origin of time. In general, 
therefore, the string does not coincide with its position of equilibrium at any 
epoch of the vibration. The cosine terms will however vanish provided that the 
positive and negative waves are of identical form and coincide in position at the 
epoch chosen as the origin of time. This is readily verified from (2) above, as the 
coeEfieisnts b, all vanish, and in the resulting vibration, the string everywhere 
passes through the position of equilibrium at two epochs in each period of 
vibration. 

Reference may be made here to three patjers recently contributed to the Philos. 
Mag. in which it has been shown how certain simple discontinuous types of 
vibration may be experimentally reali~ed.~ 

3. Vibrations with the complete series of partials 

In order that the oscillation should include the complete series of partials, it is 
necessary to assume that the bowed "point" divides the string in an irrational 
ratio. If the motion at this point is known, the entire vibration of the string is 
kinematically determinate. For the purpose of the discussion, it may first be 
assumed that the bowed point of the string moves to and fro, once or oftener in 
each period of vibration, with constant and uniform velocities. Mechanical 
theory indicates that this is the type which the motion at the bowed point 
approximates to, but does not necessarily attain in any particular case. The 
velocity of the bowed point when it moves with the bow may be denoted by vb and 
when it moves in the opposite direction, va. The velocity diagram of the string 
must be of such form that by the passage of the discontinuities over it, the velocity 
at the bowed point alternates between va and vb once or oftener in each period of 
vibration. It is obvious that if the magnitude of all the discontinuities in the 
velocity diagram is the same and equal to (v, - v,), and that two or more 
discontinuities do not pass over the bowed point in succession in the same 
direction, the required type of motion at the bowed point would be secured. For, 
the initial velocity at the bowed point being taken to be v, the velocity changes to 
va when a discontinuity passes over it in one direction, and changes back to vb 
when the same or another discontinuity passes over it in the opposite direction. 
By pursuing the argument on'theae lines, it may be ~hown that if the bowed point 
divides the string in an irrational ratio, and its motion is strictly of the type 
contemplated, the magnitudes of the discontinuities in the velocity diagram of the 
string are necessarily all equal to (v, - 0,). We shall here assume this result. 

'On discontinuous wave motion, Philos. Mag. January 1916, February 1918 and April 1918. 
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The magnitude of the discontinuities in$he velocity-diagram being taken to be 
equal to (v, - v,), the amplitudes and phases of the harmonics in the vibration 
may be readily calculated. The number of discontinuities in the velocity-diagram 
gives us a simple criterion for classification of the modes of vibration. 

Case of one discontinuity 

This is the simplest type of all. If the origin of time chosen be the epoch at which 
the discontinuity is at the end of the string, the cosine terms in the expression for 
the displacement vanish, and we get 

= 2 - ( v  - v )  nnx 2nnt 
sin - sin -. 

1 I nn2T z 

This is the well-known principal type vf vibration of a bowed string discovered 
by Helmholtz in which the vibration-curve at every point on the string is a simple 
two-step zig-zag. The ratio va/vb is equal to the r'atio in which the bowed point 
divides the string. 

Case of two equal discontinuities 

The kinematics of this case is readily worked out in detail. It is sufficient for our 
present purpose to give an analytical demonstration of two important features in 
regard to this type of vibration. If the origin of time chosen be the instant at which 
the two discontinuities coincide in position, the cosine terms vanish, and we get 

- 2(va - v,) . nnx nnc 2nnt 
L Y =  , , 2 n 2 ~  sin - COS- sin -, 

I 1 Z 
(4) 

where c is the distance from the end of the string of the point at which the two 
discontinuities cross. At the poini x = c, we have 

= 2 -(va - v,) 2nnc 2nnt 
sin - sin- 

I n2n2T 1 z (5 )  

which evidently expresses a motion of the simple two-step zig-zag type, the ratio 
vdv, being equal to the rati? in which the p0int.x c divides the half-length of the 
string. The motion at other points may be found by graphical methods. If c be 
nearly equal to I / , ,  the amplitude of the second, fourth harmonics etc. becomes 
large in comparison with the amplitude of the other partials, and may even 
transcend that of the fundamental component ofthe vibration. This is clear from 
(4) above. 
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Case of three equal discontinuities , 

In this case, the cosine components vanish only if at the instant at which two of 
the discontinuitiesi pass each other, the third discontinuity is at the end of the 
string. This instant is taken as the origin of time. If the two discontinuities pass 
each other at the point x = l/, f 2b (where b 4: l/,), it may be readily shown as in 
the preceding case that the motion at the point x = 11, T b is of the simple two- 
step zig-zag type, the ratio VJV, being equal to the ratio in which that point 
divides the third of the length of the string. 

If b be sufficiently small, the amplitudes of the third, sixth harmonics etc. 
become large in comparison with that of the fundamental and other components. 

Cases of four, five or more equal discontinuities 

As regards these cases, it must suffice to mention the following kinematical result 
which emerges from a detailed discussion. If r, the number of discontinuities be a 
prime integer, e.g. 2,3,5,7, 11 etc. it is always possible by suitably choosing the 
initial position of the discontinuities to secure that the motion at any specified 
point on the string (not lying near one end) is of the simple two-step zig-zag type. 
If the point specified lies near one of the points of section+of the string into r equal 
parts, the rth, Zrth, 3rth harmonics etc. have relatively large amplitudes in the 
type of vibration thus set up. 

But the case is entirely different when r, the number of discontinuities is not a 
prime integer, e.g. 4, 6, 8, 9 or 10, and is therefore a multiple of some smaller 
number. It is then found that no disposition of the discontinuities can secure a 
simple two-step zig-zag type of motion at any point lying elsewhere than within 
certain limited sections of the string. A simple example will make this clear. With 
6 discontinuities on the velocity-diagram, it is kinematically possible to secure a 
two-step zig-zag type of motion at the bowed point if it lies in the vicinity of the 
node 11, on either side and the 6th harmonic is then powerful, in the motion 
elicited. If it lies elsewhere, that is, in the vicinity of the nodes 113 or 112, the motion 
is necessarily of a more complicated type, a four-step zig-zag and a six-step zig- 
zag being respectively the types of vibration of minimum complexity admissible 
at the bowed point in the two cases. 

4. Vibrations with missing partials 

We may now easily pass to the cases in which owing to the coincidence of the 
bowed point with a point of rational division of the string, certain partials fail to 
be maintained. It is obvious that the falling out of these partials leaves the motion 
at the bowed point unaffected. The mode of vibration of the string in these cases, 
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can be very simply derived from the corresponding 'irrational' types by simple 
subtraction of the partials having a node at the bowed point. It will be shown here 
how this may be done in the most general case of discontinuous vibration. 
Assume that the bowed point coincides with a node of the sth harmonic which of 
course is alko a node of the 2sth, 3sth harmonics etc. Taking the analysis of the 
velocity diagram given in (1) we have l 

Similarly we have 

+ etc. 
nn 

Now the summation of the series C:: A, sin(nnx/l) of which A ,  sin(nx/l) is 
the leading term gives us the original velocity diagram. From (6) and (7), it is 
evident that the subordinate series C", ', A,,, sin (nnx/(l/s)) of which A, sin (snx/I) 
is the leading term is of analogous type and gives us a velocity diagram with , 
discontinuities d,/s, d2/s, etc. the ordinates of which have to be subtracted from 
the original diagram. The lines in the principal and subordinate diagrams are 
obviously inclined to the x-axis at the same angle, and the resulting figure in 
which the missing partials are excluded is therefore made up of straight lines 
parallel to the x-axis and separated by discontinuities. From this diagram, the 
nature of the vibration at any point of the string may be readily found by 
graphical methods. 

It is evident that the effect of the falling out of the partials having a node at the 
bowed point is to introduce into the velocity diagram of the string, a number of 
discontinuities which are smaller thah the original discontinuities in the ratio l/s 
and of opposite sign. 

/ 

5. Vibrations with the missing partials partially restored 

A very complete graphical treatment of these cases is given in the monograph 
where they are referred to as 'transitional modes of vibration.' They are 
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intermediate in form between the various types of vibrations discussed in the 
third and fourth sections of this paper, and have the distinguishing characteristic 
that the speed of the bowed point in the forward motion is generally constant, but 
that in the backward motion is not uniform. Generally speaking, they are of an 
unsymmetrical type, that involve both sine and cosine functions of the time. 
From a musical point of view, they are of great importance, and a fuller discussion 
of their features is being published elsewhere. Here, it must suffice to remark that 
the general analytical formula for discontinuous vibration given in section 2 is 
sufficient to cover these cases as well. 
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