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Abstract. We provide explicit quantum circuits for the distributed measurement of Bell states in
the Hilbert space Cdn

, where d is qudit dimension. We discuss a method for generalizing this
to distributed measurements on any set of orthogonal states distributed among n parties. From
the practical viewpoint, we show that such distributed measurements can help lower quantum
communication complexity under certain conditions.
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INTRODUCTION

Entangled states play a key role in the transmission and processing of quantum informa-
tion [1, 2]. Using an entanglement channel [3], an unknown state can be teleported [4]
with local unitary operations, appropriate measurement and classical communication;
one can achieve entanglement swapping through joint measurement on two entangled
pairs [5]. Entanglement leads to increase in the capacity of the quantum information
channel, known as quantum dense coding [6]. The bipartite, maximally entangled Bell
states provide the most transparent illustration of these aspects, although three-particle
entangled states like GHZ and W states are beginning to be employed for various pur-
poses [7, 8]. Nonorthogonal states cannot be discriminated with certainty [9], while the
discrimination of orthogonal states are in principle possible. A large number of results
regarding distinguishing orthogonal states, shared between two or more parties, who
may hold one or more copies of the states, and whose communication is restricted to
local operations and classical communication (LOCC), have recently been established
[10, 11, 12, 13, 14].

We consider the different problem of discriminating between a set of orthogonal states
in which quantum communication between different parties is not excluded. The trivial
solution is for the qudits to be brought together and measured. Alternatively, they may
be separately brought in interaction with a common ancilla, which is then measured to
obtain the relevant information. We refer to such an act of measuring an observable W
of system A indirectly via an ancilla as ‘outsourcing’ of the measurement of W . In the
former case, a number of theoretical and experimental results already exist in the area
of unambiguous state discrimination [15, 16, 17, 18, 19]. A outsourced measurement
on many qudits is said to be ‘distributed’ when it is broken up into a sequence of
interactions between a common ancilla and qudits of the principal system, followed
by a final measurement on the ancilla.
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This work presents a general strategy for obtaining circuits that outsource and dis-
tribute measurements of (a generalization of) Bell states in Cdn

. The article is divided as
follows. In Section , we present circuits for distributing Bell state discrimination for n
qubits shared among n players, beginning with the case of conventional (2-qubit) Bell
states. In Section , this result is generalized to construct circuits for Bell state discrim-
ination among two or more qudits. We briefly point out the underlying mathematical
structure that clarifies how our proposed circuits work. In principle, this can be used
to further generalize our results of Section to distributed discrimination of any set of
orthogonal states. In Section , we examine a specific situation where such methods of
distributing measurements can be useful in computing and cryptography.

BELL STATE DISCRIMINATION IN C2n
HILBERT SPACE

In principle, any set of orthogonal states can be discriminated in quantum mechanics,
though LOCC may not be sufficient if the state is distributed among two or more players.
Here we start with a C2n

Hilbert space. To describe any state in this Hilbert space we
need 2n orthonormal basis vectors. The choice of the basis is not unique, but one choice
of particular importance is the set of maximally entangled n-qubit generalization of Bell
states given by:

|ψ+
x 〉 =

1√
2
(|x〉+ |x̄〉), (1)

|ψ−x 〉 =
1√
2
(|x〉− |x̄〉) (2)

where x varies from 0 to 2n−1− 1 and x̄ ≡ 1⊗n⊕ x in modulo 2 arithmetic. The set of
complete basis vectors (1,2) reduces to Bell basis for n = 2 and to GHZ states for n = 3.
As an example, setting n = 2 in Eq. (1,2) we get the usual Bell states

|ψ00〉= |ψ+〉 =
1√
2
(|00〉+ |11〉),

|ψ01〉= |φ+〉 =
1√
2
(|01〉+ |10〉),

|ψ10〉= |ψ−〉 =
1√
2
(|00〉− |11〉),

|ψ11〉= |φ−〉 =
1√
2
(|01〉− |10〉). (3)

A circuit to distribute measurement of the generalized orthonormal entangled basis
states (1,2) employing ancillas is shown in Fig. 1. To discriminate the members of
the entangled, orthonormal basis set in C2n

, we have to communicate and carry out
measurements on n ancillary qubits in the computational basis. The first measurement is
done on the state |RnA1〉, as shown in Eq. (4). This measurement determines the relative
phase between |x〉 and |x̄〉. It will give 0 for 1√

2
(|x〉+ |x̄〉) and 1 for 1√

2
(|x〉− |x̄〉). The
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FIGURE 1. Diagram depicting the circuit for distribution of generalized orthonormal qubit Bell state
discrimination. The first bounded box depicts an effective measurement of X⊗n, which yields the phase
bit value. The second and third boxes depict an effective, measurement of Z†⊗Z, which yields the relative
parity between two consecutive qubits. To obtain the full relative parity information, n−1 relative parity
measurements are required.

next measurement computes the parity between two consecutive bits and yields zero if
the bits coincide and one, otherwise. This follows from Eq. (5), which shows the state
for the complex of the system and the ith ancilla, where 2 ≤ i ≤ n. Each ancilla Ai is
sequentially interacted with the system and then measured. It can be shown (Section )
that this action leaves the states |ψ±x 〉 undisturbed. This means that the corresponding
measurements, Mi, represent commuting observables. In general, M1 gives the phase bit,
and Mi gives the parity of the string comprising of the ith and i+1th qubits.

In a way clarified below, M1 may be regarded as the distributed measurement of
X⊗n and Mi (2 ≤ i ≤ n) that of measuring Z(i− 1)⊗ Z(i), so that the simultaneous
measurability of any pair of Mi’s follows from the fact that [X⊗n,Z( j)⊗Z(k)] = 0 and
[Z( j)⊗Z(k),Z( j′)⊗ Z(k′)] = 0 where Z( j) is the Pauli Z operator acting on the jth
qubit.

A note on notation: the sign Q( j← k) signifies a C-NOT gate, with k being (ancilla)
control index number, and j being (system) target index number. Conversely, Q( j→ k)
signifies a C-NOT gate with j being (system) control index number and k being (ancilla)
target index number.

|R(n×2)A1〉 =
[
I⊗n
2 ⊗H2

]×
[

n⊗
j=1

Q( j← 1)

]
× [I⊗n

2 ⊗H2
]
(|Ψ〉1···n⊗|0〉A1), (4)

|R(n×2)Ai〉 = [Q([i−1]→ i)⊗Q (i→ i)](|Ψ〉1···n⊗|0〉Ai) , (5)

where 2 ≤ i ≤ n− 1. Therefore, all together we need n measurements on n ancillary
qubits to discriminate 2n orthonormal, entangled basis states of the form (1,2). Fur-
thermore, we require 3n− 2 applications of CNOT gates. The question of quantity of
quantum communication required, which depends on the topology of the quantum com-
munication network, is discussed in Section in detail.

A proof that the circuit described in Eq. (4,5), and depicted in Fig. 1 achieves the
required Bell state discrimination is deferred to Section . Here we simply illustrate it
using the specific example of the usual Bell states (3). Since (1,2) reduces to (3) for
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FIGURE 2. A special case of Fig. 1: the diagram depicting the circuit for Bell state discriminator.

n = 2, our generalized circuit reduces to that shown in Fig. 2, where one needs only
two ancillary qubits, four CNOT gates, two measurements and two qubits of quantum
communication.

In Table 1, we have shown the results of the measurements on both the ancillas when
different Bell states are present in the given circuit (Fig. 2). Just before measurement,
the states can be explicitly written as,

|R(2×2)A1〉 = [I2⊗ I2⊗H2]× [Q(1← 1)⊗Q(2← 1)]
× [I2⊗ I2⊗H2] (|Ψ〉12⊗|0〉A1) (6)

|R(2×2)A2〉 = [Q(1→ 2)⊗Q(2→ 2)](|Ψ〉12⊗|0〉A2) . (7)

TABLE 1. Results of outsourced measurements on
two ancilla for the Bell states 3

Bell State Measurement A1 Measurement A2

|ψ+〉 0 0
|ψ−〉 1 0
|φ+〉 0 1
|φ−〉 1 1

.

Thus we have provided a circuit for distributing qubit Bell state discrimination shared
between two or more parties, in which joint measurement is replaced by indirect mea-
surement mediated by an ancilla. These results can be straightforwardly generalized, as
shown in the following Section.

GENERALIZED BELL STATE DISCRIMINATION IN Cdn

The results of the preceding Section can be generalized to entangled states of n qudits.
To this end, we replace the regular Pauli matrices with their d-dimensional analogs [20].
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We generalize X and Z gates to Xd and Zd, respectively, which have the action:

Zd | j〉 �→ e2πι j/d| j〉 (8)
Xd | j〉 �→ | j−1〉, (9)

where the arithmeticin the ket is in mod d. The operators Xd and Zd are related by a
Fourier transform Xd = HdZdH

†
d , where Hd is the generalized Hadamard transformation

given by:

(Hd) jk =
1√
d
e2πι j·k/d. (10)

Unlike the qubit case, the unitary operators Zd ,Xd and Hd are not Hermitian.
The d generalized Bell states are

|Ψpq〉= 1√
d
∑
j

e2πι jp/d| j〉| j+q〉, (0≤ p,q≤ d−1) (11)

which form an orthogonal, complete basis of maximally entangled vectors for the d2

dimensional "qudit" space [21]. The parameter p denotes phase and q the generalized
parity. The states |Ψpq〉 are d-dimensional analogs of Bell states (3) in that they are
eigenstates of the operator Xd ⊗Xd, which is equivalent to the phase observable, whose
eigenvalues are p or some function f (p), and Z†

d⊗Zd , which is equivalent to the parity
observable, whose eigenvalues are q or some function f (q). Therefore, measurements
equivalent to (i.e., compatible with) these operators guarantee a complete characteriza-
tion of the generalized Bell states. Furthermore, the set of generalized Bell states remains
closed under the action H†

d ⊗H or Hd⊗H†
d or (cf. Appendix ).

The generalization of the CNOT that we require is the one, whose action we define by

CX : | j〉|k〉 �−→ | j〉| j− k〉, (12)

which reduces to the conventional CNOT for qubits. We use the following notation:
CX ( j ← k) signifies a generalized CNOT gate with k being (ancilla) control index
number, and j being (system) target index number; CX ( j → k) signifies a generalized
CNOT gate with the control-target order reversed. A similar terminology extends to the
two-qudit gate C †

X , whose action is given by either | j〉|k〉 �−→ | j〉|k− j〉 or | j〉|k〉 �−→
| j− k〉| j〉, depending on whether the system or ancilla is the control register.

A direct generalization of Eq. (4,5) to d-dimension of Eq. (6,7) is

|R(2×d)A1〉 = [Id⊗ Id⊗Hd]× [CX(1← 1)CX (2← 1)]

× [Id⊗ Id⊗H†
d ](|Ψ〉12⊗|0〉A1). (13)

|R(2×d)A2〉 =
[
CX(1→ 2)C †

X (2→ 2)
]
(|Ψ〉12⊗|0〉A2). (14)

We will denote the observables corresponding to circuits (13) and (14) as M1 and
M2, respectively. M1 will yield the ‘phase value’ p, and M2 the generalized parity,
q. Obserables M1 and M2 correspond, respectively, to the unitary operations Xd ⊗ Xd
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FIGURE 3. Diagram depicting the circuit for distribution of generalized orthonormal qudit Bell state
discrimination. The first bounded box depicts the outsourced measurement of an observable that is
compatible with X⊗n

d , which for the generalized Bell states yields the global phase value p. The second

box depicts the outsourced measurement of an observable compatible with Z†
d ⊗ Zd , which yields the

relative parity between two consecutive qudits. To obtain the full relative parity information, n− 1 such
relative parity measurements are needed.

and Z†⊗Z, so that the simultaneous measurability of M1 and M2 can be shown as a
consequence of the fact that [Xd ⊗ Xd ,Z

†
d⊗ Zd] = 0. More directly, we will show that

both measurements have |Ψpq〉 as eigenstate.
A complete, maximally entangled Bell basis for the Hilbert space Cdn

can be given
by:

|Ψpq1q2···qn−1〉=
d−1

∑
j=0

e2πι j·p/d| j,q1 + j,q2 + j, · · ·,qn−1 + j〉. (15)

We call them Bell states in the sense that any state |Ψpq1q2···qn−1〉 is an eigenstate of
X⊗n

d and Zd( j)⊗ Z†
d( j + 1) (1 ≤ j ≤ (n− 1)), which correspond to observables with

eigenvalues p and q j+1−q j respectively, the latter being called the generalized relative
parity.

A generalization of Eq. (13,14) to n qudits is Eq. (16,17), which describes a circuit to
measure phase information p and generalized parity information q1,q2, · · ·,qn−1 of such
states. The circuit is depicted in Fig. 3. The required ancilla are n qudits.

|R(n×d)A1〉 =
[
I⊗n
d ⊗H†

d

]
× [Πn

j=1CX ( j← 1)
]× [I⊗n

d ⊗Hd
]
(|Ψ〉1···n⊗|0〉A1),(16)

|R(n×d)Ai〉 =
[
CXd([i−1]→ i)C †

X (i→ i)
]
(|Ψ〉1···n⊗|0〉Ai) . (17)

We will denote the measurements realized by these circuits, via ancilla Ai, by Mi
(1 ≤ i ≤ n). To see that the Mi’s are compatible, it turns out to be sufficient to note that
[X⊗n

d ,Zd( j)⊗Z†
d(k)] = 0 ( j = k) and [Zd( j)⊗Z†

d(k),Zd( j′)⊗Z†
d(k
′)] = 0, which indeed
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follows from the fact the states |Ψpq1q2···qn−1〉 are eigenstates of X⊗n
d and Z†

d( j)⊗Zd(k),
which is shown below explicitly.

To this end, we note that the action of the first two (boxed) operations in Eq. 16 on a
state |Ψpq1q2···qn−1〉|k〉 is

|Ψpq1,q2,···,qn−1〉|k〉 =

[
d−1

∑
j=0

e2πι j·p/d| j,q1 + j,q2 + j, · · ·,qn + j〉
]
|k〉

−→
[

d−1

∑
j=0

e2πι j·p/d| j,q1 + j− k,q2 + j− k, · · ·,qn + j− k〉
]
|k〉

=

[
d−1

∑
j′=0

e2πι j′·p/d| j′,q1 + j′,q2 + j′, · · ·,qn + j′〉
]
|k〉

= e2πιk·p/d|Ψpq1,q2,···,qn−1〉|k〉, (18)

from which it follows that the full effect of the operation described in Eq. (16) produces
the state:

|Ψpq1,q2,···,qn−1〉Hd |k〉 = |Ψpq1,q2,···,qn−1〉
(

1√
d

d−1

∑
j=0
| j〉
)

−→ |Ψpq1,q2,···,qn−1〉
(

1√
d

d−1

∑
j=0

e2πι p· j/d| j〉
)

−→ |Ψpq1,q2,···,qn−1〉|p〉. (19)

This yields the phase bit upon the ancilla being measured.
It is easily seen that the action (17) non-destructively extracts the relative parity

information. For,[
CXd([i−1]→ i)C †

Xd
(i→ i)

]
|Ψpq1,q2,···,qn−1〉|0〉i

= CXd([i−1]→ i)
d−1

∑
j=0

e2πι j·p/d| j,q1 + j,q2 + j, · · ·,qn−1 + j〉|qi+1 + j〉i

=
d−1

∑
j=0

e2πι j·p| j,q1 + j,q2 + j, · · ·,qn−1 + j〉|qi+1−qi〉i

= |Ψpq1,q2,···,qn−1〉|qi+1−qi〉i. (20)

The operation
[
CXd ([i−1]→ i)C †

Xd
(i→ i)

]
serves to entangle and then disentangle the

input Bell state and the ancilla, such that the relative parity of the two concerned qudits
can be read off the latter in the computational basis. This also proves that the circuits
given in Eqs. (4,5), (6,7) and (13,14) perform distributed Bell state discrimination in
dimensions 2n, 2×2 and d×d, respectively, for they are all special cases of the circuit
described in Eq. (16,17).
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Note that although the circuit for qubits in Fig. 1 and for qudits in Fig.3 use relative
parity measurements on consecutive pairs of qudits, they need not do so. Given any
set of n− 1 relative parity values q j − qk that suffice to fully determine the q j’s in
a state |Ψpq1q2···qn−1〉, our distributed measurements are such that the generalized Bell
states are eigenstates of such operators, and hence form a complete set of compatible
observables. Such relative parity measurements correspond to an observable compatible
with Z†

d( j)⊗ Zd(k) (in the d = 2 case, the observable is identical with Z( j)⊗ Z(k)).
Depending on the topology of the quantum communication network available, the choice
of relative parity measurements can vary. For example, if the communication network
has a star topology, as in Fig. 4(a), then the set of observables can correspond to
Z†

d(1)⊗Zd( j), where 1 is the hub index (marked A in the figure), and j runs through the
remaining vertices. Since the operators X⊗n

d and Z†
d( j)⊗Zd(k) commute, the distributed

versions of measurements compatible with them can be simultaneously determined.
In concluding this Section, we will briefly mention the basic mathematical structure

underlying our circuits, reported in detail elsewhere [22]. In so doing, we will be able to
indicate how to adapt the ideas of the preceding Sections to the case of distributing any
orthonormal state discrimination. As pointed out earlier, the generalized Bell states are
eigenstates of the unitary operators X⊗n

d and Z†
d⊗Zd, where d,n≥ 2. A key observation

is that the measurement of M1, effected through the ancilla A1, is equivalent to measuring
an observable compatible with the unitary operators X⊗n

d , while the measurement Mi
(2 ≤ i ≤ n), effected through the ancilla Ai, is equivalent to measuring an observable
compatible with the unitary operators Z†

d ⊗ Zd. In the case of d = 2, of course, the
observable and the unitary operator, given by the X⊗X and Z⊗Z, are identical though
in general this need not be the case.

More generally, it can be shown that, given unitary operator U and an observable W
compatible with it, measurement of W can be outsourced to an ancilla using the con-
trolled operation given by CU ≡ ∑ j | j〉〈 j|⊗U j, where {| j〉} is the possibly degenerate,
simultaneous eigenbasis of U and W [22].

Next we consider the problem of distributing measurement. Observation of the ex-
amples presented in the preceding section shows that if the operator U (eg., X ⊗X) is
a product of operations on subsystems, then each term in U represents an interaction
of the ancilla with a system qudit via a control operation. More generally, it can be
shown that, given observable W which is compatible with unitary operator U =

⊗
mUm,

where m (= 1,2, · · ·,n) labels subsystems, its measurement can be distributed by means
of separate controlled operations on the individual subsystems j from the same ancilla.
The control-operations may be performed in any order or together [22]. The direction of
control-operations may be reversed using circuit identities of the type depicted in Figure
(10) of Ref. [23], by introducing Hadamards, and generalizable to higher dimensions
[22].

SOME APPLICATIONS

Such distributed state discrimination can be useful in distributed quantum computing,
especially when there are restrictions coming from the topology of the quantum com-

204

Downloaded 04 Dec 2006 to 169.232.46.16. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



munication network. Unlike their classical counterparts, quantum channels are expected
to be expensive and not amenable to change to suit a problem at hand. Rather, it is
worthwhile to use protocols that minimize quantum communication complexity, that
is, the quantity of quantum information that must be communicated between different
parties to perform a computation or process some information, in a given network.

A simple way to perform Bell state discrimination is for all other members to com-
municate their qudits to single station, whose member (called, say Alice) performs a
joint measurement on all n qubits or qudits to determine the state. She then re-creates
the measured state and transmits them for further use. Actually, in the present situation,
instead of a joint measurement on all qubits, Alice can apply a string of n−1 C †

X opera-
tions on each consecutive pair of qudits in the Bell state |Ψpq1q2···qn−1〉 and H†

d finally on
the first qudit. It is easily seen that each application of C †

X will disentangle the controlled
qudit from the rest. For the Bell states, this procedure effects the transformation:

|Ψpq1q2···qn−1〉 �−→ |p〉|q2−q1〉 · · ·|qn−1−qn−2〉. (21)

Subsequent measurement of each qudit in the computational basis completely charac-
terizes the Bell state. The Bell state thus being discriminated, the above procedure can
be reversed to re-create the state |Ψpq1q2···qn−1〉 and transmit it back to the remaining
players.

Irrespective of network topology, such a disentangle-and-reentangle strategy requires
in all 2(n− 1) two-qudit gates to be implemented. In our method, the number of two-
qudit gates is the sum of n two-qudit gates for determining phase parameter p and
2(n− 1) for determining the (relative) parities, giving 3n− 2 two-qudit gates. From
this viewpoint of consumption of nonlinear resources, our method does not offer any
advantage. However, this turns out not to be the case from the viewpoint of quantum
communication complexity.

Suppose a quantum communication network with a star topology and n members is
given, as for example in Fig. 4(a). For all members to transmit their qudits to Alice (at
A), and for her to transmit them back would require 2(n−1) qudits to be communicated,
where the factor 2 comes from the two-way requirement. In our protocol, one way
quantum communication suffices. For measuring the ‘phase observable’ M1, the number
of qudits communicated is seen to be 2(n− 1), since the ancilla must pass through
the hub to reach each member on a single-edge vertex; and if measured edgewise,
the communication complexity for relative parity measurement is n qudits. In all, this
requires 3n−2 qudits to be communicated, which is larger than that required for a plain
disentangle-reentangle method.

However consider a linear configuration of the communication network, as in Fig.
4(b), where members are linked up in a single series. In the disentangle-reentangle
method, if Alice is located at one end, the communication complexity is seen to be
n(n−1) qudits; it is (n2−1)/2 if she is in the middle. In either case, it is of order O(n2).
In contrast, our distributedmethod can be implemented using n−1 qudits communicated
both for phase and relative parity measurement, requiring in all only 2(n− 1) qudits to
be communicated, so that the required communication is only of order O(n). Thus our
method gives a quadratic saving in quantum communication complexity.
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FIGURE 4. Two possible configurations of the quantum communication network: (a) In a star topology,
a set of ‘relative parity’ measurements could be along each edge; (b) in the linear configuration, the
strategy of observing consecutive qubits or qudits, as given in Eqs. (5) or (14), can be used.

A further advantage, that may be of some importance in certain situations, is that
our method divides the required resources in terms of applying nonlinear gates and
of measurements equally among the various members. In a real life situation, this
may facilitate the distribution of quantum information processing resources among the
various members.
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CLOSURE OF GENERALIZED BELL STATES UNDER
HADAMARDS

The action of H ⊗H† on |Ψpq〉 on the states in Eq. (13,14) produces the effect of
effectively interchanging the indices pq of |Ψpq〉:

(H⊗H†)|Ψpq〉 =
1√
d
∑
j,k,l

e(2πι/d)( j[p+k−l]−ql)|k〉|l〉

=
1√
d
∑
j,l

e(2πι/d)(−ql)|l− p〉|l〉

=
1√
d
∑
j

e(2πι/d)([d−q]l)| j〉| j+ p〉,

= |Ψq′p〉, (22)

where q′ = (d− q) mod d and the second step follows from noting that the only non-
zero contributions come for the case p+ k− l = 0, and an overall phase factor has been
dropped in the third step. Similarly, one finds (H⊗H†)|Ψpq〉= |Ψqp′〉, where p′= d− p
mod d.
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