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Abstract. In this paper the phenomena of total reflection are considered, de nouo, from the standpoint 
of the principle of Huygens, no use whatever being made of the Fresnel for ulae for reflection and 
refraction. Huygens' principle enables us to evaluate the disturbance appearing "'h i the second medium 
when light is incident on the boundary between two media and is totally reflected into the first 
medium. The disturbance takes the form of a superficial wave moving parallel to the boundary. The 
existence of such a superficial wave is then shown to involve, as a necessary consequence, an 
acceleration of the reflected wave with reference to the incident wave, the acceleration being zero at 
critical incidence and increasing to half an oscillation at grazing incidence. The intensity of the 
superficial wave is at critical incidence greater for the component having the magnetic vector parallel 
to the surface, but diminishes more rapidly with increasing incidence than for the component having 
the electric vector parallel to the surface; the phase-advance reaches its maximum value correspond- 
ingly sooner. The phase-angle between the two components is evaluated and found to be an acute 
angle, in agreement with the classical treatment based on the Fresnel formulae, but in disagreement 
with the conclusions of Lord Kelvin and Schuster. The source of error in the Kelvin-Schuster 
treatment is pointed out. Experimental evidence regarding the magnitude of the phasaadvance of 
each component separately is available and is in agreement with the classical theory. 

Finally, a method is described by which the distribution of intensity, state of polarisation, and 
direction of flow of energy in the superficial wave may be studied experimentally. 

1. Introduction 

In chapter 111 of his celebrated treatise on light, Christian Huygens applied his 
principle of the superposition of elementary wavelets to the explanation of the 
phenomena of reflection and refraction, and showed that the absence of a 
refracted wave and the increased intensity of reflection for incidences exceeding 
the critical angle follow from his principle as simple consequences. The principle 
of Huygens is thus the natural avenue of approach to the phenohena of total 
reflection from the standpoint of wave-theory. Following Fresnel, however, the 
treatment of total reflection usually given is based on the formulae for reflection 
and refraction obtained by him, a suitahle mathematical interpretation being 
given to the angles of refraction which become imaginary when the incidence 
exceeds the critical angle. While this method may be mathematically elegant, it 
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leaves the physical aspects of the problem somewhat obscure. Moreover, there 
has been some controversy about the actual magnitude and sign of the changes of 
phase occurring in total reflection. Lord Kelvin*, in his Baltimore Lectures, 
discussed the subject at great length on the basis of the mechanical theory of light 
and claimed that the classical interpretation accepted for 80 years was in error. 
His views were supported by schustert in his book on optics, while Bevan's 
observationst on Lloyd's fringes in internal reflection and Drude's discussiong of 
the Fresnel formulae on the electromagnetic theory, on the other hand, appeared 
to support the classical interpretation. Prof. Schuster has, however, reiterated his 
views in the new edition of his book", and in'a recent paper1' claims that Drude's 
electromagnetic treatment is in error. In view of these facts, it would seem that an 
independent treatment of total reflection, based directly on physical principles, 
and making no use whatever of Fresnel's formulae must be of value. It is proposed 
in this paper to supply such a treatment. 

2. The superficial wave in the second medium 

The method of approach which we shall adopt is that indicated by the author in a 
recent paper**. We regard the disturbance in the second medium as arising from 
the superpositi~n of the wavelets radiated from different elements of the 
bounding surface and determine it by evaluating the integral which expresses the 
result of such superposition. 

In figure 1 the plane of incidence is taken to be the plane of the paper. The 
origin of co-ordinates 0 is taken to be on the surface at which total reflection 
occurs, the latter coinciding with the xy-plane (z A O), and the plane of incidence 
with the xz-plane. In accordance with the principle of Huygens, the effect at a 
point P in the second medium (co-ordinates x, o, z)  is to be found by superposing 
the effects of the wavelets radiated from different elements of the bounding 
surface. 

Drop a perpendicular PO, on the surface and divide the surface into circular 
zones with 0, as centre. Denoting O,P, by p, where PI is any arbitrary point on 
the surface, we have PP, = r = (z2 + p2)'i2. An element of area on the surface is 

*Kelvin, Baltimore Lectures, 1904 (386-406). 
'A.  Schuster, Theory of Optics, 2nd edn., p. 54. 
'P V Bevan, Philos. Mag. 14 1907 (503). 
'P Drude, Theory of Optics, English translation, pp. 278-284. 
'A  Schuster and J W Nichblson, Theory of Optics, 3rd edn., p. 54. 
?A Schuster, Proc. R. Soc. London A107 1925 (15). 
**C V Raman, Proc. Indian Assoc. Cultiv. Sci., 9 1926 (271). 
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Figure 1 

pdpd4 and the projection of p on the x-axis is p cos 4. If a train of light-waves of 
period Tis incident on the boundary between two media in which the velocities of 
light are respectively Vl and V2, the refractive index of the second medium 
relatively to the first, V1/V2, being n, we may express the disturbance in the first 
medium due to the incident waves in the form 

2nt 2n(x sin 8 + z cos 8) 
Acos{-i--- 

Vl T 
(1) 

where 8 is the angle of incidence. 
The disturbance due to the wavelet radiating from the elementary area pdpd4 

at P1 and reaching P may be assumed to be of the form 

It will be seen from (1) and (2) that we have assumed a difference of phase $6 
(for the present undetermined) between the disturbance incident on any element 
of the surface and the secondary wavelet starting out from it. Such a difference of 
phase can conceivably exist, though, of course, its value may be zero in special 
cases. The numerical factor k1 appearing in the amplitude of the wavelet is also for 
the present undetermined. The whole effect at the point P is found by integrating 
(2) over the entire area of the surface. Integrating first with respect to 4 between 
the limits 0 and 2n, the result appears in the form 

x sin 8 x sin 8 
Al C O S ~ ( ~  T -T) + A2 ~ i ~ $ ( t  -T), (3) 

where 

~ , = k S b ( ~ . ~ , ( 2 n ~ s i n 6 )  2nrpdp 
v2 T Vl T 

COS -a- 
V2T r '  
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and 

2npsine 2nr pdp 
A , = & ~ ~ ~ A ~ J ~ (  VIT )sin-.- V 2 T  r '  

where k, is proportional to k, and is therefore undetermined for the present. 
Integrals (4) and (5) are of standard types which have been evaluated by H 

Lamb*. When sin8 is greater than Vl /V2  or n, which is the condition for total 
reflection, the integral (5) vanishes, and the integral (4) reduces to the form 

where a  is a numerical constant which remains to be determined. The disturbance 
in the second medium is thus of the form 

which expresses a wave of amplitude a A  at the surface but decreasing 
exponentially with z and propagated parallel to the surface along the x-axis. We 
shall consider the magnitude pf the energy-flow inthe superficial wave a little 
later, but it is obvious from (6) that it is entirely parallel to the surface, and thus 
the energy-flux across any element of area of the surface must be zero. 

3. Change of phase in total reflection 

Since there is no energy-flux across the boundary, it follows that the amplitudes of 
the incident and reflected waves must be equal. It can be easily seen, moreover, 
that the existence of a superficial wave of the form shown in (6) involves as a 
necessary consequence a difference in the phases of the incident and reflected 
waves at the boundary. To prove this, we have only to consider the continuity of 
the disturbance on the two sides of the boundary. It is convenient to consider 
separately the cases in which the electric vector and the magnetic vector in the 
incident waves are respectively parallel to the surface of separation between the 
two media. 

Case I .  Light polarised in the plane of incidence. In this case we are concerned 
with the electric force E, parallel to y, and identify the amplitude A  appearing in 
our formulae with the amplitude of this vector. In order that E, may have the 
same value on both sides of the boundary, we must have, when z = 0, the sum of 
the electric forces in the incident and reflected waves equal to that in the 

*H Lamb, Proc. London Math. Soc. 7 1909 (140). 



superficial wave. 1n order to obtain this result, using the expressions (1) and (6) 
already derived for the incident and superficial waves respectively, we are 
compelled to assume that the electric force in the reflected wave is given by 

2nt 2n(x sin 8 - z cos 0) 
A cos {-?; + 

Vl T + id), (7) 

and'find that the factor o appearing in the amplitude of the superficial wave is 
connected with the phase-advance 6 of the reflected wave relatively to the 
incident wave by the simple relation 

We shall use o, and 6, to signify the values of o and 6 in the present case. To find a 
. second relation connecting them, we note that the component of the magnetic 

force H, parallel to the surface must also be continuous at the boundary. We must 
therefore have (aEy/8z) the same on both sides of the boundary. Differentiating 
(I), (6), and (7) with respect to z, and applying this condition, we obtain very 
readily 

4 cos2 0 .," = - and tan 46, = J s a 7  
1 -n2 ' C O S ~  

At the critical incidence sin 8 = n, and therefore 48, is either zero or any multiple 
of n. The angle 6, is either zero or any multiple of 2x. We therefore take 6, to be 
zero at the critical incidence. For incidences greater than the critical angle, tan 46, 
is positive, and becomes infinite at grazing incidence. Accordingly, 6, is positive 
and increases from 0 to a, as we pass from critical to grazing incidence. 

Case 2. Light polarised at right angles to the plane of incidence. In this case the 
magnetic force is parallel to the y-axis, and we identify it with the vector A 
appearing in our formula. Since H, must be the same on both sides of the 
boundary, we obtain the same expressions (7) for the reflected wave as in 
the preceding case, A being now understood to refer to the magnetic force in the 
incident wave. Since the component of the electric force Ex parallel to x must be 
the same on both sides of the boundary, (a&/&) in the second medium must be 
n2 times as large as its value in the first medium. Differentiating (I), (6), and (7) 
with respect to z, and applying this condition, we obtain a second relation 
between a, and 6, in addition t6 the relation op = 2cos4Sp deduced as in the 
preceding case. In this way, we find 

2, 4n4 cos2 8 and tan 46, = 
&arT 

- (n4 - nZ) + sin2 8(1- n4) n2 cos 8 ' 
(10) 

Arguing exactly as the preceding case, we see that the phase of the reflected 
wave is advanced relatively to that of the incident wave by a quantity 6 ,  which is 
zero at critical incidence and increases to n at grazing incidence. 
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4. Difference of phase of components 

Our investigation has shown that the incident and reflected waves are in the same 
phase at critical incidence, and are opposed in phase at grazing incidence. This is 
true both in Case 1 and Case 2 and hence the angle (6, - d,), which represents the 
difference in the phase-advance in the two cases, is zero both at critical incidence 
and at grazing incidence. Since n2 < 1, it can be seen from (9) and (10) that at 
intermediate incidences t ang ,  is greater than tanid,. In other words, the phase- 
advance in Case 2 is greater than in Case 1, and (6, - 6,) is positive. From (9) and 
(10) we derive the following formulae: ' 

2 cos B , / ~  n2 - 1 + 2 cos2 8 
tan 6, = cos 6, = 

(n2- 1)+2cos28 ' 1-n2 9 

2n2 cos 8J- (n4 + l)cos2 8 - (1 - n2) 
tan 6, = cos 6, = 

(n4 + 1) cos2 8 - (1 - n2)' (n4 - l)cos2 8 + (1 - n2)' (12) 

tan i(6, - 63 = 
cos o J&FC~~ 

' 
, sin2 8 

Formula (13) is identical with that derived by Drude. From our formulae it 
follows that (6, - 6,) for glass is always an acute angle, in agreement with what 
had generally been accepted as true. According to Kelvin and Schuster, however, 
the phase of the reflected wave is advanced in Case 1, and retarded in Case 2, and 
the difference in phase of the two components is represented by an obtuse angle. 
Since the method adopted in the foregoing treatment is based directly on first 
principles and gives the quantities under Consideration in an entirely unam- 
biguous manner, it would seem that the grounds on which Kelvin and Schuster 
base their criticism of the classical treatment must be invalid. We shall presently 
see that this is actbally the case. 

5. The Kelvin-Schuster treatment 

For our purpose it is sufficient to examine the argument in the form in which it is 
presented by Schuster in his rewnt paper in which he criticises Drude's treatment, 
which is: in fact, substantially the sape as that put forward by Kelvin. It rests on 
the supposed necessity for assuming that the well-known Fresnel coefficients of 
reflection for the parallel and perpendicular components of vibration must be 
both numerically and algebraically equal to each other in the limiting case of 



normal incidence. The argument rests on a fallacy which will become clear when 
we recollect that in order to fix the direction of a ray in a unique manner, we 
require to know the positive direction of two vectors, namely the electric and 
magnetic vectors. The direction of the ray is perpendicular to both, and the phase 
of the oscillation, in it may be determined indifferently from the phase of either. In 
the case of normal incidence, the direction of the ray is reversed on reflection, so 
that if the electric vectors in the incident and reflected pencils are in the same 
direction, the magnetic vectors are opposed to each other, and vice versa.,If, as 
proposed by Schuster, the positive direction of a vector is always to be so chosen 
that the positive directions of the vector for the incident and reflected pencils 
become coincident for normal incidence, we should be led to the absurd 
conclusion that the phase of a ray on normal reflection is electrically reversed but 
is magnetically unaltered. It is necessary, in fact, in order to obtain correct results, 

' to assume a rule of signs for vectors lying in the plane of incidence which is exactly 
opposite to that suggested by Schuster. The scheme adopted by Drude is the 
correct one, and accordingly gives correct results. All ambiguity or difficulty may 
be avoided, however, by taking as the phase of a pencil of light, the phase of the 
vector (electric or magnetic as the case may be) which has a direction 
perpendicular to the plane of Incidence. The direction of such vector remains 
invariable when the angle of incidence is altered, and no special convention as to 
sign is necessary. As a matter of fact, the Fresnel formulae for reflection and 
refraction can easily be derived by considering only the vector (electric or 
magnetic as the case may be) perpendicular to the plane of incidence and writing 
down the condition for its continuity at the boundary, as also for the equality of 
the normal flux of energy through unit area of the boundary on either side of it. 
The two Fresnel coefficients then appear with opposite signs, and since the phase 
of the reflected ray must be identical for the electric as for the magnetic vibration, 
the same result must also be valid when we consider the vectors lying in the plane 
of incidence. 

The analytical necessity for so fixing the positive directions of vectors lying in 
the plane of incidence that the two Fresnel coefficients appear with opposite signs 
becomes very clear when we consider the case of a circularly-polarised ray incident 
normally on a surface and reflected from it. In this case, no doubt, both the 
components of the ray are reflected under the same conditions and it might seem, 
at first sight, that their relative phase should remain unaltered. In reality, 
however, owing to the reversal of the direction of the ray, if it has right-handed 
circular polarisation before reflection, it has left-handed circular polarisation 
after reflection, and this is analytically equivalentto a reversal of the phase of one 
of the components relatively to the other. It is precisely in order that the physical 
and analytical requirements of the case might both be complied with, that the 
signs of the vectors have to be taken in the manner chosen by Drude. The 
convention adopted by him is, in fact, merely the well-known Amphre rule of signs 
in another form. It has the effect of making vectors in the incident and reflected 
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rays, which lie in the plane of incidence and which are both in the same phase and 
parallel to each other at grazing incidence, continue to be in the same phase, 
though (geometrically) oppositely directed at normal incidence unless, of course, 
in the interval a real &ysical change in their relative phase has occurred. 

6. Polarisation and intensity of superficial wave 

We have already had occasion to consider the components of the electric and 
magnetic vectors parallel to the boundary in the superficial wave and their 
relation to the expressions (I), (6) and (7). The components sf the electric and 
magnetic forces perpendicular to the surface may be similarly found by applying 
the boundary conditions. It appears that the components E, and H ,  in Case 1 
differ in phase by a quarter of an oscillation, and the components H ,  and Ex in 
Case 2 similarly differ in phase. Hence, in either case, the energy-flow along the 
axis of z is zero. The components Hz and E, in Case 1 and the components E, and 
H ,  in Case 2 have, however, identical phases, and therefore give rise to energy- 
flow parallel to the axis of x proportional to HzEy and E,H, respectively. The 
ratio of the energy-flow in the two cases is found to be 

Why the factor n2 appears is most easily seen on considering the case in which the 
incidence is just at the critical angle; in this case a: = oi, but in the emergent ray, 
which is parallel to the surface, the intensity of its s component is n2 times that of 
the p component. In other words, since n2 < 1, the superficial wave is polarised 
with the stronger component of the electric vector perpendicular to the surface. 

When the expression for the flow of energy in the superficial wave is plotted 
against the angle of incidence 8, it is found to fall off rapidly from its maximum 
value for critical incidence to zero value at grazing incidence. In other words, the 
intensity of the superficial wave falls off to zero as the angle of incidence is 
increased. oi falls off more quickly than a:. Since a, = 2 cos 46, and a, = 2 cos id,, 
the intimate relation between this fall in intensity and the change of phase in 
reflection will be readily understood. 

7. Experimental study of superficial wave 

The existence af a superficial wave has been demonstrated in different ways. 
Stokes used the method of observing Newton's rings between a prism and a lens, 
when the angle of incidence exceeded the critical angle, and Quincke also 
investigated it by a method very similar in principle. By placing small particles in ' 
contact with the surface and thereby causing them to scatter light, the superficial 



disturbance has also been made evident. This method is, however, only 
qualitative. The present writer has shown in a recent paper* that when a totally- 
reflecting surface is of finite extent, as indeed is inevitable, the superficial wave 
gives rise to diffraction effects which can be observed and photographed at great 
distances from the sbrface. The edges of the surface, in fact, act as sources of 
secondary radiation in the same way as the boundary of any fully illuminated 
diffracting aperture. In order, however, to observe the disturbance in the second 
medium at points very close to the surface itself and investigate it in detail, 
an entirely different method has been devised by the writer. This is indicated in 
figure 2, 

AB is the hypotenuse of a right-angled glass prism ABC at which total 
reflection occurs. DE is a fresh "Gillette" razor-blade of which the sharp edge E is 
placed as nearly as possible parallel to the surface AB. A fine slow motion, such as 
that provided on interferometers, enables the razor-blade to be moved forward or 
backward so that the edge approaches or recedes from the face of the prism by 
fractions of a wavelength. The microscope M is focussed on the razor-edge; the 
latter is usually invisible unless some diffuse illumination is provided in the field of 
view. If the axis of the microscope be in the plane of incidence and the razor-blade 
be placed perpendicular to the plane of incidence and slowly advanced within a 
very small distance ofthe surface, it is seen as a luminous line in the microscope. 
The distance of approach or removal from the surface within which the 
luminosity of the edge is visible is a measure of tFe thickness of the layer within 
which the superficial disturbance in the second medium is sensible. 

The principle of the method depends on the well-known property of a sharp 
and highly polished metallic edge to diffract a stream of light falling upon it 

Figure 2 

*C V Raman, Philos. Mag. 50 1925 (812). 
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through considerable angles and to appear as a luminous line when viewed in 
suitable directions. Simple observations with a sharp razor-edge held in an 
ordinary parallel pencil of light show that the directions in which the luminosity 
of the edge is visible depend on the position of the edge relatively to the stream of 
rays. In the general case when the edge is inclined to the light-stream, the 
luminosity is visible only when the direction of observation is any generator of a 
cone having the edge for its axis and the direction of the undiffracted rays for 
another generator. When the stream of light falls normally on the diffracting edge, 
its luminosity is visible in any direction lying in a plane perpendicular to the edge. 

From what has been stated above it is.clear that the observations of the 
luminosity of the edge in the arrangement shown in figure 2, when it approaches 
sufficiently close to the surface, prove that there is actually a stream of energy in 
the second medium travelling parallel to the surface in the plane of incidence. The 
method enables the rate at which the intensity in the superficial wave decreases 
with increasing normal distance from the surface to be determined. It is found 
that, when the incidence is just at the critical angle, the intensity of the superijcial 
wave is a maximum and is quite comparable with that of the incident and 
reflected beam. But as the incidence is increased the intensity falls off more or less 
quickly and becomes zero at very oblique incidences. The decrease of the intensity 
of the superficial wave with increasing normal distance from the surface is very 
rapid; when the incidence is not much greater than the critical angle, say about 
50°, the luminosity is perceptible when the edge is within a wavelength or so from 
the surface. For larger angles'of incidence, 60" or more, the decrease is far more 
rapid, and the luminosity is perceptible practically only when the razor-edge is in 
actual contact with the surface of the prism. When the incident light is 
unpolarised, the luminosity of the edge, observed as nearly as possible parallel to 
the surface, is found to be strongly polarised with the strong component of the 
electric vector perpendicular to the edge. 

8. Direct measurement of phase-changes 

It has already been mentioned that Bevan, by observations on Lloyd's fringes 
formed by internal reflection, verified the fact that the phase-differences 6, and 6, 
between the incident and totally-reflected waves amount to n at grazing 
incidence. In an investigation on the colours of mixed plates*, it was shown by the 
present writer that part of the light falling upon the curved edges of the air- 
bubbles contained in these plates is totally reflected at various angles between 
grazing and critical incidence and interferes with another part which also emerges 
after two refractions through the curved edges. The positions of the maxima and 

*C V Raman and K Seshagiri Rao, Philos. Mag. 42 1921 (679). 
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minima in these interferences depend on the phase of the totally-reflected light, 
and the good agreement found between the observed and calculated values is a 
confirmation of the correctness of the formula used for calculating the phase- 
difference. The method also enabled the difference d, - d, to be directly observed 
and measured, and this was found to be an acute angle. It would appear quite 
practicable to arrange a simple interference experiment in which the phase- 
advances d, and d, may be measured separately and compared with each other. 

9. Conclusion ' 

The method of the knife-edge described above was shown to be practicable in 
observations made at the author's suggestion by Mr D P Acharya and was later 
more fully tested by Mr S C Sirkar. Further observations by this method (using 
stronger illumination), and an experimental study of the state of polarisation of 
light scattered by small particles in the vicinity of a totally reflecting surface, 
would appear to be called for. 

In conclusion, the author has much pleasure in referring to the valpable 
assistance received by him from Mr K S Krishnan in the preparation of the paper. 

Discussion 

Mr T Smith: It is gratifying to find that the total reflection problem for a 
harmonic wave-train can be treated so thoroughly on the simple Huygenian 
principle. It would be still more satisfying to have a cotresponding discussion in 
which events according to some of the modern quantum theories of light are 
considered; since these theories are still in their infancy we shall probably have to 
wait some time for an investigation of such special problems on these bases. 
Unlike the important question of phase, which relates essentially to the waves 
and is thus common to all theories, the question whether the real light energy, 
that is the light quantum, penetrates the second medium does not appear to be yet 
answered. It is obvious that there must be something in the nature of a superficial 
wave in the second medium-one can hardly imagine that conditions just on one 
side of a surface, while a train of waves is being reflected from the other side, are no 
different from those holding when no disturbance reaches the surface-but the 
energy of these waves is not necessarily identical with the energy of the light. 

Mr J W Perry: The boundary condition here assumes the natural confines of the 
first and second media to be a cdmmon boundary surface. But it is found 
necessary to postulate a tfansition layer in order to explain the residual elliptic 
polarisation on reflection at the boundary. It would be of interest if from the 
experimental study of the results obtained some indication were found serving to 
corroborate the existence of the transition layer. 
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Mr E T Hanson: Prof. Raman is to be congratulated upon his ingenious and 
interesting method of attacking the problem of total reflection, which, strange to 
say, has been a stumbling-block to so mahy celebrated physicists and mathema- 
ticians. I am not, however, in entire agreement with him as to the advisability of 
using Huygens' principle in the way he has done. Kirchhoffs formula, which is 
derived by purely mathematical reasoning, might have been applied. But 
Huygens' principle is a concrete physical. conception, which somewhat loses its 
meaning when reduced to the limiting equation (6) of Prof. Raman's paper, for, in 
this limiting case, no energy can be said to be radiated into space from the 
elementary secondary wavelets. 

Drude's very careful treatment of the problem has always appeared to me to be 
excellent in every essential respect, andit is satisfactory to have Prof. Raman's 
alternative confirmation of its correctness, even though his method may be open 
to criticism. 

Drude's attempt to explain how the energy passes from the first medium into 
the second medium and back into the first in the case of total reflection appears to 
me to be incorrect, but the matter is perhaps of small importance. One of the most 
interegting phenomena at, or near, total reflection, is that of the diffraction of a 
beam oflight by a slit when the latter is placed inside the first medium and not too 
close to the surface at which total reflection takes place. The explanation of the 
observed phenomena by the use of Huygens' principle and Fresnel's formulae is 
very instructive. 

With regard to the superficial wave itself, apart from diffraction, the following 
remarks may be of interest. For angles of incidence equal to and greater than the 
critical angle it ispos~ible to combilie the incident and reflected wave systems into 
a single plane wave of variable amplitude. h fact, in the incident space, there is a 
plane wave travelling parallel to the interface, the amplitude varying harmoni- 
cally along the wave-front. In the refracted space there is a plane wave also 
travellirlg parallel to the interface, the amplitude decreasing exponentially from 
the interface. These two wave systems, derived by theory, satisfy all the conditions 
of the mathematical problem. Now it can be shown that at critical incidence no 
energy is transmitted to and from across the interfhce. The physical explanation 
appears to be, therefore, that the two systems of waves in the first medium adjust 
themselves to the velocity of a possible plane wave in the second medium, so that 
there is no reaction ro the propagation of the electromagnetic displacements 
along the boufidary. 

Prof. Raman (communicated): Replying to Mr Perry's remark, it may be said that 
transition layers have but a small influence on the total reflection of light (Drude, 
Wied. Ann. 43 1891 (126) and Maclaurin, "Theory of Light," pp. 62 and 82). They 
may, however, be important in the total reflection of X-rays, where the wave- 
length is much smaller. The effect of the transition layers in total reflectio~l is 
ejlperimentally evident in obsefvations on the scattering of light by liquid 
surfaces (Proc. R. Soc. London A109 1925 (150)). 



In reply to Mr Hanson, I may say that the simplest expression of Huygens' 
principle is employed, as it answers the purpose sufficiently and avoids 
unnecessary mathematical difficulties. It must be remembered in this connection 
that Kirchhoffs principle is only one way of formulating the propagation of 
waves in an uninterrupted medium and, even as such, is not unique. In the present 
case we are concerned with the effects occurring at the boundary between two 
media, and not with a single uninterrupted medium. 

With regard to the question of energy it is clear that the elementary wavelets 
entering into the second medium attenuate each other's effects by interference so 
completely that the actual energy conveyed by them is an infinitesimal quantity. I 
would interpret formula (6) as being just a mathematical expression of this 
physically intelligible result. 
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