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practicable. A rough numerical estimate of the effect of the finite width of the bow 
on the critical pressure necessary to maintain any given type of vibration seems 
however within the range of possibility, if the necessary physical data are known 
or can be assumed. This complicated work must necessarily be reserved for a 
future occasion. 

The effect of the yielding at the bridge: General discussion 

The yielding at the bridge and the consequent communication of energy from the 
vibrating string to the sound-box, and thence to the air, are essential features in 
the investigation of the mechanics of bowed strings. For simplicity, we have so far 
assumed that this yielding is very small, and that the bow maintains a strictly 
periodic vibration. When these assumptions are made, no special difficulty arises 
in discussing the mode of action of the bow; and it is found that the vibrations of 
the string are practically in the normal modes, and have the same frequency as 
that of the string with rigidly fixed ends. Cases may however arise in which either 
or both of the assumptions may not be justifiable a priori, and we have thus to 
enter into an examination of (a) the conditions, if any, under which a periodic 
vibration cannot be maintained by the bow, and (b) the possibility (or otherwise) 
of a periodic motion under the action of the bow, with a frequency differing from 
that of the string with rigidly fixed ends. For a full understanding of these 
problems, we have to enter into a discussion of the mechanics of the string and 
bridge much more detailed than that given in section 11. The discussion may 
conveniently be divided into four parts: (1) the free vibrations of the system if there 
be no dissipation of energy; (2) the free vibrations as modified by the dissipation of 
energy; (3) the vibrations forced by a periodic force of arbitrary period; and (4) the 
vibrations forced by the bow under various conditions. The disqussion is also 
valuable as enabling us to find methods for experimentally verifying the theory 
given in the preceding pages. 

Alteration of free periods 

Taking first the free vibrations, we may, to avoid undue complications, consider 
only the motion at the bridge transverse to the string. This neglect of the 
longitudinal motion of the bridge would not seriously invalidate our conclusions, 
as the reaction of this component of the motion of the bridge would only tend to 
alter the tension of the string periodically, and would not directly tend to set up a 
transverse motion such as that with which we are now concerned. Further, it is 
sufficient ifwe consider the motion in the plane parallel to that of the vibrations of 
the string, the latter being assumed to be the same as that in which vibrations are 
forced by the bow in usual practice. In other words, the reaction of the bridge on 
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the motion of the string may be sufficiently nearly represented by a system 
capable of movement in a single direction transverse to the string, and having 
one, two, three or such larger number of free periods of vibration as may be 
necessary to obtain a sufficiently close approximation to the truth. As a first step, 
we may assume that the bridge may be represented as a single mass controlled by 
a spring. Neglecting the dissipation ofenergy and using the notation of section 11, 
the free periods of vibration of the string and of the bridge may be found from the 
formula 

tan pl = 
- TOP where pm2 = Top2. 

f 2 - ~ r n ~ '  

The equation for pl may be completely solved by a graphical method. Writing 
the relation in the form 

MTop2/p - f = Top cot pl, 

the expressions on either side may be readily plotted as graphs with respect to pl. 
The left-hand side gives us a parabola with its vertex on the line pl= 0, on the 
negative side of the axis ofpl. The right-hand side has a series of branches with the 
lines pl= K, pl= 2 ~ . . . p l =  nn, etc. as their asymptotes. The particular point 
at which the parabola cuts the axis of pl determines the free period of vibration of 
the bridge, if the reaction of the string be not taken into account. The curves 
representing Topcot pl evidently cut the axis of pl at the points pl = 4 2 ,  and if 
the parabola also cuts the axis at one of these points, the reaction of the string 
would have no effect on the free period of the bridge. In other cases, the free period 
of the bridge and the free periods of the string are both subject to modification. 
The graphs show that the natural frequencies of the string which are greater than 
that of the bridge. are further increased by the yielding of the latter, while those 
which are less are further decreased. The frequency of the bridge is increased or 
decreased according as it is greater or less than the nearest of the two natural 
frequencies of the string between which it lies. The most interesting results are 
obtained when the free period of the bridge, and one of the free periods of the 
string, nearly or actually coincide, that is, when the parabola in the graph cuts the 
axis of pl at or near one of the points pl = n or 21t or 3n, etc. Taking, as an example, 
the case in which the bridge and the string have nearly the same frequency, the 
points where the parabola cuts the two branches having the common asymptote 
pl = n, determine the two free periods of the system as modified by the mutual 
action of its parts. When the parabola cuts the axis of pl at a point for which 
pl< K, the intersection of the parabola with the inner branch determines the 
modified period of the bridge, and the intersection with the outer branch 
determines the modified period of the string. The state of matters is reversed when 
the parabola cuts the axis of pl at a point for which pl > n. When the parabola 
passes exactly through the point pl = n, it is no longer possible to define which of 
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the two free periods, of the system is distinctively that of the string and which of 
the bridge. 

From the preceding discussion it is clear that the yielding of the bridge modifies 
the free periods of the string lying near its own period to a greater extent than it 
does those further off, and that when the string and bridge taken separately have 
the same free period in any case, their mutual action results in the system having 
two different periods which, when the free oscillations are excited. would produce 
"beats" somewhat similar to those of two tuned electrical circuits coupled with 
each other. "Beats" would also occur when the free periods, taken separately, are 
nearly but not quite equal to each other; but they would then be more rapid than 
in the case of perfect tuning. From the principle of conservation of energy, it is 
evident that inevery such case, the vibration of the string would be a maximum 
when that of the bridge is a minimum, and vice-versa. 

Effect of thickness of string on free periods 

An approximate formula for the numerical calculation of the alteration in the 
frequencies of the string is readily found. The unaltered frequencies are given by 
m/2n where m = (To/p)112p and pl= nn, n being any positive integer. Putting 
pl = nn + p'l as the result of the yielding of the bridge, p'l being small, tan pl = 
tanp'l = p'l (nearly). The change in frequency is thus 

If (Mm2 - f 2, is sufficiently large and either positive or negative, the value of m 
corresponding ta  the undisturbed period may be substituted on the right-hand 
side without sensible error. For a given value of m, that is, for a given frequency, 
the alteration produced by the yielding of the bridge is proportional to Toll, in 
other words to the tension divided by the length. For a given vibrating length and 
frequency, the heavier or thicker a string is, the greater would be the tension 
necessary, and therefore also the alteration in frequency produced by the yielding 
at the bridge. Similarly, with a given string vibrating with a stated frequency, the 
ratio Toll may be increased by increasing the tension and the vibrating length, 
and the alteration of frequency produced by the yielding of the bridge also 
increases. 

When (Mm2 - f 2, is not very large, the equation may be written in a slightly 
different form 

ml[M(m - m')2 + 2Mmr(m - m') - f 2] 

Since (m - m') is the unaltered frequency divided by 2n, the relation is evidently 
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a quadratic in m' which may be readily solved. When the free periods of the bridge 
and the string considered are the same if the two are taken separately, we have to 
write M(m - m')' = f and m' = + [To/2 M1]'12. 

The formula shows that in this case the system has two free periods instead of 
one, and that the influence of the density of the string, or of its tension and 
vibration-length for a given frequency in determining the effect of the yielding of 
the bridge, is relatively not so great as at other frequencies. 

Yielding of a bridge which has more than one free period 

If the bridge has two or more free periods of vibration, the effect of its yielding on 
the free periods of the string may be readily found by the method of generalized 
coordinates. If +,, +,, +,, etc. be the normal coordinates of the system of which 
the bridge forms a part, we may write 

Kinetic energy of the system = +al$: + $a,$: + $a3$: + etc. 

Transverse yielding of bridge = r,+, + r24, + r34, + etc. 

From this, we find 

/ I  2 d/a, tanpl = - Top[--- + --- + ---- + etc. 
n:-m2 n:-m2 n:-m2 I 

where nl/27t, n2/27t, n3/27t, etc. are the natural frequencies of the bridge. When the 
particular free period of the string under consideration nearly coincides with the 
one of the free periods of the bridge, the results obtained in respect of it from this 
general formula, would not differ seriously from those obtained, if only the 
coordinate of the bridge having nearly the same free period is retained, and the 
others are neglected. Generally, however, two or more of the coordinates in the 
motion of the bridge require to be taken into account, and the alterations in a free 
period of the string produced by two coordinates in the motion of the bridge may 
be of opposite sign, and may thus tend to cancel each other out. 

Decrement of free vibrations of string 

We may now pass on to consider the effect of dissipation of energy on the free 
vibrations of the system. For this purpose, we may, at first, confine our attention 
to the case in which the motion of the bridge is expressed by a single coordinate, 
and use the same notation as in section 11. Since y = 0 when x = 0, we find by 
assuming the free oscillations of the string to be given by the expression 

Y= F ,  exp ((ip, + 4, )(x + at)) + F2 exp + 92)(x - at)), 
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that p, = - p,, 9 ,  = - 9, and F i  = - F,. We may therefore write 

Y = F[exp ((ip + q)(x + at))  - exp ( - (ip + q)(x - at))].  

At the point x = I ,  we have the relation 

Substituting the assumed value of y, we find 

CMa2(ip + qI2 + g2a(ip + q)  + f ' 1  Cexp ((ip + d l )  - exp ( - (ip + q)l)l 
= - To(ip + q) [exp (ip + q)I + exp ( - (ip + q)l)l. 

Since ql may be assumed to be small, a simplification may be effected by writing 
(exp (ql) + exp ( - ql)) = 2 and (exp (ql) - exp ( - ql)) = 291. Then, 

[ ~ a ' ( i ~  + q)2 + g2a(ip + q)  + f ' 3  [2ql cos pl + 2i sin pl] 

= - To(ip + q)(2 cos pl + 2iql sin pl). 

Separating the real and imaginary parts and equating, we obtain 

tan pl = - TOP + Bql '491 + To9 
A - Toq21 - B + Topql ' 

where 

and 

Cross-multiplying and neglecting terms of the order q3, we find that 

This gives us the rates of decay of the free vibrations of the system. The free 
periods as altered by the damping are given by the equation 

which may be solved graphically or numerically, after substitution of the 
approximate value of q. 

We now proceed to discuss the results obtained in the preceding para. 
Using the abbreviation f = Mm:, the expression for the rate of decay of the 

free vibrations may be written in the form 

qa = 
Q 

p2l2(m;/m2 - 1)M2/kl + M(m:/m2 + 1 )  + P I '  

To obtain the rate of decay of the free vibrations of the bridge, we put m = m,  
and find qa = - g2/(2M + pl), where ~ t l  is, of course, the mass of the string. It will 
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also be seen that if the mass ofthe string be small compared with that of the bridge 
and associated parts of the instrument, the rates of deacy of the free vibrations of 
the string would, in general, be small compared with the decrement of the free 
vibrations of the bridge. An exception should, however, be made in respect of the 
free modes, if any, the frequencies of which do not differ considerably from that of 
the bridge. The components whose frequencies are nearest to the frequency of free 
vibration of the bridge decay with time more rapidly than the rest, and in the 
particular case in which the free vibrations of the bridge and of the string in any 
particular mode are of nearly equal frequency, the rate of decay of the particular 
component is much larger and becomes comparable with that of the bridge. 

Effect of damping on free periods 

The effect of damping upon the free periods (as shown by the formula for tan pl) is 
generally quite negligible. For, if we take the maximum value of qa, that is 
- g2/2M, and substitute it in the formula tanpl = - (Top + Bql)/(A - Toq21), it is 
found that Bql= 0, and that Toq21 is quite negligible. Except for certain terms 
containing q2 appearing in A, the equation for determining the free periods is thus 
practically the same as if there were no dissipation of energy. The free period of 
the bridge (in the absence of the string) is increased by a quantity of the second 
order in consequence of the dissipation of energy, and the effect of this on the free 
periods of the string which do not lie near that of the bridge is of no con'sequence. 
Even in respect of those free periods of the string, if any, which are approximately 
coincident with that of the bridge, the alterations produced by the mutual action 
of string and bridge would be nearly the same as in the absence of any dissipation 
of energy. But this statement may require modification, if the alteration of free 
periods by the mutual action of the string and the bridge be of the same order of 
quantities as the alteration of the free period of the bridge by damping, as would 
be the case if To/[ were less than g4/2M, that is, if the string were very thin, or if the 
damping of the bridge were considerable. 

Coupled vibrations of string and bridge 

From what has been said above, it is clear that, ordinarily, if the free vibrations of 
the string be excited, the free vibrations of the bridge which are excited at the same 
time would die out more or less quickly; the beats due to the superposition of its 
free and forced oscillations would therefore vanish, leaving a steady vibration 
having the modified free period of the string which dies away rather slowly. The 
transient beats in the vibration of the bridge become slower and slower as the 
frequency of the string approaches that of the bridge, and the dissipation of the 
energy of the vibrating string becomes much more rapid. But the beats of the free 
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vibrations of the bridge with those excited by the string do not vanish even when 
the adjustment of the frequencies of the string and bridge is most accurate. On the 
other hand, it is at this stage that they become most prominent in the motion of 
the bridge, and also appear in the vibration of the string, the modification of the 
free period of the string by the yielding of the bridge being then a maximum. The 
motion is however highly damped at this stage, and dissipates itself quickly. We 
cannot, therefore, as in the case of undamped vibration, expect to find the epochs 
of the maxima of the bridge-vibration coinciding exactly with those of the minima 
of the string-vibration, or vice versd. But as the free periods of the system are not 
considerably altered by damping, approximate coincidence of the maxima of the 
one with the minima of the other, and vice versa, may still be expected. 

It is worthy of note that when m, is not nearly equal to m, the rate of decay of 
the free vibrations of the string depends not only on the frequency but also upon 
its length and density. For a given frequency of vibration, the heavier of two 
strings of the same length is more strongly damped. Similarly, for a string of a 
given material, the damping may be increased by altering its length and tension in 
such a manner as to keep the frequency of vibration constant. Analogous effects 
have already been noted in respect of the alterations of the free period of the string 
produced by the yielding of the bridge. When the frequency of vibration is 
gradually altered so as to approach the point at which m 5 m,, the rate at which 
the damping of the free vibrations increases to the maximum possible, depends 
largely upon the density and length of the string. But in all cases, the maximum 
value is the same, this being attained when the string and bridge taken separately 
have exactly the same free period. That this is so in spite of the actual free periods 
of the system as modified by the mutual action of its parts being different in the 
various cases, is explained by the fact that the increased damping due to the 
greater density or length of the string is at this point completely set off by the 
decrease in the damping produced by larger alteration of free period. 

So far for the free vibrations in the case in which the motion of the bridge is 
expressible by a single coordinate. If the bridge has two or more free periods of 
vibration, the yielding at the end of the string may be expressed as a linear 
function of the values of the normal coordinates of the bridge-system. Similarly, 
the force exerted by the string on the bridge (which is of the damped harmonic 
type) may be resolved into its normal force-components which are also of the 
same type. On account of the dissipation of the energy, however, it is not generally 
possible in these cases to express the equations of motion in the simple form in 
which only a single coordinate is involved in each equation. By applying a general 
method analogous to that described by Lord Rayleigh (Theory of Sound, vol. 1, 
2nd edn., Art. 104), the yielding at the bridge and thence also the values for the free 
periods and the logarithmic decrements of the vibrations of the string may be 
determined. For those cases in which the free period of any component in the 
vibration of the string lies at or near one of the free periods of the bridge, the 
values thus obtained in respect of the particular component would not differ 
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seriously from those obtained by neglecting all the coordinates in the motion of 
the bridge except that which becomes specially important in the circumstances. 

Simple harmonic force of arbitrary period 

We may now pass on to discuss the vibrations maintained by a periodic force of 
arbitrary frequency applied at some specified point on the string. In section 11, we 
have already found the formulae necessary for this purpose, on the assumption 
that the motion of the bridge is expressible by a single coordinate. It now remains 
to scrutinize the results in some detail, and to extend them to the case in which the 
bridge has two, three or a larger number of free periods of vibration. 

One important consequence of the formulae given on page 246 is as regards 
the phase of the motion of the bridge. When the period of the maintained vibra- 
tion is much greater than that of the bridge, Cf2 - Mm2) is positive and large in 
comparison with g2m. The string and the bridge are then in the same phase of 
vibration. On the other hand, when the period is less than that of the bridge, 
(f - Mm2) is negative, and the two vibrations are in opposite phases. When 
f = Mm2, the vibrations differ in phase by exactly a quarter of an oscillation. The 
results hold good, irrespectively of whether the frequency of the applied force is, 
or is not, exactly the same as the frequency of the free vibrations of the string, so 
long as the latter are of sufficient amplitude in comparison with the motion of the 
bridge.' 

The results given in section I1 may be generalised for the case in which the 
bridge has two, three or a larger number of free periods, by using the method 
given in Lord Rayleigh's Theory of Sound, I, Art. 104, to find the forced oscillation 
of the bridge in terms of that of the string. The relations thus found would be 
precisely analogous to equations (9) and (10) on page 246 except that instead of 
(f - Mm2) and g2m, we would have two other constants depending in a rather 
complicated manner upon the masses, free periods and damping coefficients of 
the bridge-system, upon the position of the point on the bridge over which the 
string passes, and also upon the assumed period of the applied force. The 
formulae for the forced oscillation of the string may then be deduced precisely as 
in section 11. The quanjity (F:  + G:)'I2 may be regarded as expressing the forced 
vibration of the string, so long as the motion of the bridge does not become 
comparable with the motion of the string in its amplitude. 

"Compare with the results described in the paper on the "SmaH Motion at the Nodes of a Vibrating 
String", Bulletin No. 6 of this Association. 



340 c v R A M A N :  ACOUSTICS 

It is given by the relation 

E cos $ sin px, 
(Ff + Gf)'I2 = 

pTo[sin2 (pl + $) + 6' cos2 pl cos2 $]'I2 

= E sin px,/k, 

where k is a quantity independent of the position of the bowed point which 
expresses the relation between the applied force and the maintained vibration. In 
the denominator of the expression for (Ff + Gf)'I2, the quantity sin2 ( p l +  $) is 
approximately independent of the dissipation factor, provided two or more of the 
free periods of the system composed of the string and bridge do not lie near each 
other. On the other hand, the quantity a2 cos2 pl cos2 $ is dependent entirely on 
the friction. Except in special cases of the kind mentioned, the amplitude of the 
maintained vibration would practically be a maximum when sin2 (pl + $) is zero, 
that is, when the period of the impressed force is the same as one of the free periods 
of the string as modified by the yielding of the bridge. When this is the 'case, k is 
proportional to 6, and is therefore entirely dependent on the rate of dissipation of 
energy. On the other hand, if the period of the impressed force is the same as one 
of the free periods of the string with the ends rigidly fixed, sinpl r nn, and k is 
proportional to [tan2 $ + 62]112, and depends both on the dissipation of energy 
and on the alteration of free period produced by the yielding of the bridge. The 
magnitude and phase of the force required to maintain the vibration thus depend, 
in general, both on the difference between the free and forced periods, and on the 
rate of dissipation of energy. 

Forced vibrations of coupled systems of nearly equal periods 

The special cases in which two or more of the free periods of the system composed 
of the string, bridge and associated masses lie near each other require however to 
be separately considered, as the value of $ cannot then be regarded as 
independent of the dissipation of energy. The simplest of these cases is that in 
which one of the free periods of the string approximately coincides with one of the 
free periods of the bridge, and also with the period of the applied force. As one of 
the coordinates in the motion of the bridge then becomes large in comparison 
with the others, we may neglect all the rest, and the formulae given in section I1 
may therefore be used without serious error. Under the conditions assumed, the 
motion of the bridge is not negligibly small, and the motion of the string on either 
side of the point of application of the force cannot be quite accurately represented 
by the same expression; in other words, the string does not quite conform to the 
natural types of vibration. This is sufficiently evident from the formulae on page 
246 if (f - Mm2) be put nearly equal to zero. As an approximate result, however, 
we may still regard (Ff + Gf)"' as expressing the amplitude of the maintained 



vibration of the string, while (D: + EZ)''~ represents that of the bridge. To find 
(F: + G;)1/2 for various periods of the applied force lying in the neighbourhood of 
the free periods of the string and the bridge, we have to consider the values of t,b 
and 6 in such cases. Thus, tan t,b = tan 0(1 - sin2 4 )  and 6 = tan 8 sin 4 cos 4, 
where tan 8 = Top/( f - Mm2), and tan 4 = g2m/(fz - Mm2). By substitution, 
6 = Top sin2 4lg2rn, and is thus always positive. Generally speaking, 6 is small and 
approximately equal to Topg2m/( f - Mm2)2, being thus directly proportional 
to the damping coefficient g2 of the bridge. But when f approaches ~ m '  (as in 
the cases now being considered), 6 increases rather sharply to a considerably 
larger maximum value Top/g2m which is inversely proportional to the damping 
coefficient of the bridge. So long as (f - ~ m ~ )  is not small, + is practically equal 
to 8, being positive when f > Mm2, and negative when f < Mm2. But when f 
approaches the value Mm2, t,b becomes numerically less than O and, in fact, 
vanishes when f = Mm2, whereas O increases to either of the values 4 2  at this 
point. The free period of the string is given by the relation pl= nx, if its ends be 
supposed rigidly fixed, and by the relation pl + 0 = nn, if the yielding of the bridge 
be taken into account. Thus, if the string and bridge (taken separately) have the 
same free period, and the applied force is also of the same period, f = Mm2, and 
pl = na. Sin2(pl + #) is then zero, and G2 = 0. The amplitude of vibration of the 
string (F: + GZ)'I2 is then equal to + F2 and may be written as E sinpxo/pToG 
which is equal to Eg2m sin pxo/p2 Ti. 

In other words, the force required to maintain a vibration of a given amplitude 
is then inversely proportional to the damping coefficient g2 of the bridge. This 
apparently paradoxical result is easily explained1*. For, the motion of the bridge is 
then E2 cos mt, where E2 = E sinpxo/pTo, and the rate of dissipation of energy 
which is *g2m2E: may be written as $F$Tgp2/g2, and is thus also inversely 
proportional to the damping coefficient g2. By writing the rate of dissipation of 
energy in the form $F2Em sinpx,, it is seen that the force required to maintain the 
string in a vibration of a given amplitude is directly proportional to the rate of 
dissipation of energy. It is also proportional to the corresponding motion at the 
bridge, as may be seen by writing the expression for the applied force in the form 
3FzEzTo~m. 

If the free periods of the string and the bridge (taken separately) and the period 
of the applied force are not all exactly equal to one another, but only 
approximately equal, the expression for the amplitude of the forced vibration of 
the string cannot reduce to such simple forms as those given in the preceding 
para. We may however trace the manner in which the amplitude of the 
maintained vibration varies with the period of the applied force, assuming either 
that (1) the latter is the same as the free period of the string with rigidly fixed ends, 

''Compare with the observations of Lord Rayleigh on the reaction of a dependent system, Theory of 
Sound, I, Art. 1 17. 
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but differs from the period of the bridge (taken by itself), or (2) that the free periods 
of the string and of the bridge (taken separately) are equal, but differ from the 
period of the applied force. In the first set of cases, the expression [sin2 (pl + $) 
+ d2 cos2 $ cos2 p f 1 1 / 2 / ~ ~ ~  $ to which the amplitude of maintained vibration is 
inversely proportional, reduces to [tan2 $ + 62]1/2, pl being equal to a. As the 
period of the applied force approaches the free period of the bridge, d2 inqeases 
continuously and becomes a maximum when f = Mm2. On the other hand, the 
value of tan2 $ first increases, and after attaining a maximum when f is > or 
< than Mm2, becomes zero when f = Mm2. But (tan2 $ + ~ 5 ~ ) " ~  has only one 
maximum which is attained when f 2  = Mm2. For, tan$ may be written as 
Top sin q5 cos q5/g2m, and (tan2 $ + 6') is therefore equal to (Top sin +/g2m)' 
which is a maximum when + = 4 2 .  From this, it is seen that in the first set of 
cases, practically the maximum force is required to maintain a vibration of a given 
amplitude, when its period is the same as the free period of the bridge. In the 
second set of cases, it is necessary to trace the values of the expression [sin2 (pl 
+ $)/cos2 $ + 62cos2pl1112. This may be written in the form [sin2pl 
+ sin2 pl tan $ + cos2 pl (tan2 $ + d2)]1/2. Sin2 pl is a minimum when pi= a and 
f = Mm2, and increases continuously when f is > or < Mm2. We have already 
seen that cos2 pl (tan2 I) + 6') is a maximum when f = Mm2. Sin 2pl tan $ is zero 
when f .= Mm2, and is very small when f is appreciably greater or less than 
~ m ' ,  but intermediately, it has finite negative values. To find whether the sum of 
these expressions is a minimum or a maximum when pl= a and f = Mm2, we 
may differentiate [sin2 (pl + $)/cos2 $ + 6' cos2pll twice with respect to p, and 
then put pl= a and $ = 0. The result found is that the expression is then a 
maximum or a minimum according as 

If we neglect plJ4M which is one-fourth of the ratio of the mass of the string to 
the mass of the bridge, etc. this condition may be simply written as 

or to a closer approximation, in the form 

As the term on the right-hand side is proportional to the square of the damping 
coefficient of the bridge, we should expect in practice to find it smaller than the 
one on the left, unless, of course, the string be very thin or the damping of the 
bridge be unusually large. The force required to maintain the vibration would 
thus, in general, be a maximum when its period is the same as the free period of the 
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string and the bridge, and when this is the case, the force required would be a 
minimum for two other periods, one of which lies on each side of the aforesaid 
maximum. These two periods for which the minimum maintaining force is 
required would, except in extreme cases, be more or less the same as the two free 
periods of the coupled system composed of the string and bridge. When, however, 
the string is very thin, or the damping of the bridge is unusually large, the two 
minima do not exist, the force required being a minimum and not a maximum at the 
period given by f = Mm2. 

When the free periods of the string and of the bridge (taken separately) are 
nearly but not quite equal to one another, and are assigned specific values, and 
only the period of the applied force is regarded as a variable, it is easy to see from 
the discussion in the preceding para that, subject to similar restrictions regarding 
the relative magnitudes of the quantities, involved, the force required to maintain 
the string in vibration of given amplitude would, likewise, be a minimum for two 
periods, f being greater than Mm2 in one case and less than Mm2 in the other. 
The two minima of the force necessary would however be unequal. These two 
periods would correspond more or less closely to the two free periods-of the 
system, and from the discussion of the free vibrations already given, it is clear that 
the difference of these two periods would be a minimum when the free periods of 
the string and bridge taken separately are equal, and would not therefore change 
very rapidly when they are made slightly different. 

Effect of motion of the bridge on periodic vibrations forced by 
the bow 

When the applied force, instead of being simple in character, comprises a series of 
harmonics, and its period does not differ considerably from the free period of the 
string with rigidly fixed ends, the forced vibration may still, as an approximation, 
be expressed in terms of the amplitudes B, and phases en of the normal types of 
vibration. 

The force required to maintain the vibration may be written in the form 

L 
n =  1 nll~, ,  

sin - 
1 

where kn, ek are quantities which are approximately independent of the position of 
the bowed point, and are determined by the differences between the free and 
forced periods of the components in the motion, and the logarithmic decrements 
of the respective free modes. If the difference of periods is zero or negligible in 
respect of any component or components, the corresponding constants k, are 
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merely the logarithmic decrements of the free vibrations multiplied by the factor 
nn2To/l, and should thus be readily capable of experimental determination. If 
the difference of periods is not negligible, the experimental determination of k, is 
not such a simple matter, as it would be necessary to determine the logarithmic 
decrement of the free vibrations, and also to make an accurate comparison of the 
period of the applied force and the period of the component free vibration as 
modified by the yielding of the bridge. [The free periods may, of course, be 
calculated theoretically if the constants of the string and the actual components of 
the yielding of the bridge are known]. In the particular cases in which the 
difference of the free and forced periods or the logarithmic decrement of any , 
component is large, the corresponding constant k, becomes large. This might, for 
instance, happen on account of a particular component being nearly or exactly in 
resonance with one of the free modes of vibration of the bridge, in which case, as 
we have already seen, the component would be thrown out of harmonic relation 
with the rest, or would be highly damped. 

The preceding theory is evidently applicable in considering the motion under 
the action of the bow, if we assume that this motion is a periodic vibration. It is 
clear that the bow should be capable of forcing a strictly regular vibration even if 
the yielding of the bridge be not negligible, provided, of course, the pressure and 
speed of the bow are in suitable relation to the position of the bowed point and 
other factors involved. For, the expression given above for the force requisite to 
maintain such a motion is exactly of the same form as that given on page 298, 
the only difference (to a first approximation) made by the alteration of free 
periods due to such yielding being in the actual numerical values of the series of 
constants k, and ei. In other words, assuming that the motion is periodic, the 
theory is substantially on the same lines as that already discussed. Various special 
points however come up for consideration. For instance, what is the period of the 
vibration forced by the bow when the yielding of the bridge is not negligible? In 
attempting to find an answer to this question, we should recollect that the series of 
"constants" k, and e i  are not independent of the period of the forced vibration. A 
complete theory seems at first sight wholly impracticable in the circumstances. It 
is obvious, however, that in most cases of practical interest, where the yielding of 
the bridge is sufficiently large to enter into the theory, the alterations of the free 
periods of the various components in the motion produced by it, would not all be 
in the same direction. We may therefore infer that when the pressure of the bow is 
just sufficient to elicit a steady vibration including the usual retinue of upper 
partials, the period would not ordinarily differ to an appreciably extent from that 
of the free vibrations of the string with rigidly fixed ends. [The amplitude of 
vibration is, of course, assumed to be small, or at any rate of the same order of 
quantities in both cases]. Even when the yielding of the bridge results in a large 
alteration of the free period of some fairly important harmonic, e.g. of the 
fundamental or the octave, the same result might be expected. It might be shown 
that if in such a case, the pressure be sufficient only to excite the said component 
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with the frequency as altered by the yielding of the bridge, and not with the 
normal frequency, a steady vibration would not be possible. For, when the bow is 
laid on, the bridge has initially no motion, and one of two things would happen. 
Either the component in question would altogether fail to be excited, or as we 
shall see later on, it would tend to be excited in a cyclic manner, that is, with 
alternately increasing and decreasing amplitude. Only the pressure sufficient to 
excite all the components in their normal frequencies would be capable of 
maintaining a regular periodic vibration of the usual kind. 

Cases in which the bow maintains a periodic vibration with 
altered frequency 

The preceding discussion makes it clear that in practically all cases in which the 
pressure of the bow is just sufficient to maintain a steady vibration, the period 
would not differ appreciably from that of the free vibration of the string with 
rigidly fixed ends. But when the pressure is much in excess of the minimum 
necessary, we might expect different results. For, as already remarked on page 
328, when we have a very large maintaining force at our disposal, we are no longer 
restricted to a consideration of those types of motion which require the smallest 
forces to elicit. In order that a motion of a period different from the normal be 
possible, at least two factors are necessary-(a) we should have sufficient 
maintaining forces at our disposal, and (b) there should be a factor tending to alter 
the frequencies of all the components of free vibration in the same direction, that 
is, to increase all of them or to decrease all. By sufliciently increasing the pressure 
of the bow, factor (a)may be secured. We have already seen that the yielding of the 
bridge would not, in general, enable us to secure the result stated in (b). ?he sliding 
friction of the bow might however lower thbfrequencies of all the component 
vibrations, in much the same way as in the dynamics of a particle, the viscous 
resistance is found to result in an increase of the period of vibration. In other 
words, it is quite possible that when the pressure of the bow is sufficiently large, it 
might tend to lower the frequency of vibration in addition to maintaining the 
motion19. As, however, the friction exerted by the bow is not entirely determinate, 
we cannot ordinarily expect a regular vibration of the string under such 
circumstances. But under special conditions, as for instance in the region of 
frequencies within which the resonance of the instrument is considerable, we may 
expect to meet with cases in which a high bowing pressure elicits a regular 
vibration with a frequency appreciably or even considerably less than the normal. 
The greater the pressure of the bow, the larger would be the possible lowering of 

l g  With reference to the possibility of a maintained vibration in such cases having a period dinerent 
from that of free vibration, see Lord Rayleigh's Theory of Sound, I, Arts. 64 and 68(a). 
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frequency. For the reasons explained on pages 328 and 329, the phenomenon 
would be most prominent when the bow is applied at points exactly coinciding 
with important nodes, such as 113 or 114 or 115, and would be inappreciable if the 
bow be applied near an end of the string, or at points close to, but not coincident 
with, important nodes. 

Various other important questions arise in regard to the theory of the periodic 
vibrations of a uniform string forced by the bow. Has the construction of the 
instrument on which the string is mounted any effect in determining the 
possibility or otherwise of any stated form of vibration? What is the effect on the 
motion of the string of muting the bridge or otherwise loading the mobile parts of 
the instrument? How do the thickness, length and tension of the string influence 
the character of its motion under the action of the bow? What is the relation 
between bowing pressure and velocity? What happens when the amplitude of the 
maintained vibration is too large for the theory of "small" oscillations to be 
strictly applicable? These are extremely important questions for which it is 
essential to find an answer in order to arrive at a proper understanding of our 
subject. We now proceed to consider the various points raised, one after another, 
in considerable detail. 

Influence of the instrument on the form of vibration of bowed 
strings 

Upon the construction of the instrument depends the motion of the points of 
attachment of the string forced by its vibrations, and therefore also the reaction of 
the instrument on the vibrations of the string. This influence may be expressed 
mathematically in terms of the masses, free periods and damping coefficients of 
the bridge, and the associated mobile parts of the instrument, and in terms of the 
tension, length and free periods of the string, and the position of the point on the 
bridge over which it passes; we have already discussed the formulae necessary for 
this purpose in some detail. It now remains to consider in what manner, if any, the 
motion forced by the bow depends on the actual numerical values of the various 
quantities involved. From the discussion given in sections 111, V, X, and 
pages 290 to 297, it would appear that the sequence of the phenomena obtained 
by bowing at any given point on the string with varying degrees of pressure or 
velocity, is to a large extent capable of being found from kinematical consider- 
ations depending upon the position of the bowed point, its contiguity or 
coincidence with some important node-point and the like, taken in conjunction 
with broad dynamical principles common to all cases likely to arise in practice. 
But the subsequent mathematical treatment (pages 297 to 327) showed that the 
actual magnitudes of the constants k,, k,, k ,  etc., e;, e;, e; etc. expressing the 
relation between the maintaining forces and the maintained motion, are of no 
small importance. In order to get a connected idea of the theory, we considered on 
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pages 302 to 314 a special class of cases in which all the constants el were put 
.equal to n/2, and the constants k, were put equal to nk; this supposition enabled 
us to effect an analytical summation of the expression for the maintaining force in 
all such cases. We shall now see in what manner, if any, the conclusions thus 
arrived at have to be modified when the constants k, and e; have values 
determined by the actual constants of the instrument on which the string is 
mounted. 

The general equation giving k, in terms of the constants of the instrument is 

k, = 2nnTo[sin2 (2nnl/aT+ $,) 

+ 6,2 cos2 2nn1/aT~cosZ $,]"2/aTcos $.. 
If the period of the motion is assumed to be the same as that of the string with 

rigidly fixed ends, this reduces to the form k, = n~cT,/l.[tan~ $, + ~5,2]'/~, where $, 
usually depends only on the difference between the free and forced periods of the 
nth component and 6, depends on the dissipation of energy. The magnitudes of $, 
and 6, for any component in the motion depend mainly on those normal modes of 
vibration of the instrument which have frequencies nearest to it. As any actual 
instrument would have numerous free periods of its own forming an ascending 
scale of frequencies, it is not a violent supposition in trying to take a general view 
of the phenomena to assume that [tan2 $, + 6,2I1l2 is of the same order of 
quantities for all values of n. We would then have k, = n f (n)k, where f (n) varies in 
an irregular (not progressive) manner as n is increased, and k is a constant. If we 
put f (n) equal to unity, and make the further supposition that el is equal to n/2 for 
all values of n, we have precisely the same conditions as those assumed in 
calculating the form of the frictional force curves on pages 302 to 3 14. The general 
value of el is 

4 2  - tan- ' [ - sin (2nnl/aT. + $,)/6, cos $, cos 2nnllaTI. 

When the period of forced vibration is the same as that of the string with rigidly 
fixed ends, this reduces to the form 

e; - n/2 - tan - ' ( - tan $,/6,). 

From this, it is seen that when the dissipation of energy is the principal factor and 
not the difference, if any, between the free and forced periods, e: is practically 
equal to n/2. 

Though, as we have seen, the assumptions that e; = n/2 and k, = nk serve as a 
broad basis for discussion, the values of k, and ek in individual cases, especially for 
the first eleven or twelve harmonics which are of importance, may indeed stand to 
each other in very different relations. As an illustration of this, we may consider a 
few examples. The first is that in which the gravest mode of free vibration of the 
instrument is far higher in frequency than the gravest mode of vibration of the 
string, and has, say, exactly ten times its frequency. So far as the first ten 
harmonics are concerned, we may altogether neglect the influence of the modes of 
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free vibration of the instrument higher in frequency than the gravest. The values 
of tan $, for the first nine harmonics increase in proportion to the ratio n/(100 
- n2), and for the tenth is zero. The value of 6, similarly increases with n in the 
ratio n2/(100 - n2)2'if n < 10, and when n = 10, becomes very large. Since k, 
= nnTo/l[tan2 I/I, + 6,2]1/2, it is seen that is would increase at a vastly greater rate 
than in proportion to n, as we move up from n = 1 to n = 10. In the curves for the 
maintaining force calculated on this basis for any assumed type of motion and 
position of the bowed point, the first three or four harmonic components would 
be far less pronounced in comparison with the rest than in the curves found when 
k, is simply proportional to n. One obvious consequence of this would be that the 
critical pressure required for eliciting types of vibration in which the fundamental 
or octave is dominant, would be smaller than usual, and for those in which the 
higher harmonics are dominant, would be increased; so far from making it 
difficult to excite vibrations of the latter kind, this might, for some positions of the 
bowed point, actually make the production of such types of motion easier by 
increasing the difference between the critical pressures of alternative modes 
possible in any given case. An exception should however be made in respect of the 
extreme case of a type in which the tenth harmonic is dominant, as owing to the 
resonance of the instrument, this would require an unusually large force to elicit, 
and might thus actually be incapable of being realised in experiment. 

As another example, we shall consider the case in which the gravest period of 
free vibration of the instrument is graver than the fundamental period of the 
string, and the other periods are assumed to be so small that their influence on the 
first eleven or twelve harmonics is negligible. As an extreme case, we may take the 
period of the instrument to be infinitely long, that is, regard the bridge as having 
inertia subject to damping but without spring. The values of tan $, and 6, would 
then vary as l/n and l/n2 respectively. The value of k, would therefore actually 
decrease as n is increased. Since the amplitudes of the harmonics in the vibration 
are of the order l/n2, the magnitude of the higher components in the maintaining 
force would be negligibly small, the first three or four terms of the series being pre- 
eminent. The prominence of the first component would be even more marked, if 
instead of taking the free period of the instrument as infinitely long, we take it as 
only a little greater than, or actually equal to, the fundamental period of the 
string. For example, let the period of the instrument be 6 times the fundamental 
period of the string. The values of $, and 6, would then vary as n/(lOO - 121n2) 
and n2/(100- 121n2)2 respectively. It is obvious that k, would then be much 
greater than k2, k,, etc. This preponderance of the first component in the 
maintaining force would have an important influence on the possibility of certain 
types of motion under the action of the bow. For example, we may consider the 
case of a string bowed near one end. If the pressure of the bow be sufficient, we 
should get the first type of vibration in which the principal component is 
dominant, the motion at the bowed point being of the simple two-step zig-zag 
form. When the-pressure is reduced below the limit necessary for this type of 
vibration, the general theory leads us to expect that the motion would alter to the 
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second type of vibration in which the motion at the bowed point is of the four-step 
zig-zag form (see pages 292 and 293), or to one of the transitional forms inter- 
mediate between the first and the second types (see pages 324 to 327). But in the 
present case, the fact that k, is large leads to a difficulty. In order that a four-step 
zig-zag type of motion be possible at the bowed point, it is necessary that the 
frictional force should be equal, or nearly equal in the two stages at which slipping 
occurs. This, in its turn, is only possible when the second component (not the first) 
is prominent in the maintaining force. (This remark will be clearly understood on 
a reference to the last three pairs of curves in figure 21 on page 313). We see that 
under the conditions assumed, the only steady modes of vibration ordinarily 
possible would be those in which the first harmonic is either dominant or entirely 
absent. This remark is of importance, as will appear later when we consider the 
theory of cyclic vibrations. 

Other examples may also be furnished of the manner in which the values of the 
individual constants k,, k,, etc. may affect the sequence of the phenomena 
obtained by bowing at any given point on the string with varying pressures or 
velocities. For instance if k, is very large, it would require a considerable pressure 
to elicit the first type of vibration in which the fundamental is dominant, even 
when the bow is applied at a point far removed from the end of the string, e.g. 
between 112 and 113. We may then find, as an exception to the general rule stated 
on pages 327 and 328, that this is not the type which requires the smallest pressure 
to elicit within the range referred to. Similarly, a large k, would result in the 
octave being very prominent in the curves for the maintaining force, and we might 
find the sequences indicated for the range 112 to 113 in figure 15 on page 296 
entirely altered in such a case, especially in regard to modes of vibration involving 
complicated motions at the bowed point. 

Relation of bowing pressure to the tension, linear density and 
length of string 

From a musical point of view, the thickness of the string is a factor of great 
importance. Leaving aside the complications due to possible non-uniformity or 
imperfect flexibility of the string (which may be considered separately), the 
thickness of the string is principally of importance as it determines the linear 
density and therefore also the tension necessary for any given frequency of 
vibration. For purposes of comparison of the bowing pressures necessary, we 
may assume the length of the string and the frequency of vibration to be the same 
in all cases. For a given velocity of bowing, the amplitude of vibration would also 
be constant. The nth harmonic component of the maintaining force is propor- 
tional to k,, that is n7cTo/l[tan2 JI, + 6,2]'12. Since To is the tension of the string, 
and since tan lC/, and 6, are also proportional to To, the maintaining forces 
necessary are proportional to the square of the tension, that is, also to the square 
of the linear density of the string. This becomes intelligible when we remember 
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that the rate of emission of energy from the instrument is also proportional to the 
square of the tension or of the linear density. The use of heavy strings is thus 
indispensable for obtaining a powerful tone, and if we assume that the frictional 
coeficients are the same, the minimum bowing pressure required for any given 
type of vibration is also proportional to the square of the linear density. With 
strings of the same material, the linear density is proportional to the square of the 
diameter, and the bowing pressure necessary increases as the fourth power of the 
diameter. It is worthy of notice that the maximum possible area of contact 
between the bow and the string increases at a much smaller rate than the bowing 
pressure necessary, as the thickness of the string is increased. Further, as a thin 
string requires a much smaller bowing pressure than a thick one, a greater variety 
of vibration-forms would, in general, be possible with the former, within a given 
range of bowing pressures, than with the latter. 

Comparison may also be made of the bowing pressures necessary when the 
tension and length of the string are simultaneously varied in such a manner as to 
retain the frequency of vibration unaltered. It is easily seen that under the 
conditions assumed, the amplitude of vibration remains constant, provided the 
velocity of the bow and the relative position of the point at which it is applied, are 
the same in all cases. The frequency being constant, the tension necessary varies 
as the square of the length of the string, and the bowing pressure necessary is also 
proportional to the square of the length of the string. 

The manner in which the bowing pressure necessary for the maintenance of the 
motion varies when the frequency of vibration is altered by changing the tension 
or length of the string, cannot however be expressed in such a simple manner as in 
the preceding cases. Taking, for instance, the case in which the frequency is aftered 
by varying the tension of a string of constant length, the expression for the bowing 
pressure is seen to consist of two factors, one of which increases continuously with 
the tension, and the other fluctuates between a series of maxima and minima. As 
the frequency increases, the amplitude of vibration for a given velocity of bowing 
falls off, being inversely proportional to the square root of the tension; but the 
values of constants k,, k,, etc. contain a factor proportional to the square of the 
tension. The bowing pressure therefore contains a factor proportional to T;I2 
which increases continuously as To is increased. The other factor depends on the 
relation between the frequencies of the impressed vibration and the natural 
frequencies of resonance of the instrument. For example, if the instrument has 
only one free period of vibration, one of the factors which determines the bowing 
pressure has a series of maxima corresponding to the cases in which the first, 
second, third or higher harmonic has the same frequency as the free vibration of 
the instrument. The bowing pressure necessary, if plotted as a function of the 
frequency of vibration, should then show a series of maxima and minima. the 
highest value being reached when the frequency of the principal component in the 
forced vibration of the string is the same as that of the free vibration of the 
instrument. If the instrument has more than one free period of vibration, the 



variation of bowing pressure with frequency would be determined by the relation 
of the impressed frequencies of vibration to the frequencies of all the free periods 
of vibration of the instrument. In general, we should expect the pressure- 
frequency curve to show a series of maxima and minima, the most important 
maxima corresponding to the frequencies of resonance of the instrument to the 
dominant harmonic in the vibration. Superposed on these maxima and minima, 
we should expect to find a tendency of the bowing pressure necessary tbincrease 
continuously as the tension is increased. Similar results should be obtained when 
the frequency of vibration is altered by decreasing the length of the string, both 
the tension and the ratio in which the bowed point divides the string being 
retained constant. 

Effect of muting on the minimum bowing pressure 

The next question to be dealt with is the effect of muting or otherwise loading the 
mobile parts of the instrument upon the periodic vibrations elicited by the bow. 
The addition of mass represented by the mute results, of course, in an alteration of 
the constants of the instrument relevant to our present investigation. The free 
periods of the instrument are all increased. It is obvious that this would 
profoundly influence the character of the forced vibration of the body of the 
instrument and therefore also its reaction on the string. We have also to consider 
the alteration in the modes of vibration of the various parts of the instrument 
produced by the load. The point at which the mute or other load is added tends to 
become a node, or point of rest, so far as the modes of higher frequencies are 
concerned; on the other hand, the point loaded would tend to become a point of 
maximum vibration for the gravest mode or modes. The contiguity or otherwise 
of the load and of the point on the bridge over which the string passes, is thus a 
matter of some importance. Considering the bridge, belly and the air enclosed in 
the instrument as a single dynamical system, we may use the Lagrangian 
equations of motion to investigate the alteration in its forced vibrations 
produced by the load. 

Let 4,, 4,, 4,, etc. be the normal coordinates of the system, and a , ,  a,, etc. be 
the normal force-components corresponding to a particular harmonic in the 
force exerted on the bridge by the vibrating string. As the result of the addition of 
the load, 4,, 4,, etc. are no longer the normal coordinhtes, and we may write the 
kinetic and potential energies of the system in the formZ0 

20 Cf: Routh's Advanced Rigid Dynamics, Sixth Edition, Secs. 76 to 78, and Lord Rayleigh's lheory oJ 
Sound, Second Edition, Art. 92(a), where the effects of addition of inertia or constraints on thefree 

Footnote (contd. on p. 352) 
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The Lagrangian equations for the forced vibration are 

+ ~ 2 1 4 2  + f2aA2(f 14 1 + f 2 4 2  + . . .) = a2 
etc. etc. 

Multiplying the first equation by f,/(a,A2 + c,), the second equation by f2/  

(a2A2 + c,) and so on, and then adding the results, we find 

Since$a(fl 4, + f242 + etcJ2 is the kinetic energy of the load, a being its mass, its 
forced vibration is given by ( f,4, + f24, + etc.). Writing A2 = - m2 and dividing 
out by the product a,a,a,, etc., the preceding expression reduces to 

(P, fl/a, .(n$ - m2)(n: - m2), etc. + similar terms 
(n: - m2)(ni - m2), etc. - am2[ f :/al(n,2 - m2)(ni - m2), etc. + . . .] 

where n1/2a, n2/2n, n3/2a, etc. are the natural ffequencies of the system in 
ascending order of magnitude before the addition of the load. The forced 
vibration for any given frequency of the impressed force is thus inversely 
proportional to the magnitude of the expression (n: - m2)(n: - m2), etc. 
- am2[ f :/a,.(n$ - m2)(n: - m2), etc. + . . . .] which when put equal to zero gives 
also the equation for the free periods of the system as altered by the load. We may 
readily trace the effect of increasing the mass a of the mute from zero to any 
desired value, upon the value of this expression (say A), and therefore also upon 
the amplitude ofthe forced vibration. Taking first a case in which the frequency of 
the impressed force is smaller than the smallest natural frequency of the system 
(m < n,), it is seen that both terms in A are positive, and their difference must 

vibrations of a system are discussed. Strictly speaking, since the kinetic energy of a particle of mass a is 
fa(x2 + y2 + z2), the addition to the kinetic energy of the system should be represented by three terms 
thus: 

However, for the sake of simplicity in interpreting the results, we assume (following Routh) that the 
addition to the kinetic energy consists of only one term of this type. This would be quite correct if the 
displacement of the particle due to variations of the coordinates 4,, 4,. etc. were all in the same 
straight line, and in any case may be regarded as sufficient for our present purpose. Lord Rayleigh has 
discussed the general theory for the free vibrations when the addition to the kinetic energy consists of 
any number of terms less than the number ofdegrees offreedom of the system. It may be remarked here 
that the effect of the sound-post of the violin could probably be regarded as equivalent to that of a 
geometrical constraint imposed on the vibrations of the sides of the sound-box, and ifthis is the case, the 
effect could be discussed mathematically in a simple manner. 
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therefore gradually diminish as a is increased, till for a particular value of a, it 
vanishes altogether. With subsequent increases of a, A changes sign, its numerical 
value becoming larger and larger. The effect of the load is thus, at first, to increase 
the forced vibration, till a stage is reached at which the latter becomes very large. 
This occurs when the frequency of the impressed force is the same as the lowest 
natural frequency of the system as altered by the load.,' With a further increase in 
the load, the forced vibration diminishes, finally vanishing when the load is very 
large. 

We may next consider a case in which the frequency of the impressed force lies 
between two of the natural frequencies of the system. The result of the load is to 
decrease the natural frequencies of the system, and it is a well known result (which 
is easily deduced from the equation for free periods) that, whatever be the 
magnitude of the load, the altered frequencies form a series separating the original 
frequencies of the system, Thus, if 

N1/2n, N2/2n, N3/271, etc. 

be the natural frequencies of the system as altered by the load (assumed to be very 
great), the quantities 

form an ascending scale of magnitudes. (N, is practically zero if the load be very 
large). The sequence of changes in the forced vibration due to a gradual increase 
in the load is sufficiently illustrated by considering a case in which n,  < m < n,. 
This has to be sub-divided into two categories (a) [n ,  < m < N,]  and (b) [N, < 
m < n,]. In the category (a), the determinant A is negative throughout, and 
increases numerically as the mass a of the load is increased. The effect of the load 
is thus to diminish the forced vibration throughout. In the category (b), A is 
negative when a iszero, and decreases numerically as a is increased, becoming 
zero for a particular value of the latter. For larger values of a, A is positive. The 
effect of the load in the second category of cases is thus to increase the forced 
vibration up to a certain stage at which it becomes very large, subsequent 
additions of load decreasing the forced vibration, till it finally vanishes in the limit 
when the load is large. The difference between the two categories is that in the 
former, the frequency of the impressed force does not, for any load, coincide with 
a natural frequency of the system. 

So far, we have only considered the forced vibration of the system at the 
particular point at which the load is fixed. For our present purpose, it is necessary 
to know also the effect of the load on the forced vibration of the other parts of the 

"Of course, in such a case, the equations would have to be modified so as to take the dissipation of 
energy into account. 
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system, particularly the point at which the string passes over the bridge. [This, of 
course, need not be the same point as that at which the load is fixed]. The motion 
of the system is fully defined by the coordinates 4,, 4,, etc., though these are not 
the normal coordinates when the load is attached to the system. The values of 4,, 
4, etc. may be found by eliminating (f141 + f24, + ..) from the Lagrangian 
equations of motion.22 

We obtain as the result, 

A4, = @.,/a,-(n; - m2)(ni - m2), etc., 

+ am2/al.[f2/a2(fi@2 - @, f)(n: - m2)(nt - m2), etc., 

+ f3/a3(fl@3 - 01f3)(n; - m2)(nt - m2), etc., 
+ . . . .], 

and analogous expressions for A&, etc. Writing the transverse yielding of the 
string at the bridge in the form (r, 4, + r24, + etc.), we find @, = r ,  E cos mt, 
0, = r2E cos mt, and so on, where E cos mt is the periodic transverse force 
exerted by the vibrating string. If the point at which the load is fixed coincides 
with that.over which the string passes, fl/rl = f2/r2 = f3/r3 = . . . . , and we have 

121n the particular case in which the impressed force acts on the system at the point at which the load is 
fixed the effect of the latter on the forced vibration may be readily found from elementary 
considerations without the use of the Lagrangian equations, provided it is assumed that this point is 
capable of movement only in a single direction. (It might, for instance, be supposed that the load is 
fixed on a string, bar, membrane or plate, capable only of transverse vibration at the point of 
application of the force). If the forced vibration at this point is kE cos mt when the component of the 
impressed force rcsolved in the same direction is E cos mt and there is no load, we may write the forced 
vibration ask' E cos mt when a load ofmass a is attached to it. The alteration in the forced vibration is 
simply due to the reaction of the load, and we find at once that k' = k/(l- kam2). If k be negative, that 
is, if the forced vibration in the absence of any load at the drivingpoint be in a phase opposite to that of 
the impressed force, the effect of the load is to decrease the forced vibration in the ratio 1:(1 - kam2) 
which is the same at every point oJthe system. On the other hand, if k be positive, that is, ifthe vibration 
and the force at the driving point be in the same phase when there is no load, the effect of the load is, in 
the first instance, to increase the forced vibration of every part of the system in the ratio 1:(1 - kam2). 
When the load is such that kam2 = 1, the forced vibration is very large, showing that at this stage the 
frequency of the impressed force coincides with a natural frequency of the system as altered by the 
load. Subsequent additions of load result in a continuous decrease of the forced vibration at every 
point of the system which finally vanishes for a very large load. These results are exactly the same as 
those deduced from the general Lagrangian equations, and clearly show from elementary dynamical 
considerations that the addition of a load at a given point of a system cannot lower the natural 
frequencies in such manner that more thqn one of them falls from above to below any assigned 
frequency. This is practically Routh's theorem regarding the separation of the roots of Lagrange's 
determinant as altered by the addition of inertia to any part o fa  dynamical system, and affords a 
clearer view of the fundamental nature of this theorem. 
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( f l @ 2 - @ l f 2 ) = ( f l @ 3 - Q l f 3 ) =  ...= 0.From thisit follows - Ol/a1.(n: - m2)(n: - m2), etc., 

A42 = @2/a2.(nf - m2)(n: - m2), etc., 

and so on. 
In other words, each coordinate of the system is determined exclusively by the 

corresponding generalized component of force, and as the load is altered, the 
motion of every point on the system is affected in the same way, increasing or 
decreasing in inverse proportion with the determinant A, and vanishing when the 
load is increased indefinitely. A similar result would be obtained even if the point 
of attachment of the load is not the same as that over which the string passes, 
provided the ratios of the displacements at the two points due to variations of the 
coordinates are all identical, that is iff ,/r1 = f,/r2 = . . . . . . . . In general, however, 
if the two points are not coincident, these quantities would not be identical, and 
an addition of load would not alter the forced vibration at different points of the 
system in the same proportion. The forced vibration would not also vanish when 
the load is increased indefinitely; for u (the mass of the load) appears in the 
numerator as well as in the denominator of the expression for each of the 
coordinates. In such cases, the forced vibration as altered by the load may be 
considered as consisting of two parts. The first part alters with increasing load in 
inverse proportion to the value of A, (the determinant for free periods), and 
vanishes when the load is indefinitely increased. The second part alters with 
increasing load in the ratio a/A, and its changes would thus be somewhat similar 
to that of the first part, except that when u is very large, it does not vanish but 
reaches a finite limiting value. 

It is instructive to trace the effect of successive small changes in the load on the 
frequencies and modes of free vibration of the system and upon its forced 
oscillations. To a first approximation, the alteration in the free period of a normal 
mode produced by a small load is unaffected by the change of type which 
accompanies it,23 and may be readily calculated from the modified equations of 
motion by putting all the other coordinates equal to zero. For instance, with the 
preceding notation, the frequencies as altered by a small load u are given by the 
equations 

mf = cl/(al + u f :), mi = c2/(a2 + a f i) and so on. 

The alteration of free period is in each case determined by the increase in the 
kinetic energy of the system due to the addition of load. This furnishes us with a 
simple quantitative method for exploring the motion of the system, and determining 
the ratio of the amplitudes of its vibration at different points in each of the normal 

Z3Lord Rayleigh's Theory of Sound, I, Art. 88. 
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modes. With larger loads, the alteration in the types of free vibration have an 
influence on the free periods which cannot be neglected. This is obvious at once 
on comparing the approximate values of the frequencies found as above (all of 
which become infinitely small when a is increased indefinitely), with those given 
by the equation A = 0, the roots of which, according to the well-known theorem 
due to Routh, all remain finite (except the smallest), when the load is increased 
indefinitely. It is possible to find the normal coordinates of the loaded system by 
the general method of transformation. (see, for example, Routh's Advanced Rigid 
Dynamics, section 56). But a more instructive method is that used by Lord 
Rayleigh (Theory of Sound, I, Art. 90). The normal vibrations of the system in the 
absence of any load correspond to a variation of but one of the coordinates 4,, 
+,, 4,, etc. at a time. The alteration of any one of these types produced by the 
addition of a small load may be expressed by superposing small synchronous 
variations of the other coordinates upon that of the principal coordinates 
involved. For example, the principal vibration given by the coordinate 4, as 
modified by a small load a would involve also small variations in the coordinates 
$,, d,, etc. the magnitudes of which are given by the ratios 

42/41 = n:l(n: - n:) x af1f2la2 

43/41 = n:/(ni - n:) x ci f, f,/a, and so on. 

The modification of the natural types produced by the load may become very 
important in some cases. For instance, if the vibration corresponding to the 
coordinate 4, involves large displacements at the pointaof attachment of the load, 
and its frequency does not differ much from that of the vibration $,, the latter as 
modified by the load would involve also large synchronous variations of 4,. 
When the load is large enough to depress the pitch of the normal vibration in 4, 
sufficiently, the two principal vibrations may even completely interchange their 
characters. Examples of this will be referred to later. In fact, when the load is 
sufficiently great, the gravest modes of vibration are those involving large 
displacements of the point at which it is attached, and similarly the higher modes 
are those which involve little or no displacement of this point. This is a feature 
which is of importance in reference to our present investigation. 

It has been stated above that the effect of the load on the forced vibration is in 
some cases to increase it, and in other cases to decrease it, and that in the 
particular case in which the load is very large and it is fixed to the system at the 
point of application of the force, the forced vibration vanishes. It may now be 
shown that, in general, the effect of a moderate load is to increase the forced 
vibrations of graver pitch, and to diminish those of higher pitch. This is a 
consequence of the fact that a dynamical system such as that with which we are 
now concerned has a number of free periods which form a series, and that a 
moderate load fixed at any given point is sufficient to make the pitch of the higher 
modes of vibration approximate to their limiting values, or at any rate pass the 
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first stage in which the effect of the load is to increase the forced vibration. This 
may be proved in the following manner. The kinetic energy of the system in the 
absence of any load may be written in the form 

+a,& + +a2$; + $a3& + etc. 

For any actual system (such as a violin) composed of bars and elastic plates, the 
quantities a,, a*, a,, etc. are all of the same order of magnitudes. From this fact 
and the approximate formula given previously, it follows that a given small load 
would lower the frequency of one of the higher modes by roughly about the same 
interval as it would in the case of one of the graver modes. The absolute lowering 
of the frequency would thus be much greater in the former case. By Routh's 
theorem, the maximum permissible lowering is equal to the difference of the 
frequencies of the given mode and that of the one next below it. If, as is generally 
the case with the higher modes, this difference is not large, a small load would be 
sufficient to make the frequency approximate to its limiting value, or at any rate 
pass the stage up to which the forced vibration is increased in amplitude. 

From what has been said above, it is clear that the effect of a mute is to increase 
the yielding of the bridge and the dissipation of energy for vibrations of low pitch, 
and to decrease them for vibrations of high pitch. When the string is excited by 
bowing, the effect of the harmonic components of the force exerted by it on the 
bridge, would be variously influenced by the mute, according to the frequency of 
each. If the pitch of the fundamental vibration of the string is sufficiently high, the 
mute would decrease the forced vibration of the instrument, and the bowing 
pressure necessary for exciting the string would be reduced. On the other hand, if 
the pitch of the fundamental is sufficiently low, the effect of the principal 
components of force would be increased by the mute, and the bowing pressure 
necessary would be increased. The constants k,, k,, k,, etc. expressing the relation 
between the periodic forces exerted by the bow and the vibration of the string 
maintained by it, would be profoundly modified by the action of the mute, and the 
possible influence of this on the modes of vibration of the string excited by the 
bow may be discussed as in the preceding pages. 

Relation between bowing pressure and speed 

From equations (22) and (25) given on pages 298 and 299 respectively, it is easy to 
see the relation between the amplitude of vibration of the string (as determined by 
the speed of the bow) and the minimum bowing pressure necessary for cliciting 
any given type of vibration. When the speed of the bow increases, the amplitudes 
of the harmonic components of the vibration in the given mode increase in 
proportion. From (22) and (25), we find accordingly that 

p 4 S'vIl/(~ - PA) 
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where P is the pressure required to excite the given type of vibration, S is a 
constant depending upon the type and the point of application of the bow, v, is the 
velocity of the bow, and (p - pi) is the difference between the statical and 
dynamical coefficients of friction. If (p - pA) be independent both of the pressure 
and the speed of bowing, the minimum bowing pressure necessary is proportional 
to the speed of the bow. If, however, (p - p,) depends on the velocity of slip, this 
result does not hold good, and in the particular case in which the difference 
between the statical and dynamical coefficients of friction is proportional to the 
velocity of slip at which the latter is measured, the minimum bowing pressure is 
actually independent of the velocity of the bow. In practice, it may be expected, 
the truth lies between the two extremes. As remarked earlier, the 
property of an efficient generator such as rosined horse-hair is that the friction 
diminishes with increasing velocity, at first rapidly, and later more slowly. This 
may be represented graphically as in figure 28(a), the friction reaching a limiting 
value for large relative velocities. If we assume that the frictional force is 
proportional to the pressure, in other words that the frictional coefficient depends 
only on the relative velocity, the graphical relation of the type shown in the figure 
may be approximated to by an analytical expression of the form 

Relative velocity 

-- 

Speed of  the bow 

Figure 28 
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where po and v, are constants, and v is the relative velocity. For any given type of 
vibration, the relative velocity during the stages of slipping at the bowed point is 
proportional to the speed of the bow. Writing v = rv,, where r is a number, the 
minimum bowing pressure is given by the formula 

This is shown graphically in figure 28(b). For large bowing speeds, the bowing 
pressure necessary practically varies as the speed; but for smaller speeds, the 
pressure required is greater than in proportion to the speed of the bow or the 
amplitude of the maintained vibration. For very small speeds, the pressure 
required would, as seen from the graph, converge upon a finite limiting value. 
This limit is easily shown to be given by 

and is very small if the 'decay' of the friction from the statical to the limiting 
dynamical value be sufficiently rapid. 

1 - exp(- v,.rv,)(l - v,.r/v,) 
dP/dv, = S/po. 

(1 - exp (- ~, .r /v,))~ 

From this, it follows that 

Lt - = S/2po and 
(:v:) 

The preceding discussion is based on the assumption that the speed of the bow 
is not so large that the resulting vibration exceeds the limit for which the theory of 
"small" oscillations is applicable. We now proceed to consider the effect of 
increasing the amplitude of vibration beyond this limit. 

Effect of large amplitudes 

The question arises whether a finite amplitude of vibration has any effect on the 
frequency of a bowed string, and in what manner, if any, the finiteness of the 
motion influences the mode of vibration of the string and of the instrument. This 
may be considered in the following way. Assuming the motion under the action of 
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the bow to be periodic and of the form 

the finiteness of the coefficients B,, B,, etc. necessitates our considering certain 
terms of the second order in the forces acting upon each element of the string and 
upon its point of attachment to the bridge. The length of the string at any instant 
from x = 0 to x = I, is given by 

J: [l + (dy/dx)']lt2 dx = 1 + , ~/dx)'dx, (appx.) 
S:yd 

If the ends of the string have no longitudinal motion, the alterations in the length 
due to the finite amplitude of vibration would result in corresponding hlterations 
of the tension. These may be of considerable importance if (as is generally the 
case) the modulus of extension of the string be a large quantity in relation to its 
tension when at rest. It is seen that there is a non-periodic increase of tension 
proportional to Cn2B:, and there are also periodic changes of tension. The 
influence of these alterations of tension upon the forced vibrations is readily 
found by analogy with the case of a simple vibrator executing forced oscillations 
of large amplitude. The equation of motion of a symmetrical vibrator under 
periodic forcing is 

u 4 kti + (n: + fiu2)u = E cos mt. 

If we write the solution of this in the form 

u = A, sin mt + B, cos mt + A, sin 3mt + B, cos 3mt + etc. 

it is found on substitution that to a first approximation 

where 

and is thus proportional to the square of the amplitude of vibration. It is evident 
from this that the effect of the term fiu2 in the expression for the restitutional 
coeficient is equivalent to an alteration in the natural frequency of the vibrator; 
instead of n: we have to write simply 



It should be remarked that the restitutional coeficient (nf + flu2) may be 
expanded and written jn the form 

P P n: + ,.(A: + B:) -,;.(A: + B:) cos 2@t + E )  

where 

= tan-' Al/Bl. 

It follows that the effect of the periodic variation in spring of double frequency 

[ - f (A: + Bf) cos 2(pt + E )  I 
is equivalent to a permanent increase in spring of half the amount 

in respect of the principal oscillation. Returning now to the case of the bowed 
string, it is obvious that the non-periodic increase of tension which is 

Young's modulus a 2  
x --xn2Bi 

Tension 812 

raises the natural frequencies of all the component vibrations and does not 
disturb their harmonic relation. The periodic part of the variation of tension is 

- Young's modulus x nZ 
- ~ n ' B ~ c ~ s ( ~ + Z ~ , ) .  4nnt 

Tension 812 

Each harmonic component of this periodic variation is equivalent to a further 
increase, namely, 

Young's modulus n2 n2B: x -.- 
Tension 81' 2 

in the tension of the string, but this increase, unlike the first, is effective only in 
respect of the particular (nrh) harmonic component of the vibration having half 
the frequency of the variation of spring, and not to all alike. This is readily seen on 
substituting the variable tension in the normal equation for free vibrations. Since, 
in the case of the bowed string, the amplitudes B, vary generally as l/n2, n2B,2/2 
also varies as l/n2, and the harmonic relation of the natural frequencies is thus 
disturbed. The frequencies of all the natural vibrations are raised, but those of the 
higher components to a lesser extent in proportion than in the case of the graver 
components. In practice, this would be probably set off to some extent by the 
effect of stiffness which raises the pitch of the higher components to a relatively 
greater extent. The general result however remains that the effect of a finite 
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amplitude of vibration is to raise the pitch of the bowed string, and also, to some 
extent, to throw the natural frequencies of the higher components out of the 
harmonic relation and thus to increase the forces required to be exerted by the 
bow for the maintenance of the motion beyond what would otherwise be 
necessary. 

That the vibration of a bowed string, ifof large amplitude, cannot remain as a 
free oscillation in the absence of the bow can be shown directly from geometrical 
considerations. Taking, for instance, the simplest type of vibration (figure 1 on 
page 261 in which the configuration of the string at any instant consists of two 
straight lines, the point of intersection of which travels on two parabolic arcs, it is 
obvious that the length of the string and therefore also the tension would be a 
maximum when the two straight lines intersect at the vortex of either parabola, 
and would be a minimum when the string passes through its position of 
equilibrium. The velocity of travel of the wave along the string cannot, in the 
circumstances, be uniform. This is inconsistent with the assumed type of free 
vibration. 

The periodic variations of tension in the string produced by a large amplitude 
may have an effect on the forced vibrations of the instrument. This will now be 
considered. 

Effect of the longitudinal motion of the bridge 

The periodic forces exerted by the vibrating string on the bridge at the point over 
which it passes may be resolved into two sets of components, one set transverse to 
the string and the other set parallel to the string. The magnitude of these forces 
and their generalized components may readily be calculated. To being the 
stationary value of the tension of the string, the tension at any given instant may 
be written in the form To + 6T0. If the string at the bridge makes an angle 8 with 
its position of equilibrium, the force exerted by it may be resolved into two 
components (To + 6To) cos 6 and (To + 6T0) sin @ respectively parallel and trans- 
verse to the string. The transverse force may to a sufficient approximation be 
written simply as TOO and is thus of the first order of small quantities. The 
longitudinal component is 

(To + 6T0)(l - d2/2) 
and may be written as 

If Y be the modulus of extension of the string, lo its unstrained length, and Al0 the 
extension necessary to give it a tension To, the length of the string in the position 
of equilibrium is 

lo + Al, = 1, (say). 



If 1 + 61 be the actual length of the string at the given epoch during the vibration, 
we may write 

Longitudinal force = Y(Alo/lo + 61/1, - t?2A1,/210). 

Of the three terms within the brackets, only the second and the third include 
periodic quantities. The deflection of the string from its position of equilibrium 
produces an increase of length, and in the preceding sub-section, 61 has already 
been calculated on the assumption that the bridge has no motion parallel to the 
string. It is of the order 0210, and 61/1, is thus of the order 02. The third term 
82A10/210 is therefore of a smaller order of quantities than even the second term 
which is itself proportional to the square of the amplitude of vibration of the 
string. It is thus seen that the only part of the periodic longitudinal force which is 
sensible is that due to the fluctuation of the effective length of the string when in 
vibration. If q be the longitudinal motion of the bridge, we may write 

and the longitudinal force = F61/1. 

In finding the generalized components of force corresponding to the normal 
modes of vibration of the instrument, and the transverse periodic components, of 
the tension, we are only concerned with the motion of the bridge transverse to the 
string. Similarly in finding the generalized components of the longitudinal forces, 
we are only concerned with the longitudinal motion of the bridge. If the principal 
normal modes of vibration of the body of the instrument do not involve any 
longitudinal motion of the bridge, the effect of the longitudinal components of 
force may be ignored. In any case, these components are of the second order of 
smallness in magnitude and can be ignored if the amplitude of vibration of the 
string be sufficiently small. In special circumstances, however, they may attain 
some importance. The periodic part of the longitudinal force depending on the - 
vibration of the string is of double its frequency, and if one of the frequencies of 
resonance of the instrument is of suitable value, the string may succeed in forcing 
an appreciable vibration of double its own frequency. As remarked in the 
preceding sub-section, the periodic variations of tension in the string vibrating 
with finite amplitude may also appreciably influence the frequency of its 
excitation by the bow and the magnitude of the force required to maintain the 
motion. 
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String 

Plate I. Simultaneous vibration-curves of belly and G-strings of violoncello at the "wolf-note" pitch 
showing cyclical changes. 
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Plate 111. Simultaneous vibration-curves of belly and G-string of violoncello at 264 vibration 
second, showing cyclical changes. 

Belly 

String 

Per 
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Frequency of 

G-string bowed. 
f of Wolf-note. 

D-String bowed. 

t of Wolf-note. 

Wolf-note. 

A-String bowed. 

360 per sec. 

E-String bowed. 

296 per sec. 

G-string bowed. 

$ of Wolf-note. 

100 per sec. 

Wolf-note. 

D-String bowed. 

184 per sec. 

233 ,, ,. 

Plate IV. Resonance-curves of belly of violoncello. A. Without any load on the 
frequency 176 vibrations per second. B. With a load of 40.4 grammes fixed on t 

note" frequency 137 vibrations per second. 

bridge: "Wolf-note" 
op of bridge. "Wolf- 



G-string Bowed. D-String Bowed. 

Without load. 

With load of 1 
grammes fixed 
top of bridge. 

Ditto; fixed on 
foot of bridge. 

Ditto; fixed on I 

foot of bridge. 

left 

Plate V. Simultaneous vibration-curves illustrating effect of loading the 
horizontal motion transverse to the strings (observed at the G-st 

r violin bridge ( 

ring corner). 



A-String Bowed. E-String Bowed. 

Without load. 

With load of 17 
grammes fixed on 
top of bridge. 

Ditto; fixed on left 
foot of bridge. 

Ditto; fixed on right 
foot of bridge. 

Plate VI. Simultaneous vibration-curves illustrating effect of loading the bridge on its horizontal 
motion transverse to the strings, (observed at the G-string corner). 
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Bowed and 
observed at 
L13.26 

Low pressure. 

Higher pressure. 

L13.52 

Low pressure. 

Higher pressure. 

Ll4.23 

with 

successive 

increments 

of pressure. 

L13.73 

Low pressure 

Ditto. 

High Pressure. 

Plate VII. Modified two-step zig-zag vibration-curves at the bowed point, showing the practical 
constancy of the velocity ofascent with the bow, and the variability of the velocity of descent against 

the bow. 
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Bowed and 
observed at 
L14.50 

Low pressure. 

High pressure. 

High pressure. 

Low pressure 

with two 
different 
pressures. 

with three 

different 

pressures. 

'late VIII. Modified two-step zig-zag vibration-curves at the bowed point, sh! 
:onstancy of the velocity of ascent with the bow, and the variability of the velocit! 

the bow. 

ing the practical 
~f descent against 
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Bowed and 
observed at 
L13.26 

Ll4.23 

with three 

different 

pressures. 

LjlS 

with three 

different 

pressures. 

Plate IX. Modified four-, six-, and eight-step zig-zag vibration-curves at the bowl 
the practical constancy of the velocity of ascent with the bow, and the variability 

descent against the bow. 

point, showii 
r the velocity 
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Bridge. 

D-String bowed, 
frequency 360 
vibrations per sec. 

Bridge. 

D-String bowed, 
frequency 360 
vibrations per sec. 

Bridge. 

D-String bowed, 
frequency 240 
vibrations per sec. 

Bridge. 

D-String bowed, 
frequency 240 
vibrations per sec. 

Plate X. Simultaneous vibration-curves of the bridge and D-string of a violoncello, showing cyclical 
changes at frequencies other than that of the "wolf-note". 

* 



Observed at L/ 10. 
Bowed 

Ll2.00 

Plate XI. The first type of vibration: its rational and transitional modifications. 



Observed at LjlO ' 

Bowed at 

LJ4.00 

Plate XII. The first type of vibration: its rational and transitional modifications. 
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Plate XIII. The first type of vibration: its rational and transitional modifications. 



Observed at Lj15 

Bowed at 
Ll5.22 

L15.35 

with 

different 

pressures. 

i 

\ 

Ll5.49 

with 

b 

different 

pressures. 
I 

Ll5.8 1 
with 
different 
pressures. 

L16.50 
with 
different 
pressures. 

Plate XIV. The first type of vibration: its rational and transitional modifications 
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Bowed at 

LJ2.11 

Plate XV. The second type of vibration: its rational and transitio~ nal modifications. 

rly. 



Observed at L/15 

Bowed at 

L12.35 or  3 L/7 

L/20 

with 

different 

pressures. 

Plate XVI. The second type of vibration: its rational and transitional modifications. 



Observed al L/15 

Bowed at 

L12.86 

L12.8 1 

L12.76 or 4 L/l l 

L,'2.72 

L12.68 or 3 L/8 

Ll2.64 

L12.58 

Ll2.51 or 2 L/5 nearly 

L12.40 

L12.35 or 3 Li7 nea~ly.  

Plate XVII. The third (negative) type of vibration: its rational and transitional modilications. 



Observed at L'15 

Bowed at 

Ll3.15 

L!3.54 or 2 L!7 nearly. 

Plate XVIII. The third (positive) type of vibration: its rational and transitional modifications. 
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Observed at L/l5. 

Plate XIX. The fourth type of vibration: its rational and tran 

LJ4.69 

LJ4.53 

L14.48 or 2 L/9 nearly 

L13.62 

isitional modifications. 
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Observed at L/15. 

With a two-step 
motion at the bc 
point. 

with a four-step 
yqtiop at the bo 
polnt. 

I 

I ' 

zig-zag 
 wed 

zig-zag 
wed 

Bowed at 
Ll3.52 or : 

L12.07 
with 
different 
pressures. 

L12.14 
with 
different 
pressures. 

Plate XX. The fourth type of vibration: its rational and transitional modifications. 
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Bowed at 

L15.47 

L16.55 or  
nearly 2L/13 

The fifth type and 
its modifications. 

nearly 5L/13 

nearly 5L/12 

The sixth type of v. 
with approximately 
step zig-zag motion 
bowed point. 

Ditto with a four-st 
zig-zag motion at b 
point. 

Ditto with complica 
motion at bowed pc 

ibration 
' two- 
I at 

eP 
owed 

Plate XXI 



Observed at Ll15. 

Plate XXII. The seventh and eighth types: their rational and transitional modifications. 
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Plate XXIII. Simultaneous vibration-curves of the bridge and G-string of a 'cello (plucked). 
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Slightly below 
'Wolf-note' 
pitch. 

At the 'Wolf-note' 
pitch, showing the 
rapid dissipation of 
energy. 

Ditto, and the beats 
in the motion of the 
bridge. 

Plate XXIV. The simultaneous vibration-curves of the bridge and G-string of a 'cello (plucked). 



Plate XXV. Cyclical vibrations of G-string and bridge of 'cello near 'wolf-note' pitch, showing the 
differences in lag. 



Frequency 
157 vibrations 
per second. 
Bowed near 
one end. 

Frequency 
165 vibrations 
per second 
Bowed at distance of 
two-fifths 
of length from 
one end. 

Plate XXVI. Cyclical vibrations of G-string and bridge of 'cello near the 'wolf-note' pitch. 


