
Section X-Construction of the velocity-diagram when the 
bow is applied at a node 

The discussion of the vibrational modes given in sections VI to IX proceeded on 
the assumption that the bow is applied at a point of irrational division of the 
string and that the pressure of bowing is sufficiently large in relation to its velocity 
to ensure that the motion at the bowed point alternates between two and only 
two rigorously constant velocities, once or oftener in each period of vibration. 
When these conditions are satisfied, the resulting mode of vibration should in 
general include the complete series of harmonics. We shall now pass on to 
consider the cases in which owing to the position of the bow coinciding exactly 
with a point of rational division of the string, the series of harmonics having a 
node at that point is completely absent in the resulting vibration. The absence of 
these harmonics is evidently necessary if the mode of vibration of the string is to 
be fully determinate in terms of the motion at the bowed point, and in section IV it 
has been shown to follow from this and the known characteristics of the motion at 
the bowed point that the form ofthe velocity waves must then be that ofa number 
of straight lines parallel to one another with intervening discontinuities. The 
velocity-diagram of the string at any epoch of the vibration must therefore also 
consist of parallel straight lines with intervening discontinuities. It will now be 
shown that these straight lines are all parallel to the x-axis, i.e. to the position of 
equilibrium of the string. 

Let the velocity-diagram of the string at a certain epoch in the corresponding 
irrational type of vibration consist of parallel straight lines inclined to the 
x-axis at an angle a, with discontinuities of magnitude dl, d,, d,, etc. intervening 
at the points x = c,, c,, c,, etc. respectively. This velocity-diagram may be readily 
analyzed into its Fourier components. Let the velocity at any point on the string 
at the epoch referred to, be represented by Il/(x). Then, 

where the value of A, is determined by the equation 

nnx 
An = J: I)(*) sin - dx. 

I 

+(x) is equal to x tan a between the limits x = 0 and x = c,. From x = c, up to 
x = c,, it is equal to (x tan ci - dl) and then changes to (x tan a - d l  - d,) retaining 
this value up to x = c,, and so on. Integrating by parts, we have 

Since tan a is a constant, the second term reduces to zero and the equation may be 
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written in the form 

When n = 1, we have 

When n = s, A, may be written in the form 

The summation of the series 7 A, sin (nnxll) of which A, sin (7~x11) is the 
leading term gives us the original velocity-diagram $(x) which consists of parallel 
straight lines inclined to the x-axis at an angle a and has a discontinuity dl  at 
the point x = c,, a discontinuity d2 at the point x = c,, and so on. From this, it 
follows that the series = y A,, sin (nnx/l/s) of which A, sin (snxll) is the leading 
term would similarly give us when summed, a diagram also consisting of straight 
lines inclined to the x-axis at the same angle a, the magnitudes of the 
discontinuities in it being d,/s, d,/s, d,/s, etc. and the series being periodic for 
successive increments of x by the length 211s instead of 21 as with the original 
series. Subtracting the ordinates of the diagram thus derived from those of the 
original diagram $(x), the resulting figure in which the sth, 2sth, 3sth harmonics, etc. 
are all absent, is seen to consist of straight lines parallel to the x-axis with 
intervening discontinuities. We have already seen that with the irrational types of 
vibration, dl, d,, d,, etc. are all numerically equal to (v, - v,), some belonging to 
the positive wave and some to the negative. In the particular cases in which the 
positions c , ,  c,, c,, etc. of the discontinuities are such that the motion at the 
bowed point is a simple two-step zig-zag, the summation of the series of 
harmonics to be left out gives, when graphically represented, a diagram of the 
simplest possible form, that is, one straight line terminated by one discontinuity 
in each length of abscissa 21/s, the sth harmonic being the first of the series. This is 
very readily proved. Taking the first type of vibration in which there is only one 
discontinuity in the velocity-diagram (figure 1 in section VI), we see that at the 
epoch chosen as the origin of time, c, = I. From the expression for A, given above, 
it follows that the series A,,sin(nnx/l/s) has a discontinuity equal to 
v, - v,/s at the same point c1 = I. The next discontinuity would be at x = (s - 2)l/s, 
the line of the diagram passing through the intervening node at x = (s - l)l/s. For 
the second, third, fourth types of vibration, etc. discussed in sections VII, VIII and 
IX, a precisely similar construction holds good when the motion at the bowed 
point is a simple two-step zig-zag. For, the positions of the discontinuities c,, c,, 
c,, etc. in the initial velocity-diagram are such that ifthe bow is applied at a node 



of a given harmonic, the discontinuities are also situated at certain other nodes of 
the same harmonic. A sufficient illustration of this fact and of the method of 
construction is given in figure 5(i). This shows the initial velocity-diagram for the 
third type of vibration elicited by bowing at the node 5118. The thin inclined lines 
show the velocity-diagram with the complete series of harmonics, the thick 
horizontal lines show the velocity-diagram obtained by dropping out the 81h, 161h 
harmonics, etc. and the dotted vertical lines show the intervening discontinuities. 
From the subsequent movement of the discontinuities in the diagram thus drawn, 
the vibration-curve at any desired point on the string is readily obtained. 

The types of vibration set up by bowing the string at the nodal points 1/2,21/3, 
31/4,41/5, etc. are of special interest. The initial velocity-diagram in these cases is 
readily derived from the first irrational type of vibration by the method of 
construction described above. We shall now consider these cases a little more 
fully. 

Figure 6 illustrates the first case. The initial velocity-diagram is a straight line 
parallel to the string with a discontinuity at each end. These discontinuities move 
in towards the centre of the string, and when they meet at the expiry of a quarter- 
period, the velocity at every point on the string, except the centre itself, is zero. At 
this epoch, the form of the string consists of two straight lines meeting at the 
centre, being the same as at the corresponding epoch in figure 1. Incidentally, it 
will be noticed that the mode of vibration of a string bowed at the centre is the 
same as that-obtained when it is plucked at the centre.'' 

Figure 7 illustrates the case of a string bowed at a point of trisection. At the two 
points of trisection, the vibration-curve is a simple two-step zig-zag, and at two 
corresponding epochs, the configuration of the string consists of two straight 
lines meeting at the point of trisection. The nature of the motion as observed at 
the centre of the string is of special interest in this case. Commencing from the 
position of extreme displacement in one direction, the complete period of 
vibration is seen to be made up of six phases of equal duration, in the first and 
third of which the velocity of the centre of the string is the same as that of the bow 
applied at the point of trisection. In the fourth and sixth phases the velocity is also 
the same numerically but in the opposite direction. In the second and fifth phases, 
the velocity is numerically double that of the bow, having the same sign in the 
second phase, and the opposite sign in the fifth phase. Only the first, fifth, seventh, 
eleventh harmonics, etc. contribute towards making up the motion at the centre 
of the string in this case. 

'OIt is also readily seen that the velocity-diagram of a string plucked at any other point and released 
should consist of a straight line parallel to the x-axis and bounded by two discontinuities which are 
initially coincident at the point of plucking and start off with the velocity of wave propagation in 
opposite directions. The form of the vibration-curves in this and other analogous cases is much more 
readily found by the aid of the velocity-diagram than by tracing the configuration of the string. 
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Velocity - diagrams Vibration -curves and displacement 
diagrams 

Figure 6. The string !owed at the centre. 

Figure 8 illustrates the case in which the bow is applied at a point exactly a 
quarter of the length of the string from one end, the initial velocity-diagram of the 
string being obtained by the geometrical construction from the first type of 
vibration. The cases in which the bow is applied at a point one-fifth or one-sixth 
or  one-seventh, etc., of the length from one end may be similarly dealt with. 

Passing on to consider the modifications of the second, third and higher 
irrational types of vibration caused by the coincidence of the bow with a point of 
rational division of the string, we find no difficulty in constructing the initial 
velocity-diagram of the string in any specified case, and as we have already seen, 
the construction becomes further simplified when the motion at the bowed point 
is representable by a two-step zig-zag. Certain interesting relations then become 
evident. The velocity-diagrams derived from the first and second types of 
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Velocity diogroms Vibration curves and displacement 
diagrams 

Figure 7. The string bowed at a point of trisection. 

vibration are found to be identical when the bow is applied at a point of trisection 
(cj: section VII in which it was shown that these two types then become 
completely identical). Similarly, the first and third types become identical when 
the bow is applied at a distance 114 from one end, the first and the fourth when it is 
applied at 115 from one end and so on. Further, the second and third types give the 
same results when the bow is applied at a distance 2115 from the end, the ratio 0 
being 115 in both cases. The third and fourth types both give the ratio 0 = 117 
when the bow is applied at 2117, and so on. These relations may be stated and 
proved in the following general form. 

W e n  the motion at the bowed point is given by a simple two-step zig-zag, the pZh 
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Velocity-diagrams Vibration -curves and displacement 
diagrams 

Figure 8. String bowed at point of quadrisection. 

and qZh types of vibration give identical vibration-curves, provided the bowed point 
coincides with an intervening node of the (p  + qYh harmonic. 

The proof of the relation stated above follows very simply from the general 
relation given in equation (17). Let x, define the position of the bowed point and 
let the nearest nodes of the prh and qrh harmonics be the (r  + IYh and the (s + 
respectively, counting from one end. For the prh type, the ratio w = ( x ,  - rllp) 
-+ l/p. For the qrh type, the ratio o = (sllq - x,) - I/q, it being assumed that rl/p 
< x,  < sllq. The pth and qrh types give the same vibration-curves when the value of 
w is the same for both at the bowed point. Equating w for the two cases, we deduce 
x ,  = (r + s)l/(p + q), in other words that the bowed point coincides with the 



(r + s + lYh node of the (p + qYh harmonic. Similarly, if x, lies outside the limit 
srlls and sllq, the pfh and qfh types become identical when the bow coincides with 
the (r - s + lYh node of the (p - qYh harmonic. 

As an illustration of the results, we may consider the case in which the bow is 
applied at the point 3111 1. The fourth and seventh types of vibration both give the 
ratio o = 111 1 and are thus identical in this case, but the third type gives the ratio 
o = 211 1, the first type gives the ratio o = 311 1 and the second type gives the 
largest ratio of all, viz. o = 511 1. 

Section XI-Some examples of the theoretical determination of 
the vibration-curves 

We shall now proceed to figure a number of vibration-curves whose forms can be 
calculated by the aid of the theoretical principles set out in the preceding sections. 
To trace the vibration-curve at any given point on the string, we require data 
regarding the position of the bowed point and also as to the particular type of 
vibration (according to the method of classification explained in section V) which. 
may be assumed to be actually elicited. In the next section we shall consider at 
some length the general relation connecting the position of the bowed point and 
the pressure, velocity and other features of the bowing adopted, with the mode of 
vibration elicited. Meanwhile, as a working rule, it will be assumed that if the bow 
is applied at a point not far from a node of the nfh harmonic, n being one of the first 
seven or eight natural numbers, the nth type of vibration is elicited. It will be 
further assumed that the motion at the bowed point is a simple two-step zig-zag 
except in cases in which, as shown in section IX, it is necessarily of a more 
complicated type. These assumptions are justifiable, provided the pressure of 
bowing is sufficient and other circumstances are favourable. 

The detailed method of tracing the vibration-curves is as follows: the initial 
velocity-diagram of the string is first set down according to the principles already 
explained. The ordinate at the point whose vibration-curves is to be drawn, gives 
its initial velocity. The positions and magnitudes of the discontinuities and the 
direction of their motion, positive or negative, being known, the  successive^ 
changes of velocity at the point of observation and the intervals of time at which 
they take place are obvious to inspection. The successive intervals and the 
resulting displacements may then be pricked off on a time-displacement diagram 
and when joined up, give us the desired vibration-curve. 

In figures 1 to 8 we have already had a number of illustrations of the graphical 
process worked out in detail. The succeeding figures 9, 10, 1 1  and 12 present 
additional examples of vibration-curves determined by the entirely a priori 
method set forth above. They were specially drawn for comparison with the first 
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Figure 9. Examples of vibration-curves of a bowed string, found a priori. 



forty of the curves found experimentally by Krigar-Menzel and Raps and 
published with their paper. 

N.B.-In these and the succeeding figures, the symbol e represents a small 
fraction whose value was variously assumed. 

The first curve in figure 9 belongs to the first type of vibration. The second and 
third curves belong to the fifth type of vibration, the bow being applied on 
opposite sides of the node of the fifth harmonic in the two cases.12 The former 
curve is modified owing to the absence of the eleventh harmonic. The fifth and 
sixth types of vibration both give the ratio o = 111 1 when the bow is applied at 
the point 2111 1. (At the same point, the first type of vibration would give the ratio 
w = 211 1). The fourth curve in figure 9 is a combination of the fourth and seventh 
types which become identical when the bow is applied at the point 3111 1, the ratio 
o at the bowed point being 1/11 for both types. The fifth curve belongs to the 
seventh irrational type of vibration and the sixth curve to the third irrational type. 
It will be noticed that these two forms are closely analogous and it can be readily 
shown that they merge into one another when the bow is applied exactly at the 
point 31/10, where they both give the ratio w = 1/10. The close approximation of 
the form of the seventh curve to that of a pure sine-wave will be noticed. The 
eighth curve belongs to the third irrational type of vibration which is pictured in 
greater detail in figure 3. The ninth curve belongs to the fifth irrational type of 
vibration. The tenth is a combination of the fifth and second types of vibration 
which become identical when the bow is applied at the point 3117, both types 
giving the ratio 0 = 117. 

The first curve in figure 10 is a combination of the second and seventh types 
which give a common ratio o = 119 when the bow is applied at the point 4119. The 
second curve represents the second irrational type of vibration (see also figure 2 in 
which this is worked out in greater detail). The third curve is a combination of the 
fifth and sixth types which give a common ratio o = 1/11 at the bowed point 
21/11. The fourth curve is similarly a combination of the fourth and fifth types 
(o = 119 at the bowed point 2119). The fifth curve represents the third irrational 
type of vibration (see figure 4 for a treatment in greater detail). The sixth curve is a 
combination of the third and eighth types, o being equal to 111 1 at the bowed 
point 4111 1. The seventh curve in figure 10 is representative of the fourth irrational 
type of vibration. The eighth curve is a combination of the fourth and seventh 
types (w = 1/11 at the bowed point 31/11 for both). The ninth curve is a 
combination of the third and eighth types and the tenth is a combination of the 
third and fifth types (o = 111 1 and 118 respectively). 

"The other experimental curves (twentyfour in all) that appear with the paper of Krigar-Menzel and 
Raps are mostly simple two-step zig-zags. See also Barton's Text-Book of Sound, page 432. 
''The position of the bowed points for the two corresponding experimental curves have been 
erroneously shown interchanged in the paper of Krigar-Menzel and Raps. 
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Figure 10. Examples of vibration-curves of a bowed string, found a priori. 

The first curve in figure 11 belongs to the second irrational type of vibration 
(compare with the graphs in figure 2). The second and third curves in figure 11 
need no further remarks. The fourth curve is a combination of the sixth and 
seventh types of vibration, o being equal to 111 3 at the bowed point 21/13 for both 
types of vibration. The fifth and seventh curves are examples of the well-known 
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Figure 11. Examples of vibration-curves of a bowed string found a priori. 

"staircase" figures discovered by Helmholtz. The sixth and eighth curves 
represent two cases of the fifth irrational type of vibration. The ninth curve is a 
combination of the fourth and fifth type of vibration, o being equal to I/9 at the 
bowed point 21/9 for both types. The last curve in figure 11 is of special interest, as 
it is a case of the eighth type of vibration maintained with a complicated motion 
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Figure 12. Examples of vibration-curves of a bowed string, found a priori. 

at the bowed point. In section IX, it was shown that the motion at the bowed 
point cannot be a simple two-step zig-zag, if the eighth type of vibration is elicited 
by applying the bow near the point 1/4. In the initial velocity-diagram from which 
this vibration-curve was drawn, two of the discontinuities were situated at the 
two ends of the string respectively, and the other six were taken to be situated in 



pairs at the points (2 + 3e)/8, (4 - 2e)/8 and (6 + e)/8 respectively, corresponding 
to the position of the bowed point (2 - e)/8. 

The first vibration-curve shown in figure 12 is of the type dealt with in greater 
detail in figure 8. The second curve is of special interest, as the eighth irrational 
type of vibration which it represents, is elicited by applying the bow near a node of 
the fourth harmonic and the motion at the bowed point for this case is thus 
necessarily of a "complicated" type, viz. a four-step zig-zag instead of a two-step. 
The position of the bowed point being (2 + e)/8, the discontinuities in the initial 
velocity-diagram were taken to be situated in pairs at the positions (1 - e)/8, 
(3 - 5e)/8, (5 + e)/8 and (7 - 3e)/8 respectively. The third curve in figure 12 
represents the eleventh irrational type of vibration. The velocity-diagram of the 
eleventh type from which this was drawn gives a simple two-step zig-zag as the 
vibration-curve at the point (1 + e)/ll. An entirely different curve (in which the 
4th and 1 lth harmonics are dominant) is however obtained from the velocity- 
diagram which gives a two-step zig-zag at the point (3 - e)/ll, and actual 
experimental trial, I find, gives a result in agreement with this, and not the curve 
shown in figure 12. Krigar-Menzel and Raps however describe one of their 
experimental curves which is very similar to the third in figure 12 as that 
produced by bowing at the point (3 - e)/ll. If this description were correct, the 
motion at the bowed point could not have been a simple two-step zig-zag. 

The other vibration-curves obtained theoretically and shown in figure 12 do 
not require any special remarks. The fourth curve is a combination of the fourth 
and seventh types which give identical motions ( o  = 1/11) at the bowed point 
3/11 1. The fifth curve is the third irrational type of vibration modified by the 
absence of the 13th harmonic with the node of which the bowed point coincides. 
The sixth curve is of the well-known staircase type. The seventh curve is a 
combination of the third and the eighth types given by the ratio w = 111 1. The 
eighth curve is similarly a combination of the fifth and the eighth irrational types 
which become identical when the bow is applied at point 51/13. The ninth curve 
illustrates the seventh irrational type of vibration, and the tenth curve is a 
combination of the second and fifth types of vibration which give a common ratio 
( o  = 117) at the bowed point in the position 3/17. 
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Section XII-The effect of the variation of the pressure and 
velocity of bowing 

Preliminary discussion 

In the previous sections of the paper, we have considered the kinematics of all the 
possible modes of vibration of a bowed string in which the motion at the bowed 
point consists of ascents and descents with strictly constant velocities. It now 
remains to consider various subsidiary questions that arise. What are the 
modifications in the kinematical theory necessary, when, as foreshadowed in the 
discussion on the modus operandi of the bow, the motion at the bowed point is not 
rigorously of the kind postulated? In other words, what is the effect produced if 
the velocity with which the bowed point slips past the hairs of the bow is not 
exactly constant in each period of vibration? Then again, what is the effect 
produced by the finiteness of the region with which the bow is in contact, a region 
which for the purpose of discussion we have so far taken as equivalent to a 
mathematical point? Does any slipping occur when the string is being carried 
forward by the bow? Is it possible in practice that by simply removing the bow 
from a nodal point to another closely contiguous to it, the missing harmonics in 
any given type of vibration are suddenly restored to their full strength as our 
kinematical discussion tacitly assumed? Finally we have the all-important 
question, what are the conditions of excitation, e.g. pressure and velocity of 
bowing and so on, required for any given type of vibration to be elicited? What 
part does the instrument on which the string is mounted and the handling and 
properties of the hairs of the bow play in determining these conditions? What, for 
instance, is the effect on the motion of the string produced by loading the bridge 
over which it passes with a mute or otherwise? This is a most formidable array of 
questions, but it does not seem entirely hopeless to find answers to them all, 
provided we proceed step by step, seeking answers to the questions one at a time. 

We may commence by retaining the assumption that the region of contact of 
the bow may be treated as a mathematical point and that the velocities of ascent 
and descent of this point are rigorously constant. We have already seen that on 
this assumption all the possible modes of vibration can be classified in a series of 
which the ordinal number n is the same as the total number of discontinuities in 
the velocity-diagram of the string, the bowed point being taken to divide the 
string in an irrational ratio. If the point of bowing divides the string in a rational 
ratio, the mode of vibration may be derived from one of the irrational types by 
dropping out the series of harmonics having a node at that point (see section X). 
Another important point elicited by the discussion is that if n be not a prime 
number, a two-step zig-zag motion at the bowed point is kinematically 
impossible for that type of vibration if the bowed point lies within a distance of 
1/2n from any node of the nth harmonic which is also a node of some harmonic of 



lower frequency. Further, if the position of the bowed point be specified and its 
motion is representable by a simple two-step zig-zag, the entire mode of vibration 
is uniquely determined by the number n of the discontinuities. But if the motionBt 
the bowed point consists of several ascents and descents in each period, the 
number n does not uniquely determine the motion. One or more additional 
constants expressing the initial position of the discontinuities in the velocity- 
diagram must then be specified for the motion to be completely determinate. 

From the preceding, it is obvious that the first step for establishing the mode of 
vibration in any given case is to find the number n of the discontinuities. Prima 
facie, we may exclude the consideration of all types of vibration of which the 
ordinal number n is very large. This is evident, for the larger the number of 
discontinuities, the more important is the part which harmonics of high order 
contribute to the motion,13 and it is known from various considerations that these 
harmonics of high order are difficult to elicit and maintain as part of a perfectly 
periodic motion with the frequency of the gravest mode. As has been well shown 
by Prof. E H Barton,14 the higher the frequency of any given component in the 
motion, the more sensitive it is to any departure from the exact adjustment for 
resonance. Under ordinary circumstances, the free periods of vibration only 
approximate to, and do not actually form a harmonic series. We are therefore led 
to conclude that any type of vibration in which the number of discontinuities is 
very large and in which therefore harmonics of high order are dominant would 
not, in practice, be elicited by the bow. 

Two other considerations also point to the same result as that noted above. It is 
very probable that the higher harmonics are subject to a greater degree of 
damping and the bow would therefore tend to elicit types of vibration in which 
they are relatively subordinate. Then again, we see that the finiteness of the region 
with which the bow is in contact would operate in the same direction. For, from 
equation (17) 

which expresses the ratio of the time during which the string moves past the hairs 
of the bow to the whole period of the vibration, we see that the larger n is, the more 
rapidly does the value of o change with any alteration in the position of the 
bowed point, x, being the distance of this point from the nearest node of the n'* 

"This becomes almost selfevident on attempting to draw a velocity-diagram for the string consisting 
of parallel straight lines inclined at a constant angle a to the x-axis and separated by a large number of 
equal discontinuities situated at various intervals along the string. 
14E H Barton, "On the Range and Sharpness of Resonance to Sustained Forcing," Bull. Indian Assoc. 
Cultiu. Sci., No. 13. 
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harmonic. The disturbing effect of applying the bow over a finite region instead of 
at a mathematical point would therefore be much greater when the value of n is 
large, and would thus have an unfavourable effect on the production of types of 
vibration involving a large number of discontinuities. 

We thus see that if the motion at the bowed point admits only of discontinuous 
changes of velocity from one value to another and vice versa, the possible modes 
of vibration would be confined to a restricted number of types and their variants. 
Each type would, according to equation (17), have a characteristic value of o if 
the position of the bowed point were specified, and a passage from one type to 
another would involve a sudden change from one value of o at the bowed point to 
another. 

Taking the results summarised above, together with those arrived at in the 
discussion on the modus operandi of the bow in section 111, it is now possible to 
trace the general effects of varying the pressure or velocity with which the bow is 
applied. If there is a change of type, the value of w undergoes the concomitant 
discontinuous change given by equation (17). If the pressure of the bow is 
increased or its velocity decreased, the value of o in the concomitant change of 
type decreases as a rule, so that the bow and string move with a common velocity 
for an increased fraction of the period. The change would be in the opposite 
direction if the pressure of the bow were decreased or its velocity increased. The 
change of type may or may not, according to the circumstances, involve a change 
in the motion at the bowed point from a simple two-step zig-zag to one with 
several ascents and descents, or vice versa. Another variety of change that may be 
caused by the alteration of the pressure or velocity of the bow is a readjustment of 
the positions of the discontinuities with the corresponding changes in the relative 
amplitudes of the harmonics, the value of wwhich is determined by the number of 
discontinuities in the motion remaining unaltered. This species of change, as 
already shown, would only be possible if the motion at the bowed point involved 
several ascents and descents in the period. 

When the pressure with which the bow is applied is considerable and the other 
circumstances are favourable, the maintained motion would be the one which 
gives, as nearly as possible, the smallest value of w at the bowed point. When the 
bowed point is in the neighbourhood of a node of some fairly important 
harmonic, say the nth, it is readily seen from equation (17) that the nth type would 
give a very small value of w and is therefore the type that would be maintained. 
This is the justification of the result which was assumed in section XI for 
theoretically determining the vibration-curves and comparing them with those 
obtained experimentally by Krigar-Menzel and Raps. From the published 
account of these experimenters it appears that the style of bowing actually 
adopted by them was the one referred to above. For smaller pressures of bowing 
than those adopted by them, it might be expected that the modes of vibration 
figured therein would be incapable of being maintained and would yield place to 
types giving larger values of w. 



Graphical treatment 

A clearer comprehension of the foregoing results may be obtained by discussing 
the specific cases in which the bow is applied at some point between the extreme 
end of the string and the node of the fifth harmonic distant 1/5 from the same end. 
This includes the "musical range" of bowing. When the bow is applied very close 
to the end of the string, only the first type of vibration is kinematically capable of 
giving a two-step zig-zag motion at the bowed point. This also gives the smallest 
value of w and is accordingly the type that is elicited by firm bowing. The higher 
types give four, six, or eight-step zig-zags, etc. as the case may be at the bowed 
point, with correspondingly larger and larger values of o, and can thus be 
obtained only by increasing the velocity or reducing the pressure of bowing. As 
the position of the discontinuities in these cases is susceptible of variation, each of 
these types is itself capable of modification by altering the pressure or velocity of 
bowing, and the relative amplitudes of the harmonics may be profoundly 
modified without any change in the value of w. 

When the bow is removed from the extreme end to a point at some distance 
from it, some of the higher types also are capable of giving a two-step zig-zag 
motion at the bowed point. Let us now assume for simplicity that the bow does 
not elicit vibrations involving more than nine discontinuities, so that the ninth 
type is the highest that need be considered. Within the range between 0 and 1/5, 
the bow may elicit the first type anywhere. The table IV shows for the other types 
the maximum ranges within which the bow must be applied for a two-step motion 
to be even kinematically possible. 

Table I V  
0 < x, < 115 

Ninth type 1/18 < x, < 116 
Eighth type 1/16 < x, < 31/16 
Seventh type 1/14 < x, < 31/14 
Sixth type 1/12 < x, < 114 
Fifth type 1/10 < x, < 31/10 
Fourth type 118 < x, < 3/18 
Third type 116 < x, < 112 

While this table gives the maximum ranges, the effective ranges should be 
considerably less. For, taking the ninth type for example, the value of o is 119 
when the bow is applied at the point 81/81 or at the point 101/81. The ninth 
harmonic which is the dominant of the type then entirely vanishes. The effective 
range for eliciting this type must thus lie within the limits noted above. 
Proceeding on this principle, the limits within which the effective ranges for the 
different types should lie are calculated and shown in table V. 
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Ninth type [ / l a <  xb<1/8f6 
Eighth type 1/94 < Xb < li-3 
Seventh type 1/84 < x b  < 1/6Q 
Sixth type 1flj < x, < 1/54 
Fifth type 116 < x b  

Fourth type 11% < Xb 

From this table it is seen that, practically speaking, the first type is the only one 
that can be elicited with a two-step motion at the bowed point if this lies between 
0 and 1/10. If the bow is applied between 1/10 and 115, the higher types may also 
give a two-step motion at the bowed point within their respective ranges. The 
values of w within these ranges for the several types as ascertained from 
equation (17) are shown graphically in figure 13. 

' L  L I Position of  bowd point --r - 
1 0 9 :  7 6 5 

Figure 13. Showing the chief types of vibration, their ranges and characteristics and the erect of the 
pressure of bowing. 

In this diagram, the heavy line is the graph of w for the first type, and the thin 
lines meeting in pairs at the points 1/9,1/8, etc. give the values of w for the 9th, 8th 
types, etc. respectively. The most noticeable feature in the diagram is the extreme 
steepness of these lines compared with that for the first type. At the nodal points 
1/10,1/9,1/8, etc. the diagram shows that value of w to be either zero, or else 1/10, 
119, 118, etc. respectively as the case may be. Rejecting the zero value for w as 



inadmissible, we find that at the nodal points 1/10,1/9,1/8, etc. the value of w is 
1/10, 1/9,1/8, etc. respectively. The lines for the higher types intersect in pairs at 
the points whose abscissae are 21/19,21/17,21/15,21/13 and 2111 1 respectively. At 
these points, the first type gives the value of w to be 2/19, 2/17, 1/15, etc. 
respectively. But the higher types give the value of w at these same points to be 
1/19, 1/17, 1/15, etc. if, therefore, these types are to be elicited, considerable 
pressure and small velocity of bowing must be adopted, and at the same time, the 
region with which the bow is in contact must be very narrow. With a short, 
heavily-damped string such as that of a violin, these conditions are not readily 
obtainable and, at any rate, they differ from those actually adopted in the whole 
range of violin practice. We are therefore led to conclude that in the musical 
applications of the subject, we have to deal only with the first type of vibration 
and its modifications. On an ordinary monochord, however, by suitable bowing 
the higher types of vibration may be obtained within the ranges considered. The 
diagram shows that except at the nodal points already mentioned, 3 or even 4 
different values of o are possible. 

Position o f  bowed point  

Figure 14. Showing the chief types of vibration, their ranges and characteristics and the effect of the 
variation of the pressure of bowing. 

Figure 14 shows the different types of vibration with discontinuous changes of 
velocity that may be obtained by applying the bow anywhere within the region 
lying between 115 and 113. The heavy line, as before, is the graph for the first type. 
The other types are shown by lines passing through the nodes of the 
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corresponding harmonics, thin continuous lines representing types which may 
give a simple two-step motion at the bowed point, and broken lines (----) 
representing types which necessarily involve more complicated motions at the 
bowed point. For instance, through the point 113, we have one continuous line 
representing the third type and two broken lines representing the sixth and ninth 
types respectively. Similarly, through the point 114, we have two continuous lines, 
one on each side, representing the fourth type and two borken lines, one on each 
side, representing the eighth type. The diagram enables us to find at a glance, the 
general effect of applying the bow at any given point within the range and of any 
considerable variation of the pressure or velocity with which it is applied. At the 
two nodal points 115 and 113, for a two-step zig-zag motion, the diagram shows 
that the value of o can only be 115 and 113 respectively. At the point 114, o has 
generally the value 114, but another value, i.e. 112 belonging to the second type, is 
barely on the limit of possibility. Elsewhere, three, four, five or even six different 
values of o are possible, the number being determined by the position of the 
bowed point, and the particular value out of those possible which is actually 
obtained being determined by the pressure, velocity and other features of the 
bowing adopted in any given case. 

Figure 15 similarly represents the types of vibration that may be obtained by 
bowing at points lying between 113 and 112. It is noteworthy that all the three 
diagrams give the values of o at the bowed point, both in the cases in which this 
point divides the string in a rational ratio as well as in those in which it divides the 

Position of  bowed point 

Figure 15. Showing the chief types of vibration, their ranges and characteristics and the effect of the 
variation of the pressure of bowing. 



string in an irrational ratio. In cases of the latter kind, the diagrams may also be 
used to find the value of o elsewhere than at the bowed point. 

There is another and a very instructive point ofview from which the effect of the 
variation of pressure may be regarded. In section I1 of the paper, it was shown 
that if the bow is applied at a point of rational division of the string, the harmonics 
having a node at that point are not excited. It is obvious also that if the bowed 
point is situated at some little distance from the node instead of actually 
coinciding with it, the forces required to maintain the harmonics in question with 
appreciable amplitudes would be of considerable magnitude relatively to those 
required for the maintenance of the other components in the motion. We are led 
therefore to conclude that the types of motion maintained would tend to be those 
in which harmonics having a node near the bowed point are relatively large or 
small in amplitude according as the pressure with which the bow is applied is 
much or little. We are also led to conclude that as an increase of the velocity of the 
bow involves an increase of the amplitude of vibration, its effect on the character 
of the motion would be analogous to that of a decrease in the pressure of the bow. 
The preceding results are in agreement with those already arrived at from 
somewhat different considerations. 

Mathematical theory 

We now proceed to consider the mathematical theory of the subject. For the 
present, we shall adhere to the simplifying assumption already made that the 
region of contact may be.regarded as a mathematical point. Let the motion of the 
string in any actual case be represented by the Fourier series 

or more briefly 

From the formulae found in section I1 of the paper it is seen that the force 
required to maintain this motion may be represented by 

sin (2 
n =  m + en + e: 
C k n  B n  

n = l  n7cx0 sin - 
1 

when kn and ek are quantities independent of the position of the bowed point and 
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xo is the distance of this point from the fixed end of the string. If for a particular 
value or values of n the denominator sin nnx,/l of the term in the series is very 
small but not actually zero, and if at the same time the amplitude B, of the 
corresponding harmonic or harmonics remains finite, the magnitude of the 
respective term or terms in the expression for the maintaining force is necessarily 
great. But if sin nnxo/l is actually zero for certain values of n, the corresponding 
terms B, in the maintained motion must necessarily vanish as we must obviously 
exclude the possibility of infinitely large values for the maintaining force. The 
series given above represents the variable part of the frictional force at the point of 
contact. This force is a function of the pressure P with which the bow is applied 
and the relative velocity (v - v,) at the point of contact. It may be written in the 
form F(P, v - v,), the function remaining determinate and always of the same sign 
so long as the relative velocity (v - v,) does not become zero or change sign. We 
may therefore write 

n =  1 r r r ~ r r o  sin - 
1 

where Po is the non-periodic part of the frictioA1 force. 
Equation (22) may be regarded as the dynamical relation from which the 

motion at the bowed point and therefore also the entire mode of vibration of the 
string is to be determined. For, if the velocity v of the bowed point beexpressed as 
a function of the time, the amplitudes B, of the harmonics can be found therefrom 
by integration over the complete period. The various types of vibration whose 
kinematical theory was discussed in the first part of the paper may be regarded as 
forming a series of limiting solutions of this dynamical equation to one or other of 
which the actual results approximate more or less closely according to 
circumstances. How these limiting solutions are obtained has already been 
indicated in the discussion on the modus operandi of the bow. We now proceed to 
examine more closely the degree of approximation within which the limiting 
solutions represent the actual results. 

Our knowledge of the form of the function F(P, v - vd is not at present very 
definite for surfaces of the kind we are concerned with in this paper. It may 
however be accepted as demontrably correct that when the relative velocity 
(v - v,) is actually zero, the friction is not greater than a certain maximum statical 
value P, which increases continuously for increasing values of the pressure P with 
which the bow is applied. We may also suppose that when the relative velocity 
(v - vd is greater than zero, the magnitude of the friction decreases with increasing 
values ofthe relative velocity, at first somewhat rapidly and later on perhaps not so 
rapidly. Arguing from these premises, the relation given in (22) enables us to 
arrive at certain important conclusions. In the first place, since the quantities k,, 
ek depend on the construction of the sounding box on which the string is 



stretched, the summation of the series on the right-hand side of (22) cannot, in 
general, result in our finding a constant value for the relative velocity (v - u,) in 
any or  all of the epochs in which it is greater than zero. The relative velocity may 
however approach or attain practical constancy in any or all of the epochs 
referred to, if the variation of the sum of the series on the right-hand side of 
equation (22) within those epochs is negligibly small. It is seen that such practical 
constaqcy would be attained if the pressure P with which the bow is applied is 
sufficiently large to ensure that the necessary variation in the value of the function 
F(P, v - v,) can be secured by negligibly small changes in the relative velocity 
(v - v,). The practical constancy in the relative velocity during the epochs referred 
to may also be secured even for moderate values of the pressure P, provided that 
in the series on the right-hand side of (22) there are no large, rapidly-varying 
terms. For instance, if the string were bowed at important nodes such as 113 or 114 
even with very moderate pressure, the absence of the corresponding series of 
harmonics in the resulting motion removes terms which would otherwise 
introduce large and rapidly varying fluctuations in the value of the series for the 
maintaining force. The constancy of the velocity of the bowed point in slipping 
past the hairs of the bow is thus remarkably perfect in such cases. 

Assuming the solution of (22) to be one of the limiting types in which the 
relative velocity (v - v,) has a constant value in all the epochs in which it is not 
actually zero, we may easily find an inferior limit to the pressure with which the 
bow must be applied for the given type of vibration to be possible. Thus, let 
(v, - v,) be the constant value of the relative velocity during any such epoch and 
let PA be the sum of the series on the right-hand side of (22) for that epoch. Then 
we must have 

Further, let PA be the maximum value of the series during any of the epochs in 
which the relative velocity is zero. Then, we must have 

P, (the statical friction) 4 Po + PA. (24) 

Subtracting the quantities in (23) from the two sides of the inequality in (24), we 
find that the pressure with which the bow must be applied is such that 

P, - F(P, vA - v,) 4 P >  - PA. 

If p be the coefficient of sta'tical friction for the pressure P, and pA be the 
coefficient of dynamical friction for the pressure P and relative velocity (v, - v,), 
the inequality may be written thus, 

If the pressure of the bow is less than the critical value given by (25), the vibration 
would no longer be maintained and would therefore alter in character. We may 
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now consider the effect of increasing the pressure above this critical value. It is 
obvious from equation (22) that if the relative velocity (v - 0,) is assumed to have 
a constant value in all the epochs in which it is not actually zero, the increase in 
the frictional force F(P,  v - v,) caused by an increase of the pressure of the bow 
might merely result in raising the non-periodic constant Po on the right-hand side 
of the equation and thus leave the periodic part of the forces acting on the string 
unaltered. When, therefore, any one of such types of vibration is once thoroughly 
established, considerable latitude is permissible in the pressure of the bow so long 
as it  does not fall below the critical value. It must not however be understood 
from this that the pressure can be increased indefinitely. For, if there be some 
other possible type of vibration whose critical pressure be higher than the first, 
the motion originally maintained would be relatively less stable and would yield 
place to the other, when the pressure of the bow exceeds the critical value of the 
latter. The manner in which an increase of pressure sets up an instability of the 
original type of vibration is best understood by analogy with that of the 
equilibrium of a system with one degree of freedom. The equation of motion 
about the position of equilibrium of such a system under the action of the bow is 

where k is the damping coefficient and 1 is a positive quantity proportional to the 
velocity-rate of change of the frictional force which may be increased by 
increasing the pressure of the bow. When the velocity as given by 2 is initially 
zero, there is apparently nothing to cause the system to depart from the position 
of equilibrium. If, however, by increasing the pressure of the bow, I is increased 
till it exceeds k, the equilibrium becomes unstable and any small motion is 
magnified continuously till it reaches the limit set by the velocity of the bow. The 
mechanical disturbance caused by laying on the bow or by increasing its pressure 
is suficient to give effect to the instability. Similarly in the case of the bowed 
string, a steady state of vibration in any given type is obviously out of the question 
if any slight disturbance results in a progressive change and readjustment of the 
amplitudes of the harmonics. Referring to equation (22), it is seen that an increase 
in the non-periodic part Po of the frictional force caused by an increase in the 
pressure P of the bow would tend to set up such instability if an alternative mode 
of vibration with a higher critical pressure were possible. 

On comparing equations (22) and (25), it is seen that, in general, the type of 
vibration which has a higher critical pressure than another would also contain 
the harmonics having nodes near the bowed point with relatively larger 
amplitudes. 

Analysis of the motion 



Differentiating, we have 

But in section X, we found that the analysis of the velocity-diagram consisting of 
parallel straight lines gives 

dy nnx -=EA,sin-- 
dt 1 

where 

dl ,  d,, d,, etc. being the magnitudes of the discontinuities in the velocity-diagram 
situated at points whose abscissae are c,, c,, c,, etc. respectively. Since some of the 
discontinuities move towards the origin and others away from it, it is convenient 
to use instead of c,, c,, c,, etc. the quantities C,, C,, C,, etc. where c, = C, + at if 
the discontinuity d, belongs to the positive wave, and c, = 21 - (C, + at) if it 
belongs to the negative. We then have, as a relation true for the whole period of 
vibration, 

nn(C, + at) nn(C2 + at) + d2 cos 
1 nn 1 

Comparing (26) and (27), we may write 

1 nnCl . nnC2 
bn= --[d,sin- n2n2T 1 + d2 sin --- 1 + etc. 1 

This gives the amplitudes of the series of harmonics in terms of the discontinuities 
and their initial positions. In the case of the bowed string we have 

From (28) and (29), it is easy to verify the remark already made that when the 
number of discontinuities is large, the higher harmonics gain considerably in their 
relative importance. 

Substituting the values of the amplitudes B, of the harmonics found from the 
preceding analysis in the expression for the maintaining force on the right-hand 
side of equation (22), the interesting question arises whether this expression for 
the maintaining force is really a convergent Fourier series. If k, varies as nz where 
z > I ,  the expression for the fcrce on the right-hand side of (22) is a non- 
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convergent series and it follows that under such circumstances, the bow would be 
even theoretically incapable of eliciting an infinite series of harmonics. Even when 
kn varies as nz where z is not greater than unity, the existence of the factor 
sin nnxo/l in the denominator of each term in the series brings in a very interesting 
difficulty as to its convergency. If we assume xo/l to be an irrational fraction, it is 
obviously possible by assuming a suitable and sufficiently large value of n to make 
the quantity sin nnxo/l smaller than any specified fractional number, and, further, 
it is evidently possible to find an infinite number of such values of n which would 
reduce sin nnx,/l to a value below the specified limit. Under the circumstances it 
becomes rather a delicate mathematical question whether the expression for the 
force given in (22) would then be a convergent series, and, if so, for what values of 
z. This difficulty does not arise if x,/l be a rational fraction, for the values of 
sin nnxo/l then form a recurring series and the expression for the force is obviously 
convergent for values of z not greater than unity. It is of great interest to 
determine and represent the form of the expression for the force at the bowed 
point graphically and compare it with the form of the vibration-curve at the 
bowed point; if the values of k, be arbitrarily assumed and the amplitudes Bn are 
determined from the formulae given in (28) and (29), it is to be expected that, in 
general, the equation for the maintaining forces given in (22) is not rigorously 
satisfied even if the value of the constant Po and the initial positions C,, C,, C,, 
etc. of the discontinuities be suitably assumed. In other words, the motion at the 
bowed point cannot in general be rigorously of the type on which our kinematical 
discussion was based, that is, having forward motions which involve no slipping 
and backward motions with uniform velocity of slipping. But in a special class of 
cases, as we shall presently see, the motion at the bowed point may be exactly of 
such type consistently with the dynamical conditions expressed in equation (22). 

Frictional-force curves and motion at the bowed point 

As indicated above, it is a most important matter to determine and represent 
graphically the nature of the variation of the frictional force at the bowed point. If 
the maintained motion, the position ofthe bowed point and the magnitudes of the 
series of constants kn and en are all known, the harmonic components in the 
frictional force are all determinate, except those, the frequencies of which are the 
same as that of the missing harmonics having a node at the bowed point. If such 
components be assumed to be zero, or at any rate be assigned specific 
magnitudes, the frictional-force curve at the bowed point may be drawn by the 
aid of a machine for harmonic synthesis. Such curves would be very useful for 
comparison with the form of the vibration-curve at the bowed point, specially 
during these epochs at which the bowed point slips past the hairs of the bow; they 
could also be used for determining the critical value of the pressure of the bow for 
the possibility of the type of vibration considered. 

The form of the frictional-force curves may be found analytically and drawn 



without the aid of a harmonic machine in an important class of cases which may 
be regarded as representative of the phenomena actually met with in experiment. 
We shall assume that the values of e; can all be put equal to n/2. This would be a 
very close approximation to the truth, as may be seen from the formulae given in 
section I, if the natural frequencies of vibration of the string form a strictly 
harmonic series and the yielding at its ends is negligible. Further, we shall assume 
that the values of kn are proportional to n. This assumption cannot be very wide of 
the mark, for, if k, were proportional to a power of n higher than unity, the 
expression for the frictional force would not be a convergent Fourier series and it 
would no longer be possible to consider the motion of the string as comprising an 
infinite series of harmonics. In practice, moreover, it seems very unlikely that the 
damping coefficients of the higher harmonics increase at a much lower rate than 
that given by the formula kn u n, as the higher harmonics would otherwise be more 
conspicuous in the maintained vibration than they usually are.' 

On these assumptions, the expression for the frictional force assumes the form 

L-r 
n =  1 ~ K X ~  sin - 

1 

To effect the summation of this series, we have to assume that x,/l is a rational 
fraction and the values of the denominators therefore form a recurring series. For 
those values of n for which the denominator is zero, B, is also equal to zero, and 
the series therefore contains a series of indeterminate terms. In the most general 
case in which the vibration-curve at the bowed point can be represented by a 
number of straight lines of which alternate ones are not necessarily parallel to one 
another, we may write the expression for the force in the form 

n =  30 

C 
n = l  ~ K X ~  sin - 

1 

the values of an and b, being given by the formulae 

a = -- 
~ K C ,  

[ d l c o s T  
n2n2T 

+ d, cos - 
1 

+ etc. , 
nnC2 I 

bn= -- ~ K C ,  
[d,sinT + d2 sin- 

n2n2T 1 
+ etc. . 

nnC2 I 
"It may be noted that the assumptions e; = ( 4 2 )  and k, zn are quite correct when the dissipation of 
the energy of the string is solely due to a frictional force proportional to the velocity resisting each 
element of the string. Cf. Andrew Stephenson, January 191 1, Philos. Mag. 
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The summation of the expression for the force is thus seen to depend upon the 
summation of a number of separate sine and cosine series of the form 

nnC nnC 
sin - 

1 2nnt 1 COS - 1 I 2nnt 
cos- and I-- sin -. Ennnx, T n nnx, T 

sin - 
1 

sin - 
1 

Since x,/l is, by assumption, a rational fraction, we have to exclude the 
indeterminate terms in which the denominator sin nnx,/l is zero, in order to effect 
the summation of these series. 

The form of the expression suggests that the graph representing the sum of each 
of the series given above should consist of a number of straight lines parallel to the 
axis of time, separated by intervening discontinuities. The summation of the 
series then reduces itself to finding the positions and magnitudes of these 
discontinuities. Taking, for instance, any one of the cosine series, we may assume 
that its graph has a discontinuity 6, at either of the points t = f (a, T/2n), a 
discontinuity 6, at either of the points t = f (a, T/2n), and so on. This graph is 
representable by the expression 

where 
L 

f, = -[dl sin nu, + 6, sin nu, +.etc.] 
nn 

.... To  find the values of the quantities dl, 6, a,, a,... etc., we have the set of 
equations, 

n cos nC/l 
6, sina, + 6,sina2 + ...=...------- 

2 sin nxO/1 

n cos 2nC/l 
6, sin 2a, + 6, sin 2a2 + ... = ... - 

2 sin 2nxo/l 

n cos nnC/l 
6, sin nu, + 6, sin na, + ... = ... - 

2 sin nnx,/l 

It is obvious that if C/l is an irrational fraction, the quantity 
(n/2)[(cos nnC/f)/(sin nnxo/l)] will never recur in value, however much n be incre- 
ased. The number of independent equations is then infinite and the method of 
evaluation proposed appears to fail altogether. If however C/l be a rational 
fraction, and the two fractions C/l and x,/l be reduced to their lowest common 



denominator, the expression (n/2)[(cosnnC/[M(2sinnnxo/l)] will recur when n is 
increased by any multiple of twice this common denominator. To enable the 
equations to be satisfied, the quantities sin nu,, sin nu,, etc. should similarly recur, 
and the angles a,, a,, etc. must therefore all be multiples of n divided by the lowest 
common denominator of the two fractions C/1 and x,/l. The number of unknown 
quantities (a,, 6,, etc.) to be evaluated is the same as the number of independent 
equations available, and it is thus possible to determine 6,, d2, etc. completely. 

The several series contained in the expression for the frictional force may thus 
be added up and their sum represented graphically. It is obvious that the 
frictional-force curve assumes the least complicated form, that is, has fewest 
discontinuities when the initial positions C,, C,, C,, etc. of the discontinuities in 
the velocity-diagram of the string coincide with the nodes of the principal 
member of the missing series of harmonics. For, the fractions x,/l and C,/l, C,/l, 
C,/l, etc. would then have the smallest possible common denominator. It may be 
noted that the method given above for drawing the frictional-force curve is 
applicable in the general case when the vibration-curve at the bowed point 
consists of any number of straight lines forming a continuous "curve," and is thus 
not restricted to the cases in which the velocities in the forward and backward 
movements are both constant and uniform. If these velocities are constant and 
uniform, the discontinuities d,, d,, etc. in the velocity-diagram of the string are all 
equal to one another (see section IV). 

When the vibration-curve at some one point on the string (not necessarily at 
the bowed point) is a simple two-step zig-zag, the calculation of the form of the 
frictional-force curve becomes particularly simple. When the motion at the 
bowed point is itself of this type, the expression reduces to the form 

K(v, - v,) ( - 1)" sin nno 2nnt 
1 nnx, 

COS - 
n2 T 

n sin2 - 
T ' 

1 

When the motion at a point x, which is not the bowed point is of the two-step 
zig-zag form, the expression for the frictional force may be written as 

K(vL - v',) ( - 1)" sin nno' 2nnt 
cos - 

n2 T nnx, nnx, T '  
n sin - sin - 

1 1 

the quantities v>, v', and w' having reference to the motion at the point x,. The two 
formulae given above may be readily verified from (22) by analysing the motion 
postulated at the bowed point and substituting the values thus obtained for the 
quantities B,. Figures 16, 17, 18, 19,20 and 21 in the text represent no fewer than 
45 curves for the frictional force calculated for various cases from the expressions 
given above, the vibration-curve at the bowed point which forms the basis of the 
calculation being shown alongside for comparison. Figures 16 to 19 represent 
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Position of 
bowed point 

Value of u, 
at the bowed 

point 

Figure 16. Frictional-force curves and motion at the bowed point. 

cases in which the vibration-curve at the bowed point is assumed to be of the 
simple two-step zig-zag type, and figure 20 represents cases in which it is taken to 
be a four-step or a six-step zig-zag, though at some other point on the string the 
vibration-curve is a two-step zig-zag. 

As examples of the method of calculation, we may consider a few of the cases 
illustrated in the figures. Let the string bowed at a distance of one-seventh of its 
length from one end. From figure 13 it is seen that in this case o = +. The 
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expression for the force then reduces to 

.. - 
n sin - 

7 

The positions of the discontinuities in the frictional-force curve must therefore 
be 

We then get the set of equations 

of which only the first six are independent (i.e. n = 1, 2, 3,4, 5 or 6). On writing 
down the equations, it is found at once that 6, = 6-3 = 65 = 0. Multiplying both 
sides of the equation by sin nn/7, simplifying and utilizing the relation 

we find that 
2kvB 

d2:64:d6 as 1:2:3,  and 6, =- 
n T '  

The frictional-force curve for this case is shown in figure 19.  As another example, 
we may take the position of the bowed point to be 21/11 and that w = 1/11. 
(Referring to figure 13,  it will be seen that this gives a combination of the fifth and 
sixth types of vibration.) On writing down the equations as before, it is found that 
6, = 6, = 6, = 6, = 6, = 0 and that the equations reduce to the form 

. 2nn 4nn 6nn 8nn 1 Onn 
62sln-+~4sin-+b6sin-+6,sin-+b,,sin- 1 1  1 1  11 11 11 

nn 
1 1 kv, sin - 
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2nT. sinZ - 
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Multiplying both sides by 2 sin2 (2n7c/l I), i.e. by (1 - cos (4nlrlll)) and simpli- 
fying, the equations may be easily solved by grouping together all the terms which 
have a common coefficient sin 4 1  1, all those which have the coefficient sin 2741 1 
and so on. The solution is found to be 6 2 : 6 4 : 6 6 : 6 8 : 6 1 0  as 3: - 5:9: - 10:15 and 6 ,  
= 6kv,/.rrT. On plotting, these values, a very interesting figure is obtained in 
which the fifth and sixth harmonics are very prominent and by their superpo- 
sition, give an appearance similar to that of "beats." (see figure 19). All the curves 
shown in figures 16 to 21 were calculated by methods closely analogous to those 
employed in these two examples. They were all drawn to exactly the same scale, 
the velocity of the bow being taken to have a fixed value, and the curves are thus 
all strictly comparable. 

Position of 
bowed point 

Value of 
w 01 the 
bowed point 

Figure 17. Frictional-force curves and motion at the bowed point. 



From a scrutiny of the 45 frictional-force curves shown in figures 16 to 21, a 
number of important generalisations can be arrived at, which we now proceed to 
consider. 

The curves shown in figures 16 to 21 are of special interest in many ways. The 29 
curves shown in figures 16 to 19 all deal with cases in which the bow is applied at a 
point of rational division and the motion at this point is a two-step zig-zag, the 
value of w for which has either 1 or 2 as its numerator. It will be seen that, in all 
these cases, the frictional force has a minimum constant value during the epochs 
at which the bowed point slips past the hairs of the bow. It is also seen that in 
some of these cases the frictional force has the maximum or a maximum value just 
before the slipping begins and just after it is over. But this is by no means a general 
rule, for in 12 out of the 29 cases, the frictional force before and after this epoch is 
not a maximum at all. Further, in all the cases in which the bow is applied at a 
point of aliquot division, e.g. 1/2,1/3,1/4,1/5 or 116, etc. the friction is a maximum at 
the middle of the stage during which the bowed point is carried forward by the 
bow. The nine curves of this kind shown in the series all bear a strong family 
resemblance to one another. Similarly the frictional-force curves for the bowed 
points 2/15, 2117, 2119, 21/11, etc. are worthy of careful study and inter- 
comparison. When the value of w for these cases is 115, 117, 119, 1/11, etc. 
respectively, the curves have a distinctive form in which the two chief harmonics 
having a node on either side of the bowed point are specially prominent. But 
when w = 2/5,2/7,2/9,2/11, etc. respectively, the form of the curve is more closely 
analogous to those for aliquot points of division referred to above. This is 
evidently because the fundamental is more prominent when w has the larger 
value in such cases. 

Krigar-Menzel and Raps remark in their paper as follows: "It is clear from all 
that has been said that the idea of the mechanical action of the bow which we form 
is in all the cases the sameas that which has already been described by Helmholtz. 
The bowed point adheres to the rosined hairs of the bow and is carried forward 
with a constant velocity equal to that of the bow. This situation accounts for the 
ascending line of moderate slope in the vibration-curve at the bowed point. 
Finally, through the increasing tension of the string, the adhering point breaks 
loose and glides downwards against the bow under strong friction with a constant 
maximum velocity till the cycle commences to repeat itself anew." If Krigar- 
Menzel and Raps were quite correct in their explanation of the "break~ng loose of 
the bowed point from the hairs of the bow" as due to the increasing tension of the 
string, we should have expected to find that the friction of the bow is a maximum 
immediately before the release takes place. As we have just seen, this is by no 
means generally the case, and we are therefore forced to conclude that the pure 
kinematics of the motion is also a factor in determining the release ofthe string by 
the bow. As we shall see presently, Krigar-Menzel and Raps were also wrong in 
taking the velocity of slipping against the hairs of the bow to be uniform. It is in 
general only approximately uniform or even largely non-uniform, and such 
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Figures 18. Frictional-force curves and motion at the bowed point. 

variations of the velocity have an important significance and result. 
Referring again to the curves shown in figures 16 to 19, it will be seen that in all 

cases, the harmonics which have a node near the bowed point are prominent in 
the frictional-force curve. This is what might be naturally expected from the form 
of the expression for the force. 

Further, in all cases when w is a small fraction, the frictional-force curves 
become very steep, that is, the friction becomes greater. If this friction exceeds the 
maximum statical value, the motion ceases to be possible. We thus see that if the 
value of w is to be small, the pressure of the bow must be considerably increased. 
For instance, from the last five cases shown in figure 19 it is clear that the 
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Figure 19. Frictional-force curves and motion at the bowed point. 

minimum pressure of the bow must be increased as the bowed point approaches 
one end of the string. Similar effects are also noticeable in the cases in which the 
bow closely approaches important nodes such as 112, 2/15, 113 or 114. 

For any given position of the bowed point, the larger value of o means smaller 
friction and therefore a reduced minimum pressure. When the bow coincides 
exactly with an important node such as 112 or 113, the friction becomes extremely 
small and the pressure of bowing necessary is therefore very low indeed. 

Passing on to the cases in which the motion at the bowed point is still assumed 
to be a two-step zig-zag, but the value of o has 3 or some larger integer as its 
numerator, we see at once a remarkable difference (figure 20). The frictional force 
has no longer a constant uniform value while slipping takes place. 7his is inconsistent 



C V RAMAN: ACOUSTICS 

Position of 
the bowed 

point 

Value of w 
at the bowed 

point 

Figure 20. Frictional-force curves and motion at !he bowed point. [Incompatible cases.] 

with the assumption that the velocity ofslipping is constant, and W P  are thus forced to 
conclude that the velocity of the bowed point during the slipping stage is necessarily 
non-uniform in a greater or less degree, when the pressure ofbowing is such that the 
value of w is greater than 2/r,  the rZh harmonic being the principal member of the 
missing series. 

We see, therefore, that for the particular set of damping coefficients assumed, a 
strictly uniform velocity of slipping is only possible when the bow is applied with 
such pressure that the numerator ofw is either 1 or 2, and this may not be possible 
at all if the denominator r is too large. For other laws of damping, we would get an 
even more unfavourable result, that is, strict uniformity is never possible, though 
practical uniformity may be attained in a number of cases. 
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The foregoing results may, with advantage, be discussed a little more in detail. 
Take the case in which the bow is applied exactly at the point 113. The value of w is 

and the motion at the bowed point is practically a perfect two-step zig-zag. If 
now the bow be removed to a point a little on one side of the node, say to the point 
161149, we find on a reference to figure 14 that if we exclude the cases in 
which the motion at the bowed point is a four-step or six-step zig-zag, etc. the only 
possible values of w are &, 3 and 3. The value is evidently much too small to 
be easily elicited. The value a$ is evidently of importance as it corresponds to the 
first principal mode of vibration of a bowed string. A very small pressure of 
bowing is obviously sufficient to elicit this type. But from what has already been 
said, it is evident that for this value of o we cannot have strictly uniform velocity 
of slipping of the bowed point in the backward motion, though in its forward 
motion, the velocity may be exactly equal to that ofthe bow. If the third, sixth and 
other harmonics of the missing series are actually restored in the motion in nearly 
their proper amplitudes (neither more nor less), then the velocity in the backward 
motion may be practically uniform, otherwise not. Thus we see that this non- 
uniformity of slipping and the restoration of the missing harmonics are closely 
connected with one another. If the bow is removed further still from the point of 
trisection and is applied at, say 51/16, the possible values of w for a two-step zig- 

Bowed  at Remarks 

& - 
12 2 nd type 

&---A/- 

Figure 21. Frictional-force curves and motion at the bowed point. (Four and six-step zig-zags). 
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zag motion at the bowed point would be&, & and A. The value & may be elicited 
if the pressure is sufficient. If the pressure is sufficiently reduced we may get the 
first principal type of yibration for which w = &, but this would be modified by 
the non-uniform slipping which inevitably occurs in this case. 

Figure 21 shows the frictional-force curves and the motion at the bowed point 
for six specially selected cases in which the latter is a four-step zig-zag, and one 
case in which it is a six-step zig-zag. In the four-step zig-zags, the velocity is 
assumed to be constant and the same in both stages during which slipping occurs, 
and the frictional-force curves are seen to be entirely compatible with this, as the 
friction is constant and has the same value during both the stages. It must be 
understood that this result holds good only in the special cases considered and in 
some others, but not generally. In the case of the six-step zig-zag shown, the 
frictional-force curve is evidently incompatible with it, as the friction in one stage 
is less than in the two others. 

The form of the frictional-force curves for other cases in which the motion at 
the bowed point is representable by a six-step or an eight-step zig-zag, etc. may be 
investigated by the method described above. In the great majority, if not all, of 
such cases, it would no doubt be found that the form of the frictional force is 
incompatible with the perfect parallelism and straightness of the descending lines 
of the vibration-curve at the bowed point. In other words, the velocity of the 
bowed point would not be quite constant and uniform in all the stages in which it 
slips past the bow. 

Transition from the rational to the irrational modes of 
vibration and vice versa 

The preceding investigation of the form of the frictional-force curves has already 
enabled us to form a general idea of the conditions which under the kinematical 
theory outlined in sections V to XI1 breaks down to an appreciable extent. We 
have seen that this departure from the comparatively simple vibration-forms so 
far investigated is due in the first instance to the velocity of slipping at the bowed 
point becoming non-uniform, and is closely connected with the progressive (as 
distinguished from the discontinuous) restoration of the missing harmonics 
which occurs when the bow is gradually moved away from some important nodal 
point. We are thus led to investigate the transitional forms of vibration, as they 
may be called, which are intermediate between the irrational types discussed in 
sections V to IX and their rational modifications worked out in section X. These 
transitional forms may be found, a priori, by a general method which will be best 
understood by considering some specific cases. 

We may confine attention at first to the cases in which the motion at the bowed 
point is a two-step zig-zag or a close approximation thereto. Let the bow be 
applied at some point intermediate between, say, 115 and 116, with pressure and 
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velocity approximately those necessary to elicit the first type of vibration (see 
figure 13). When the bow is applied exactly at 1/5, the vibrational form of the 
string is defined by one large positive discontinuity in the velocity-diagram and 
four small negative discontinuities these are so situated that the motion at the 
bowed point is a perfect two-stepzig-zag and in the resulting motion, the 5th, 10th 
harmonics etc. are absent. Similarly when the bow is applied at 116, we have one 
large discontinuous change of velocity and five small ones: the 6th, 12th 
harmonics etc. are absent. When the bow is gradually moved from 1/5 to 1/15, the 
5th, 10th harmonics etc. gradually reappear, and the 6th, 12th harmonics etc. 
become feebler and disappear. In these transitional stages, the forward motion of 
the bowed point must still take place with uniform velocity equal to that of the 
bow, but the velocity in the backward motion need not be strictly constant. We 
are thus naturally led to assume that the transitional modes should be capable of 
being deduced from a velocity-diagram with one large discontinuity and five 
small ones. On proceeding to find the relation that the positions and magnitudes 
of these discontinuities must satisfy in order that the bowed point may have a 
uniform velocity in the forward motion, it is found by trial that the velocity- 
diagram must be similar in certain respects to that for the case of bowing at lj6. 
The five small discontinuities should all be equal to one another, and their 
positions on the string with respect to the bowed point are perfectly determinate. 
If the motion of the string is assumed to be of the perfectly symmetrical type, that 
is involving only sine components, the position of the sixth (large) discontinuity is 
also uniquely determined. If, further, the inclination of the lines in the velocity- 
diagram and the velocity of the bow are assigned specific values, the magnitude of 
the discontinuities is known, and the vibration-form is completely fixed. In 
general, however, an asymmetrical vibration-form is possible, and it is found that 
when the velocity of the bow is given, the form of vibration has a possible 
variation determined by (a) the position assigned to the large discontinuity which 
must lie within certain limits and (b) the inclination of the lines of the velocity- 
diagram to the x-axis. 

Except when the slope of the lines of the velocity-diagram is such that the five 
small discontinuities all vanish (in which case the transitional form becomes 
identical with the first irrational type of vibration), all the transitional forms 
referred to in the preceding paragraph have the common feature that the 
vibration-curve at the bowed point instead of being a perfect two-step zig-zag, 
consists of a zig-zag in which the steep descending line is not perfectly straight but 
consists of three (or in the extreme cases two) straight lines, all of which however 
are much steeper than the ascending line which is perfectly straight. Ten cases of 
transitional forms thus worked out, a priori, for bowed points lying between 114 
and 1/6, are shown in figure 22, in which the corresponding vibration-curves 
calculated for points near the end of the string are also shown. 

It will be seen that in all the ten curves, the vibration-curve at the bowed point 
closely approaches the simple two-step zig-zag form and in some cases (e.g. the 



316 c v R A M A N :  ACOUSTICS 

Bowed and 
observed at Observed a t  

3 - 1 2  - 
13 13 

3 - 16 
17 1AA/ w J  - 17 

Vibrati o n-curve at Corresponding vibration 
the bowed point curve at a point near the 

end o f  the string 

Figure 22. Transitional forms of vibration. (Modifications of the first irrational type). 

curves for bowing at 31/16 and 31/17) is nearly indistinguishable from it. The 
vibration-curve for the point near the end of the string, however, shows the 
differences clearly enough. 

Most of the curves on the right-hand side of figure 22 are seen to be 
asymmetrical; in other words, the appearance of the curves is not the same if the 



page were held upside down. The three curves for the case of bowing at 2/11 1 are 
particularly instructive. The first of these three curves (which is an extreme case) 
shows a sharp peak at the top and five horizontal steps, below. The second (which 
is the symmetrical case) shows six steps, of which the first and the last are shorter 
than the rest. The third curve (which is also an extreme case) shows five horizontal 
steps above, and one sharp point below. 

As an example of the method of drawing these curves, we may take the case of 
bowing at 31/16. The velocity-diagram for the case is drawn in a manner similar to 
that for bowing at 116, the positions of the discontinuities being as follows: The 
first small discontinuity is initially at the end of the string (x = 0). The point of 
bowing is at 31/16, and two other small discontinuities are therefore situate at 
61/16. Another pair must be at 121116. For, 61/16 + 31/16 = 12/16 - 31/16. The 
inclination of the lines of the velocity-diagram and the position of the large 
discontinuity are arbitrary, though the latter must initially lie between the limits 
141/16 and I. If the large discontinuity is initially at 141116 and belongs to the 
positive wave, we have one extreme asymmetrical case in which the descending 
part of the vibration-curve at the bowed point consists of two straight lines only. 
[For, (I - 141/16) + (1 - 31/16) = (121116 + 31/16)]. If the large discontinuity is 
initially at the end 1 of the string, we have the symmetrical case in which the 
descending part ofthe vibration-curve at the bowed point consists of three straight 
lines. When the large discontinuity is initially at 141116 and belongs to the 
negative wave, we have the other extreme asymmetrical case: [(141/16 + 31/16) 
= (I - 121116) + (1 - 31/16)]. The slope of the lines of the velocity-diagram and the 
velocity of the bow determine the magnitudes of the discontinuities. If the lines 
were horizontal, the magnitudes of the discontinuities would be the same as if the 
string were bowed at 116. Whatever the slope might be, and wherever the large 
discontinuity may lie initially within the limits referred to, the descending motion 
at the bowed point occupies exactly 3/16 of the whole period of vibration. In other 
words, the transitional form also obeys the kinematical law given in equation (17), 
i.e. w = (nx,/l), n being put equal to 1, as this is a modification of the first irrational 
type. The same kinematical law is satisfied for all the ten cases shown in figure 22, 
and is, in fact, true for all the transitional modifications of the first irrational type, 
(n = 1). 

In the preceding treatment, we have obviously neglected to take into account 
the existence of certain nodal points of minor importance lying between 115 and 
116 or between 114 and 115. For instance, between 115 and 116, we have the nodal 
points 31/16,21/11 and 31/17. For a more complete theory, we have also to take 
into account the gradual dropping out and reappearance of the 16th, the 1,lth and 
the 17th harmonics and their trains of harmonics of high order, as the bow is 
gradually moved across from 115 to 116. As however these harmonics are of very 
small amplitudes, the correction may be neglected altogether if the bow be not 
applied exactly at any one of these nodal points. If it is applied exactly at such 
nodal point, the correction may be effected by the method described in section X 
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for rational points of bowing, and in any case, the correction so made would have 
no effect if some other node of the missing harmonic is chosen as the point of 
observation. When, however, the intervening nodal point is of importance, a 
more accurate method of correction is required. For example, when the bow is 
moved step by step from 1/2 to 2115, the gradual reappearance of the second 
harmonic and the gradual dropping out of the fifth harmonic have both to be 
taken into account. This may be done by drawing a velocity-diagram similar to 
that for bowing at 115, that is, with one large and four small discontinuities, and 
readjusting the positions of these discontinuities so as to give a uniform velocity 
in the forward motion at the bowed point. Figure 23 (first three graphs in the left- 
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Figure 23. Transitional forms of vibration. (Modifications of the first irrational type). 



hand column) shows three velocity-diagrams of this type, and against each of 
these diagrams is shown the corresponding motion at the bowed point and the 
vibration-curve at a point near the end of the string. The gradual transition from 
the type corresponding to a string bowed at 112 to one bowed at 2115 is clearly 
seen. 

The graphs in figure 23 for the case of bowing at 31/8 show the dropping out of 
the 3rd harmonic. One of the cases is of the symmetrical type and the other of the 
asymmetrical type. In the five vibration-curves at the bowed point shown on the 
right-hand side of figure 23, it will be seen that the ascent with the bow is made 
with a uniform velocity, but that the velocity of descent is not constant. 

Similarly when the bow is applied at some point intermediate between 113 and 
21/7, the velocity-diagram of the transitional mode may be drawn in a manner 
similar to that for bowing at 117, that is, with one large and six small 
discontinuities, the positions of these being readjusted in the manner requisite to 
give a uniform velocity in the forward motion at the bowed point. These 
vibration-forms would show the gradual dropping out of the seventh harmonic as 
the bow approaches the point 2117. There is however an alternative set of 
transition-forms in which the velocity-diagram is similar to that for bowing at 1/4, 
i.e. has one large and three small discontinuities, and these forms secure 
predominance as the bow is removed farther and farther from 113 towards 1/4. 
Since both types of transition-forms give a forward motion with uniform velocity 
at the bowed point for identically the same fraction of the period, they may be 
superposed in any desired proportion so as to secure the specified velocity at this 
point. In this way, the various modifications of the first irrational type of 
vibration obtained by bowing at points between 1/3 and 114 may be accurately 
drawn. Results approximating to the truth may however be obtained without 
utilizing the principle of superposition of transitional forms here suggested, by 
merely choosing the form with seven discontinuities for bowed points lying 
between 1/3 and say 31/10, and the form with four discontinuities for bowed points 
lying between 31/10 and 114. The curves thus drawn are shown in figure 24. 

Of the five cases shown in figure 24, the second, third and fifth are of the 
asymmetrical type and the others are symmetrical forms. 

In all these transitional forms, the descending motion at the bowed point is not 
executed with a uniform velocity but consists of two or three stages in which the 
velocities are different. The relative duration of these stages and the velocity of the 
bowed point during these intervals are capable of adjustment within a 
considerable range, and any such alteration involves important changes in the 
amplitudes and, for the asymmetrical types, also in the phases of the harmonics 
which have a node near the bowed point. There is thus, prima facie, reason to 
consider that these transitional forms should be capable of adjusting themselves 
in such manner as to secure the maintenance of the motion, and also its stability, 
over a considerable range of bowing pressures and velocities. A further mode of 
adjustment is provided by the principle of superposition of transitional forms 
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Figure 24. Transitional forms of vibration. (Modifications of the first irrational type). 

referred to previously. The theory may be further elaborated by working out the 
form of the frictional-force curve in a representative set of transitional modes of 
vibration by the general method described in the preceding sub-section, and 
proving its compatibility with the motion at the bowed point corresponding to 
each mode. This detailed investigation must be reserved for part I1 of the 
monograph. For the present, however, it will be sufficient to point out some 
indications of theory. It is evident in the first place that any change either in the 
pressure or the velocity of bowing involves some change in the relative ampli- 
tudes of the harmonics in these transitional forms. For, the velocity of the bow- 
ed point being non-uniform when slipping past the hairs of the bow, equation (22) 
given on page 298 cannot, in general, continue to be satisfied at every instant by 
merely altering the non-periodic part Po of the frictional force when the pressure 



is changed, or by multiplying the periodic part on the right-hand side by a 
constant when the velocity of the bow is altered. Another result which is indicated 
by theory is that the position of the discontinuities in the velocity-diagram of the 
string would, in general, be compatible with the position of the discontinuities in 
the frictional-force curve, only if all of the former are, at some one epoch of the 
vibration, situated at points dividing the string into an integral number of equal 
parts, one of such points being that at which the bow itself is applied. This is 
evident from the method which was used for finding the form of the frictional- 
force curve. 

The principle used for finding the form of the transitional modifications of the 
first irrational type may evidently be employed also for finding the transitional 
modifications of the second, third and higher irrational types. It is sufficient at 
first to confine attention to those cases in which the motion at the bowed point is 
approximately a two-step zig-zag, though the method may also be extended to 
cover even more complicated cases. 

The first four curves in each column on the two sides of figure 25 show the 
vibration-curves at the bowed point and at a point near the end of the string 
respectively, for some transitional modifications of the second irrational type. In 
the first case the position of the bow is at the point 51/13 whose distance from the 
end of the string is less than 2115. The curves may be drawn from a velocity- 
diagram with two large equal discontinuities and three smaller discontinuities 
also equal to one another; the magnitudes of the discontinuities being the same as 
for the case of bowing at 2/15, but their positions being different, in order that the 
point 51/13 might have a uniform velocity in the forward motion. It is seen that the 
curves are of the asymmetrical type, the two large discontinuities in the velocity- 
diagram not being coincident, when one of the three small discontinuities is at the 
end of the string and the other two are coincident. The next two pairs of curves in 
figure 25 show the transitional modifications, one symmetrical and the other 
asymmetrical, for the case of bowing at the point 51/12 which lies between 2115 and 
3/17, The velocity-diagram in these cases has two large and five small discontinu- 
ities. The bowed point for the fourth pair of curves in figure 25 is 71/16 which lies 
between 3117 and 4119. The velocity-diagram for this case has two large and seven 
small discontinuities and is of an asymmetrical type. 

The transitional forms of the second irrational type for bowed points lying 
between 4119 and 5111 1 or between 5/11 1 and 6111 3 and so on, may be similarly 
drawn. When the bowed point lies further away from the centre of the string than 
the node 51/13, in other words is in the neighbourhood of the node 3118, the eighth 
harmonic and its train would partially drop out, and the velocity-diagram would 
have two large and six small discontinuities, and the form of the vibration-curves 
may be easily deduced therefrom. For example, if the bow be applied at the node 
81/21, the two large discontinuities would be initially at the same point, and the 
small discontinuities would be initially situated in pairs at the points 21/21, 141121 
and 181/21. If the bow be applied between 3118 and 113, the second irrational type 
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Figure 25. Transitional modifications of the second and third irrational types, and the transition 
from the first to the fourth and fifth types. 

would be modified by the dropping out of the eighth, eleventh and third 
harmonics and their respective trains. In all these transitional modifications of 
the second irrational type, the motion at the bowed point is approximately but 
not exactly a two-step zig-zag, and the fractional part of the period of vibration 
taken up by the slipping motion is given rigorously by the usual kinematical law 
o = (nx,/l), n being given the integral value 2. 

The fifth and sixth pairs of curves in figure 25 represent transitional modifi- 
cations of the third irrational type, the bowed point in the two cases being situated 
on opposite sides of the point of trisection of the string. The bowed point 71/19 is 
situated between the nodes 3/18 and 4111 1, and the velocity-diagram for this type 
has therefore three large and eight small discontinuities. The bowed point 5111 7 is 



situated between the nodes 2/17 and 31/10, and the velocity-diagram which has 
therefore three large and seven small discontinuities is of the asymmetrical type, 
as is shown by the vibration-curves deduced from it. Further examples of the 
modifications of the third, fourth and higher irrational types may be readily 
worked out by analogous methods. In all such cases, the fraction of the period of 
vibration during which slipping occurs at the bowed point is given by the 
kinematical law o = (nx,/l), n being given the appropriate integral value 3,4 or 5 
etc. 

Transition from one irrational type to another 

The theory given in the preceding sub-section may be extended so as to cover 
another important and interesting class of transitional vibration-forms, the 
nature of which will, as before, be best understood by considering a specific case. 
Let the bow be applied at some point intermediate between the nodes 114 and 115. 
We have already seen in the preceding sub-section that the transitiona1 
modifications of the first irrational type then obtained may be drawn from a 
velocity-diagram which has one large positive discontinuity and four small equal 
negative discontinuities. The magnitude of the large discontinuity bears to that of 
the small ones, a ratio depending on the inclination of the lines of the velocity- 
diagram to the x-axis. If this slope be at first zero and is gradually increased in the 
positive direction, a stage will be arrived at, when the four small discontinuities 
completely vanish, and the mode of vibration becomes identical with the first 
irrational type. On further increasing the slope of the lines, the four small 
discontinuities re-appear, this time with a positive value, and when the 
inclination is such that all the five discontinuities have the same magnitude, the 
mode of vibration becomes identical with thefijlh irrational type. On the other 
hand, if the slope of the lines is negative and is numerically increased, the four 
small discontinuities become larger and larger, and the fifth becomes smaller and 
smaller, till at a particular inclination, it vanishes altogether. The mode of 
vibration then becomes identical with the fourth irrational type. These transitional 
changes are obviously of great interest and importance, and it is very instructive 
to trace the corresponding changes in the motion at the bowed point by the 
method described in the preceding sub-section. Till the final stage in which the 
type becomes identical with either the fourth or fifth irrational type, the fraction 
of the period of vibration during which there is slipping at the bowed point 
continues to be given by the kinematical law w = nx,/l in which n is equal to 
unity. It then changes to the smaller value given by the same formula when n is put 
equal to 4 or 5, as the case may be. It is to be noticed, however, that before this 
final stage is reached, the motion at the bowed point undergoes an important 
modification. For instance, in the transition from the first to the fourth irrational 
type, as four of the discontinuous changes of velocity increase in magnitude and 
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the fifth decreases, slipping at first occurs at the bowed point only when its 
velocity is in a direction opposite to that of the bow; when the fifth discontinuity is 
so small that it is equal to or less than the velocity of the bow, this is no longer 
true, and slipping also occurs during a part of the forward motion, and this ceases 
only when the fifth discontinuity finally vanishes. During the latter part of the 
transitional stages, the fraction of the period occupied by the backward motion is 
given by the ratio nx,/l, in which n is put equal to 4, whereas the total fraction of 
the period during which slipping occurs is found by putting n = 1 .  Similarly in the 
transition from the first to the fifth irrational type, slipping is confined to the 
backward motion of the bowed point, only if the fifth discontinuity is greater than 
any one of the others plus the velocity of the bow. When it is equal to or I.:ss than 
this sum, slipping occurs also during part of the forward motion, and the fraction 
of the period occupied by the backward motion is found by putting n = 5 in the 
ratio nx Jl, whereas the fraction during which slipping occurs is found by putting 
n =  1 .  

These transitional modes would be symmetrical or asymmetrical according as 
the position of the discontinuities in the velocity-diagram is symmetrical or 
otherwise. The three curves for the bowed point 31/13 and the observed point 
121/13 shown in figure 25 represent the transition from the first to the fourth 
irrational type. Two out of the three pairs of curves are asymmetrical and the 
other is symmetrical. The last pair of curves in figure 25 shows the transition from 
the first to the fifth irrational type when the bow is applied between the nodes 1/5 
and 116. 

The theory indicated above may be extended to cover a very large number of 
cases in which there is a transition from one irrational type to another, the motion 
at the bowed point remaining approximately a two-step zig-zag. For example, as 
may be seen from figures 14 and 15, we may have transitions from the second 
irrational type to the fifth, seventh or ninth type, or transitions from the third type 
to the seventh or eighth type and so on. 

Transitional forms involving complicated motions at the bowed 
point 

It has been shown in section IX that if the number of discontinuities in an 
irrational type is not a prime integer, and the bowed point lies anywhere within 
certain ranges, its vibration-curve is necessarily of a more complicated form than 
a two-step zig-zag. We shall now consider some transitional forms in which the 
slipping velocity of the bowed point is not the same in all the stages of descent in 
such cases. For example, if the bow is applied near the centre of the string and the 
fourth type is elicited, the vibration-curve at the bowed point is a four-step zigzag; 
if the sixth type is elicited, it is a six-step zig-zag, and so on. [See Figures 5(b), (c), (d) 
and (e), page 269.1 In the transitional forms, all the discontinuities cannot be 



equal to one another as in the irrational types. On drawing the velocity-diagrams 
it is found, however, that when the motion at the bowed point is a four-step zig- 
zag, the first, third and other odd discontinuities, if any, should be equal in 
magnitude, and similarly, the second, fourth and other even discontinuities, if 
any, should be equal in magnitude. If the motion at the bowed point is a six-step 
zig-zag, the discontinuities should be capable of being arranged in 3 sets of equal 
discontinuities, and so on. These relations are perfectly general, and the 
vibration-curve for a point near the end of the string calculated from a velocity- 
diagram of this kind shows some immediately recognisable characteristics, every 
alternate or every third ascent or descent being of the same steepness and length. 
This is clearly seen in the curves on the right-hand side column of figure 26. 

Bowed and 
observed a t  Observed 

at  

15 
16 z - % 1 6  

Vibration- curve at Vibration-curve a t  a point 
the bowed point near the end of  the string 

Figure 26. Transitional modifications of the fourth and sixth irrational types 

The first pair of curves shows the fourth type and the next two pairs the sixth 
type, obtained by bowing the string near the centre. The two following pairs show 
the sixth type obtained by bowing on one side of the point of trisection, and the 
last pair also show the sixth type obtained by bowing on the other side of the 
trisection-point of the string. The eighth type obtained by bowing near the point 
of quadrisection of the string may be similarly investigated. The curves are all 
necessarily asymmetrical. The motion at the bowed point in all these cases obeys 
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Velocity - diagrams 
Vi bmtion-curves at a 
point near the end of 

the string 

Figure 27. Transition from the first to the second irrational type and vice versa (also illustrating 
cyclical change of vibration-form at the "wolf-note" pitch). 

the kinematical law w = (nx Jl), n being given the appropriate integral value, and 
o signifying the fractional part of the period during which slipping occurs at the 
bowed point. 

The transition from a two-step to a four-step or a six-step motion at the bowed 
point, obtained by applying the bow close to the end of the string with smaller and 
smaller pressures, may be readily traced by drawing a velocity-diagram with 
unequal discontinuities, and deducing the vibration-curves in the manner 



explained above. The transition from a two-step to a four-step motion for bowed 
points close to the end of the string was observed by ~e1mholtz. l~ 

Limiting form of vibration for very small pressures of bowing 

In the discussion on the modus operandi of the bow and the subsequent detailed 
treatment of the modes of vibration maintained under various conditions, it has 
so far been assumed that the pressure of the bow is sufficient to ensure that there is 
no slipping at the bowed point during at least a part of each period of vibration. 
On this assumption, it has been found that when the pressure of the bow is 
gradually reduced, the mode of vibration passes through various stages which are 
either very close approximation to certain standard types or else form transitions 
between those types. There is little difficulty in finding which of the standard types 
of vibration is capable of being elicited when the bowing pressure is the minimum 
admissible. The exact method of ascertaining the critical pressure for any given 
type of vibration has already been indicated. Generally speaking, the type which 
involves slipping at the bowed point for the largest fraction of the period has the 
smallest critical pressure. From figure 15, on page 296, it is seen that when the bow 
is applied at any point in the range 112 to 113, the fraction of the period during 
which there is slipping at the bowed point is largest for the first irrational type in 
which the fundamental is dominant. Within this range therefore, the smallest 
pressure of bowing for which the theory given is valid would elicit the first type of 
vibration, or rather a transitional modification of it in which harmonics having 
nodes near the bowed point are absent or relatively deficient. If the pressure of 
bowing be further reduced, the motion at the bowed point necessarily suffers 
further modification. Under the conditions postulated, the fundamental is 
dominant, and the higher harmonics, especially those whose nodes are nearest 
the bowed point, require proportionately much larger maintaining forces than 
the fundamental. The pressure of the bow being small, the forces exerted by it are 
insufficient to maintain the higher harmonics which accordingly tend to fall out, 
leaving the fundamental practically by itself. The limiting form of vibration of the 
string for small pressures of bowing within the range 112 to 113 is thus a simple 
oscillation. On reducing the pressure of bowing to the smallest possible values, 
even the fundamental ceases to be vigorously maintained, and the amplitude of 
the vibration tends to zero. The effect of an increase in the velocity of the bow on 

'6Sensations of Tone, English translation by Ellis, page 85. Figure 26 of Helmholtz's work 
representing this transition is not quite correct. For, when the two discontinuities are unequal, the two 
steeper lines in the vibration-curve of a point near the end of the string would not be quite parallel, 
except in the limit when the point observed is infinitely near the end of the string. The shorter descent 
would be less steep than the longer one. Further, Helmholtz shows only the symmetrical transition 
forms in which the break first appears in the middle of the ascending line of small slope. In general, the 
actual transition forms are asymmetrical. See figure 27 of this Bulletin. 
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the form of the maintained vibration is of course analogous to that of a 
diminution of its pressure. 

Practically similar results would be obtained by applying the bow with a small 
pressure-velocity ratio at points lying between 113 and 114. For, within this range, 
the second irrational type of vibration is that which requires the smallest pressure 
to elicit, and when the harmonics which have nodes at 113,2117 and 114 drop out, it 
leaves little besides the fundamental and a feeble octave. The case is however very 
different if the bow be applied in the range between 0 and 114. The first type of 
vibration in which the fundamental is dominant then has a fairly high critical 
pressure, and when the pressure of the bow is less than this value, the mode of 
vibration alters into one in which the motion at the bowed point is representabte 
by a four-step or a six-step zig-zag or even a more complicated curve. In other 
words, the fundamental and hormonics of low order have then a tendency to fall 
out, leaving the higher harmonics in possession of the field. The string may even 
divide up into segments and vibrate with twice, thrice or four times its usual 
frequency. 

Instability of periodic vibration under high bowing pressures 

The fundamental assumption on which the treatment given so far rests is that the 
bow maintains the string in a periodic vibration. If the yielding at the ends of the 
string be negligible, the period of this vibration is the same as that of its free 
oscillations, the phase of each harmonic component in the force exerted by the 
bow being in advance of the phase of the corresponding component in the 
maintained motion by 90" (see figures 16 to 19). The question arises whether a 
periodic motion is always possible under the action of the bow. This is best 
discussed by considering a specific case. Assume that the bow is applied exactly at 
the node 113. A very small pressure is then sufficient to maintain the usual periodic 
motion. (See the last pair of curves in figure 17 on page 308). It is obvious that in 
this case, any increase in the pressure of the bow over the minimum necessary to 
establish the usual type of vibration can have no effect at all, so long as the motion 
is periodic. But it does not follow from this that the pressure of the bow may be 
increased indefinitely without affecting the possibility of the steady vibration. 
That a maximum exists beyond which the pressure may not be increased if a 
regular vibration is to be possible is indicated by the following considerations. 
The string determines its own frequency of vibration under the action of the bow. 
But during the fraction of the period in which the bow and bowed point adhere, 
the frictional force is in a sense arbitrary as it may have any value smaller than the 
statical friction. If, therefore, the pressure of the bow be sufficiently large, the 
frictional force is capable of variation in an arbitrary manner between large limits, 
and therefore also of setting up a motion of the string having an arbitrary period 
and phase. The motion of the string thus tends to become irregular when the 



pressure of the bow is much in excess of that required to maintain a regular 
vibration having the maximum critical pressure. 

The maximum bowing pressure at which a steady vibration ceases to be 
possible evidently depends on the position of the bowed point, on the velocity of 
the bow, and to some extent also on the other conditions of bowing, e.g. the finite 
width of the bow. At important nodes such as 1/2,21/5,1/3 and 114, the maximum 
admissible pressure is necessarily low, as the critical pressure necessary to 
maintain the usual steady vibration is small. But at nodes such as 5/11 1 or 51/12 or 
5111 3, a considerably larger pressure is admissible. In the general case in which the 
bow is applied at any point on the string, the factors that determine the possibility 
of the mode of vibration having the highest critical pressure, also determine the 
maximum pressure beyond which a steady vibration ceases to be possible. 

Effect of the finite width of the bow 

Except by way of passing reference (see pages 247,248,291,294,295 and the last 
para of the previous sub-section), we have not so far considered in detail the effect 
of the finite width of the region of contact between the bow and the string. The 
necessary modifications in the equation of maintenance (22) given on page 298 
may be made without difficulty. We may represent an element of the region of 
contact by dx, the pressure exerted on it by P, and d x  its velocity by v,,. The 
frictional force acting on the element may be written as F(P, ,  v,, - v , )dx .  To find 
the expression for the maintained motion we have to analyse the force acting on 
each element dx into its harmonic sine and cosine components, multiply each 
component by the corresponding factor sin (nnxll) and then integrate over the 
region of contact. We thus obtain the two equations. 

2nxt 
F(P,,  v,, - v,) sin --- dt 

T 

- -- kn TBn 
2 

cos (en + e;) 

1: . n y  1; 2nnt - 
sin - dx F(P,, v,, - v,) cos ---- d t  

T 

- -- kn TBn 
2 

sin (en + eh), 

where k,, B,, en and ek have the same significance as in equation (22), and x,, xb are 
the limits of the region of contact. 

Comparing the expressions now obtained with those for the ideal case of a 
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string bowed at a mathematical point, it is evident that the theory for a finite 
region of bowing is considerably the more complicated of the two. It is important 
to realise clearly the essential point of difference between the two cases. When the 
pressure of the bow is regarded as applied at a single point on the string, the 
frictional force is expressible as a function of the relative velocity of that single 
point with respect to the bow, and may therefore have any arbitrary value 
(positive or negative) smaller than the statical friction when this relative velocity 
is absolutely zero. On the other hand, in the actual case of the finite region of 
contact, the relative velocity of every element of this region with respect to the 
bow enters in the expression for the system of forces acting on the string, and 
while it is possible for a single point on the string to have absolutely the same velocity 
as the bow in every part of its forward motion, kinematical theory shows that it is 
not possible for every element on afinite region to have absolutely the same velocity 
as the bow in every part of its forward motion. The frictional forces do not therefore 
have the same freedom of adjusting themselves to the conditions of the 
maintained motion as in the ideal case. 

The only line of attack on the present problem open to us appears to be the 
tentative one of assuming that the maintained motion is one of the various types 
we have discussed in the preceding pages, and then finding in what manner its 
maintenance is affected by the finiteness of the region of contact. As the simplest 
case possible, let us assume that the bow is applied near the end of the string and 
that the maintained motion is of the first irrational type (see figure 1 on page 261). 
The vibration-curve at every point on the region of contact is then a simple two- 
step zig-zag, but with different velocities of ascent and descent. The amplitude of 
vibration of the string then evidently depends on the position of the particular 
point whose velocity of ascent is the same as that of the bow; it is a maximum if the 
relative velocity in the ascending motion is zero at the extreme edge of the region 
of contact nearest the end of the string, and a minimum if it is zero at the edge 
farthest from the end. If the relative velocity be zero at some intermediate point, it 
is positive on one side of it and negative on the other. The frictional forces exerted 
by the bow on the region of contact on either side of this point are then in opposite 
directions, one set tending to increase the motion and the other to oppose it. The 
forces exerted by the bow thus tend mutually to cancel out their own effects, and 
only the difference left over, if any, is available for the maintenance of the motion. 
It must be remembered that, element for element, the forces acting on the string 
furthest from the end that tend to reduce its vibration are the more powerful, as 
most of the factors sin (nlcxll) are larger here than in the part nearer the end. The 
tendency of the vibrations to increase up to the maximum possible is thus 
strongly opposed. As the bow is applied nearer and nearer the end of the string, 
the point at which the relative velocity is zero tends to approach the boundary of 
the region of contact furthest from the end. 

Conclusions similar to those stated above are also arrived at if we assume that 
the bow is applied with sufficient pressure, close to but not ,exactly at an 



important node such as 112 or 113, and that the corresponding irrational type of 
vibration (that is the 2nd type or the 3rd type) is elicited. It will be noticed that in 
every such case, the forces acting on the string furthest from the node tend to 
oppose the motion, while those acting nearer the node tend to support it; and the 
force available to maintain the motion is only the difference between the effects of 
the two sets. On the assumptions made, the force acting on each element of the 
string is perfectly determinate, and the integrals given above should therefore be 
capable of complete evaluation. 

We may now pass on to consider the effect of the finiteness of the region of 
contact on the assumption that this region includes some fairly important node 
and that the vibration elicited is one of the rational types discussed in section X. 
The velocity diagram of the string then consists of horizontal lines parallel to the 
x-axis (that is, to the string) and separated by discontinuities. If the relative 
velocity is zero throughout the ascending motion at some one point in the region 
of contact, this would practically be the case also at immediately contiguous 
points; at points which are considerably removed from it, however, the relative 
velocity would be zero only during a succession of intervals making up a part of 
the ascending motion and would have a finite value during the other intervals, 
this value being positive in one part of the region of contact and negative in the 
other part. (For instance see figure 8 on page 282). During the intervals of the 
ascending motion in which the relative velocity is finite, the frictional forces 
would evidently act in opposite directions in the two parts of the region of 
contact, and would thus tend to cancel each other's effects. The more numerous 
the discontinuities are and the greater the width of the bow is in relation to the 
length of the string, the greater would be the reduction in the effective action of the 
bow produced by this opposition of forces. As the intervals in which the relative 
velocity is finite are distributed regularly over the period, the effect of the finite 
width may be regarded as approximately equivalent to a reduction of the pressure 
of the bow, though of course this is not an absolutely accurate statement. Since 
the number of discontinuities in the velocity-diagram is one of the factors 
determining the effective reduction in the pressure of bow produced by the 
finiteness of the region of contact, the tendency would be to elicit a mode of 
vibration having the fewest discontinuities. The particular point on the region of 
contact the motion of which approximates most closely to that for the ideal case 
of a bowed 'point' is, of course, a variable factor which enters into the equations 
determining the maintained vibration. Since this point would not in general 
actually coincide with the node falling within the region of contact, the mode of 
vibration would approximate to one of the transitional types discussed on pages 
314-326 rather than to one of the standard types of vibration modified by the 
dropping out of a set of harmonics which we discussed in section X. 

Owing to the fact that the frictional forces in the cases considered in the 
preceding paragraph are partly determinate and partly indeterminate, a complete 
evaluation of the integrals and a rigorous detailed treatment do not appear 


