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1. Introduction 

In part I' of this series of papers, a theory of the diffraction of light by high 
frequency sound waves was developed starting from the simple basic idea that the 
incident plane waves of light, after transmission through the medium traversed by 
the sound waves assume a corrugated form, owing to the fluctuations in the 
density and consequently also in the refractive index of the medium. The Fourier 
analysis of the emerging corrugated wave-front automatic all^ gives the diffrac- 
tion effects observed when the emergent waves are brought to focus by the lens of 
the observing telescope. The results deduced from the theory gave a gratifyingly 
satisfactory explanation of the observations of Bar3 regarding the changes in the 
diffraction pattern when the supersonic intensity, the wavelength of the incident 
light and the length of t'he cell are varied. 

In part IIZ, we extended the theory to the case of the oblique incidence of the 
light on the sound waves and were successful in explaining the variations of the 
diffraction effects reported by Debye and Sears4 as the angle of obliquity is varied. 

In parts I and 11, we deliberately ignored the variation of the refractive index 
with time in order to bring out the essential features of the theory without 
unnyessary complications. Inthis the third part of the paper, we proceed to take 
this factor also into consideration. It will be shown that light diffracted by 
progressive sound waves exhibits Doppler shifts of a very simple type. In the case, 
however, of the diffraction of light by standing sound waves in a medium, we get 
the much more interesting result th@t in any even order, radiations withfrequencies 
v f 2 rv* would be present where v is the frequency of the incident light, v* is the 
frequency of sound in the medium and r is any integer and that in an odd order, 
radlations with frequencies v f 2r + 1 v* would be present. This implies that any 
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pair of even orders or odd orders can partly cohere and that an even order and an 
odd one are incoherent. This latter result has already been arrived at by Bars 
purely by his experimental investigations. The remarkable results of Bar in the 
field of supersonic research thus find a natural explanation in terms of our theory. 

It should be, however, noted that the theory developed in the following is 
subject to the same limitations as those in the previous parts, viz., that the depth 
of the cell is not too great to permit the form of the emerging wave-front to be 
deduced in the simple manner indicated in part I. A more general consideration of 
the problem will be presented in a later communication. 

2. Doppler effects due to a progressive sound wave 

Let us suppose that the progressive sound wave travels in a direction parallel to 
the X-axis perpendicular to two faces of a rectangular vessel containing some 
homogeneous and isotropic medium. We use the same notation and the axes of 
reference as in our earlier paper. When the sound wave travels in the medium, the 
density of the medium and its refractive index undergo pfriodic fluctuations. If 
the sound wave is a simple one, we could assume that the variation of the 
refractive index at a point in the medium is given by 

Cl(x, t) - po = p sin 2n(v*t - x/A*) (1) 

where p(x, t) is the refractive index of the medium at a height x from the origin at 
time t, po is the refractive index of the medium in its undisturbed state, p is the 
maximum variation of the refractive index from p0 and v* and d* refer to the 
frequency and the wavelength of the sound wave in the medium. 

Let the light wave be incident along the Z-axis perpendicular to two faces of the 
medium and the direction of the propagation of the sound wave. If the incident 
light wave is given by 

exp [2nivt] 

it will be 

exp [2niv{t - Lp(x, t)/c)] 

when it arrives at the other face where L is the distance between the two faces. 
The amplitude of the corrugated wave at a point on a distant screen parallel to 

the face of the medium from which light is emerging, whose join with the origin 
has its x-direction-cosine 1 depends on the evaluation of the diffraction integral 

L'12 exp [2zi{lx - pLsin 2R(v*t - x/A*))/A]dx 

where p is the length of the beam along the X-axis. The real and the imaginary 



I parts of the diffraction integral (2) are 
PI2 

(cos ulx cos (v sin bx - E )  - sin ulx sin (v sin bx - e))dx 
I P l 2  " (3)  

l and 

PI2 

I p 1 2  
{sin ulx cos (v sin bx - E )  + cos ulx sin (o  sin bx - 8 ) )  dx 

where 

u = 2n/rl, b = 2n/rl*, v = 2npL/3, and E = 2nv*t. 

I Putting bx - E as x' we could write the integrals* (3)  as 

I and 
bp/2  - e i $ J2.(d 1 sin ( ~ l  F) cos 2rx' dx' 
- b p / 2 - e  

*The clash over the summation sign indicates that the coefficient of the first term has to be 
mbltiplied ,by half. 
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and 

Integrating and combining the real and the imaginary parts (4a) and (4b) we 
find that the amplitude depends on 

sin { (u l+  2rb)p/2) e-i2n + sin {(ul-2rb)p/2} $ J " ( ~ ) {  (ul + 2rb)p/2 (ul - 2rb)p/2 I 
a sin {(ul + 2r + 1 b)p/2} e-,z 

+ P x  0 ~ ~ r + ~ ( v ) {  - 
(ul + 2r + 1 b)p/2 

- sin {(ul - 2r + 1 b)p/2) eG 
(ul - 2r + 1 b)p/2 

where E = 2nv*t. We should remember that the amplitude function has the other 
time factor eZdM which has been taken out as a constant from the integrand of 
the diffraction integral. One can see that the magnitude of each individual term of 
(5) attains its highest maximum when its denominator vanishes. Also, it can be 
seen that when any one of the terms is maximum, all the others have negligible 
values as the numerator ofeach cannot exceed unity and the denominator is some 
integral non-vanishing multiple of b which is sufficiently large. When 

1 where n is a positive or a negative integer and 8 is the angle between the direction 
whose x-direction-cosine is 1 and the Z-axis. 

The wave travelling in the direction whose inclination with the incident light 
beam is sin- l (  - niv/ib*) is determined by 

having the frequency v - nv*, n being a positive or negative integer; when n is 
negative the direction of propagation of that order has positive direction-cosines 
with respect to the directions of the propagation of the sound and light waves. 
Consequently the radiations in the different orders will be incoherent with each 
other. (See figure 1 . )  



Figure 1 

The relative intensity of the mth order to the nth order is given by the 
expression 

identical with the one given in part I, 

3. Doppler effects due to a standing sound wave 4 

In the case of a standing wave produced by the interference of two simple waves 
travelling in opposite directions parallel to the X-axis, we could assume that the 
variations of the refractive index at a point in the medium is given by 

I p(x, t) - pO = - p sin 2av*t sin (2nx/A*) (8) 
with the same notation as in the previous section. Under the same restrictions as 
in Part I, we find that the emerging wave-front is given by 

exp [Zniv {t - Lp(x, t)/c)] 

The diffr-action integral is then . 

PI2 

L P I 2  
exp [2ni (lx + pL sin E sin (2nx/A*))/A] dx 

where E = 2nv*t. 
The real and the imaginary parts of the integral (10) are 

{cos ulx cos (v' sin bx) - sin utx sin (v'sin bx) )  dx 
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and 
PI 2 1- p,2 

{sin ulx cos (v' sin bx) + cos ulx sin (of sin bx)) dx 

wbere 

u = 2n/A, b = 2n/A*, of = v sin s = (2npL sin &)/A. 

Following the same procedure as in our earlier paper, we find that the real part 
of the diffraction integral (10) is 

a sin [(ul+ 2rb)p/2] sin [(ul - 2rb)p/2] 
p z  J2,(v sin 2nv*t) 

o { (ul + 2rb)p/2 + (ul- 2rb)p/2 

sin [(ul + 2r + 1 b)p/2] 
' 

J2,+,(usin2nv*t) 

- sin [(ul - 2r + 1 b)p/2] 

(ul - 2r + 1 b)p/2 

The integral corresponding to the imaginary part of the diffraction integral is 
zero. 

Following similar arguments as in part I or in the previous section we can show 
that the wave travelling in the direction given by 

is 
f J,(v sin 2nv*t)ezniV' ( 1  1) 

I 

multiplied by a constant usually taken out from the diffraction integral. The wave 
given by ( 1  1 )  is not a simple one but is a superposition of a number of waves given 
by the Fourier analysis of J,(u sin 2nv*t) and multiplied by e2""'. 

Fourier analysis of J, (vsins): The well-known Neumann's addition theorem 
30 

Jo(&) = 2 C' Jm(Z) Jm(z) cos m$ 
0 

where 
cj= J (Z2+z2-2Zzcos4)  

has been generalised by Graf6 as 
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provided Ize It id1 < Z. If n is an integer, the inequality need not be in force. 
Putting 

Z P z = u/2 
and 4 = 2.9 

we get 

I From this, changing n to 2n we deduce that 
4 w 

Jzn(o sin E) = ( - 1 )" J, + 2n(v/2) ~ , ( ~ / 2 ) e - ~ ( ~ ~ + ~ " ~ .  - w 

Putting m = - n + r and after a little simplification, we get 

w 

Jzn(v sin e) = ( - 1)"J - ,(v/2)Jn(v/2) + 2 J -, +,(v/2)Jn + ,(u/2) cos 2 r ~  
1 

- = 2 ' ( - l)'Jn -,(v/2)Jn +,(v/2) cos 2re. c 
Similarly we can deduce that 

w 

J ~ . + L ( V S ~ ~ & )  = 2 F ( -  1YJ,,-r(v/2)Jn+r+l(~/2)sin2r + le 

' J,, -,(v/2)Jn +,(v/2) cos 2r.3 

Returning now to the Fourier analysis of the diffraction components, the 
diffracted waves can be resolved into a number of simple waves, for 

JZn(u sin 2~v*t)e~"'"~ 
ca - - e ~ n i v t  2 2  (- l)'Jn-,(v/2)Jn+,(v/2) cos (2r,2nv*t) 
0 

1 ( - I)* J (,,/2) J 
Iv/2) {e2~Y'+ 21'')' + e2nf(l'-'bl")' 

= n-r  n + x  
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and 
JZn+ l ( v  sin 2nv*t)eZnivt 

Thus in all even orders radiation frequencies 

v f 2rv*, r a positive integer, 

are present. The relative intensity of the v 2rv* sub-component in the 2nth order 
is given by 

5;- r(u/2)J,z+ ,(v/2). 

In all odd orders radiation frequencies 

v f 2r + 1 v*, r a positive integer, 

are present (see figure 2). The relative intensity of the v f 2r + 1 v* sub- 
component in 2n + lth order is given by 

J;-r(v/2)J;+r + 1 (~ /2 )9  

We can conclude from the above analysis that an even order and an odd one are 
incoherent while any two even or any two odd orders can partly cohere. Any two 
orders symmetrically situated to the 0th order are completely coherent. We have 
calculated the relative intensities of the various Doppler sub-components of the 
various orders as v ranges from 0 to 5 in steps of unity and represented them in 
figure 3. 

We may also note that the intensity of each of the sub-components of each 
order de~ends on the amplitude of the supersonic vibration, the length of the cell 
and the bavelength of thk incident light.- 

Figure 2 



DIFFRACTION OF LIGHT BY HIGH FREQUENCY S O U N D  WAVES - I11 591 

Figure 3. Relative intensities of the various sub-components o fIervab1e  orders; the sub- 
componentsof an odd order standing on a base correp&nd to ---, v - 2 r  + 1 @, ---, v - v*, v + v*, -- 
-, v + 2 r  + 1 v*, --- and those of an even order standing on a base correspond to ---, v - 2rv*, ---, v, 
-, v + 2rv*, ---. In the figure v = 5, some lowet orders are missing as their relative intensities are 

negligibly small. 

If we ignore the spectral character of each order, then the relative intensity of 
the mth ordex to the nth order is 

I 

So2' ~ : ( o  sin 0)d0 
2npL 

where o = - So2' J:(v a 

which follows from Paneval's theorm. 

4. Interpretation of Bar's experimental results 

BarS has recently investigated by an interference method the coherence of the 
diffraction components of light produced by a' standing supersonic wave. H.e has 
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found that the various orders could be classed into two groups, one comprising 
the even orders and the other comprising the odd orders and that any two orders 
of a group cohere partly while two orders from different groups are completely 
incoherent. These results are readily understood when we notice that an even 
order contains radiations with frequencies v -4 2rv* while an odd order contains - 
radiations with frequencies u f 2r + lv*. The experimental results of Bar are thus 
fully explicable in terms of the theory we have developed in the previous section. 
~ a r  has himself remarked that the observed coherence indicates the presence of a 
series of frequency components in each of ths diffraction spectra, It will be noticed 
that, according to our theory, even the zero-order spectrum includes such a series 
of frequency components. 

5. Summary 

The theory developed in part I of this series of papers has been developed in this 
paper to find the Doppler effects in the diffraction components of light produced 
by the passage of light through a medium containing (1) a progressive supersonic 
wave and (2) a standing supersonic wave. 

(1) In the case of the former the theory shows that the nth order which is 
inclined at an angle sin" (- nR/rl*) to the direction of the propagation of the 
incident light has the frequency v - nv* where v is the frequency of light, v* is the 
frequency of sound and n is a positive or negative integer and that the nth order 
has the relative intensity J,2(2npL/rl) where p is the maximum variation of the 
refractive index, L is the distance between the faces of the cell of incidence and 
emergence and R is the wavelength of light. 

(2) In the case of a standing supersonic wave, the diffraction orders could be 
classed into two groups, one containing the even orders and the other odd orders; 
any even order, say 2n, contains radiations with frequencies v f 2rv* where r is an 
integer including zero, the relative intensity of the v f 2rv* sub-component being 
J:.r(zpL/R) J,2+r(qiL/rl); and odd order, say 2n + 1, contains - radiations with 
frequencies v k 2r + lv*, the relative intensity of the v f 2r + lv* sub-component 
being J:-,(npL/R) J;+,+ l(npL/R). These results satisfactorily interpret the recent 
results of Bar that any two odd orders or even ones partly cohere while an odd 
one and an even one are incoherent. 
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