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1. Introduction 

The many remarkable properties which diamond exhibits, taken in conjunction 
with the simplicity of its crystal structure and composition, make it a substance of 
quite exceptional interest to the physicist. In the hope that investigations made 
with it would result in significant contributions to knowledge, a collection of 
some five hundred diamonds was built up in the course of years and used by the 
present author and his collaborators in an extensive series of reseirches. It would 
not be possible in this lecture to survey all the topics investigated. We shall 
confine ourselves to the consideration of some results which have merged from 
our studies and which are of,fundamental significance for the physics of the solid 
state. 

In his paper of 1907 introdu'cing the quantum theory of specific heats, Einstein 
made use of the experimental data for the variation with temperature of the 
specific heat of diamond which had been discovered by earlier investigators to 
demonstrate the correctness of the basic ideas set out in his paper. The expression 
for the thermal energy of crystals as a function of temperature derived by Einstein 
in that paper was a logical deduction froni his hypothesis that the sthctural units 
comprised in the crystal and capable of mechanical vibration obey the quantum 
rule, in other words, that their energy can only increase or diminish by quanta 
proportional to the frequency of vibration. Einstein did not however, deal with 
the question of how the modes and frequencies of vibratioh under consideration 
could be evaluated in the general case. In h y  address to the Lindau Cqnference 
this year, I showed how this basic problem can be handled rigorously and a 
solution obtained which reconciles the results of classical dynamics with 
the fundamental notions of tbie quantum theory rand the principles of 

*A lecture delivered at the Federal Polytechhic Institute in Zurich and at the Universities of Freiburg 
and Bonn early in July 1956, following the address on 'The physics of crystals" given at Lindau in 
June, 1956. The latter address has been published in these Proceedings (Memoir No. 85 of the 
Institute), but the present memoir may be read independently of the same. 
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thermodynamics. Diamond is exceptionally well-suited for a test of the oorrcct- 
ness of the theoretical approach set out in that address, since the necessary 
calculations are readily made and the experiments necessary to check the 
consequences of the theory are also feasible. It is the purpose of this lecture to 
show how perfectly the theory and the results of experiment are in accord with 
each other. For the sake of ready intelligibility, the subject will be dealt with from 
first principles. / 

2. The characteristic vibrations of linear lattices 

We shall commence by considering a few simple models of which the behaviour 
may serve to illustrate the principles underlying the general theory. The simplest 
of such models is a stretched string loaded by a series of equidistant particles of 
identical mass along its length. It is immediately obvious that a mode of oscilla- 
tion is possible on such a string in which the successive particles have the same 
amplitude but opposite phases of vibration. Such an oscillation is pictured in 
figure l(a). It has all the characters of a normal mode of vibration and possesses a 
specific frequency which can therefore be regarded as characteristic of the system. 
We may next consider the case in which the particles on the string are equidistant 
but have alternately two different masses. It can be seen that such a system would 
have three possible modes ofnormal vibration with different frequencies. These 
modes are represented in figure l(b), (c) and ( 4  respectively. In figure l(b), 
successive particles of equal mass have identical pmplitudes and oscillate in the 
same phase, while in figure l(c) and (4, they have the same amplitudes but 
opposite phases, the situation thus being analogous to that pictured in figure l(a). 

Figure 1. The characteristic vibrations of linear lattices. 
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The foregoing results can readily be generalized. It can be proved that a 
periodic linear lattice with p particles in each unit of its structure would have 
(2p - 1) normal modes and frequencies of vibration; in O, - 1) of these modes, the 
amplitudes and phases of vibration of the corresponding particles in the 
successive units are the same, while in the p other modes, they have the same 
amplitudes but opposite phases. It can also be shown analytically that any initial 
disturbance set up locally on such a linear lattice would resolve itself quickly into 
a summation of the (2p- 1) characteristic modes of oscillation with their 
respective frequencies. 

3. The normal vibrations of crystal structures 

The basic principle of crystal architecture is that its structure comes into 
coincidence with itself following a unit translation along any ondof the three axes 
of the lattice. If follows as a necessary consequence that the normal modes of 
vibration of the atoms characteristic of the structure of the crystal should possess 
the same property. This can evidently happen in two ways, thereby enabling us to 
divide the normal modes in two distinct classes. In the first class of normal modes, 
the amplitudes as well as the phases of oscillation of the equivalent atoms which 
come into coincidence following an unit translation are identical. In the second 
class of normal modes, the amplitudes of equivalent atoms are the same but the 
phases are all reversed. Since these two alternatives are possible for a unit 
translation along each of the three axes of the lattice, we have 2 x 2 x 2 or 8 
possible situations. In each of these situations, the equations of motion of the p 

Mode I 

Figure 2 Diamond: the principal mode of oscillation. 



atoms contained in the unit cell of the structure can be written.down and 
completely solved, giving us 3p solutions. Thus in all we have 24p solutions. (3p 
- 3) of these solutions represent normal modes of vibration of the'first kimd, 21p 
solutions represent normal modes of the second kind and the 3 renl~ining 
solutions represent the simple translations of the unit cell of the structure. 

The general principles set forth above enable us to describe in simple geometric. 
terms, the normal modes of vibration of the atoms located at the points of a 
Bravais lattice for each of the known fourteen species. In the general case when 
p = 1, we have 21 distinct normal modes and frequencies of vibration, besides the 
three translations. But, if the lattice possesses'some elements of symmetry, the 
number of distinct frequencies would be notably reduced. We shall consider here 
the case of the face-centred cubic lattice. The primitive translations in such a 
lattice may be taken as the lines joining a cube corner with the centres of the three 
cube faces meeting at that comer. Applying the symmetry operations of the point 
group Oh to which the lattice belongs and considering the 8 possible combina- 
tions of the phases of atomic vibration; the 21 modes of vibration which thereby 
result can be grouped together and described as follows: (I) a vibration of the 
alternate octahedral planes of atoms with opposite phases normally to them- 
selves (degeneracy 4); (11) the same but transversely to the planes (degeneracy 8); 
(111) the vibrations of the cubic planes of atoms normally to themselves 
(degeneracy 3); (IV) the same but with the vibrations tangentially to the planes 
(degeneracy 6). The same results can be very simply deduced by inspection of a 
model exhibiting the unit rhombohedra1 cells in a face-centred cubic lattice. 

4. The vibrations of the diamond structure 

The structure of diamond may be described as an interpenetration of two face- 
centred cubic lattices of carbon atoms, each atom in one lattice being linked to its 
four nearest neighbours in the other lattice by tetrahedrally directed valence 
bonds. This situation is diagrammatically represented in figure 2 by a projection 
of the cubic cell on a plane normal to the cubic axis. (No attempt is made to show 
the different planes in which the atoms lie.) 

The normal modes of vibration of the atom"sn the diamond structure may be , ' 
very simply derived from those for a simple face-centred lattice listed above by 
taking into account the phases of the motion of the atoms in the two lattices 
which may be either the same or opposite. The nine p~ssible modes of vibration 
thus derived are depicted in figures 2, 3 and 4. The principal mode which is 
depicted in figure 2 is a translatory movement of the two lattices in opposite 
phases. This is triply degenerate and can occur along anyone of the three cubic 
axes, as indicated by the arrows in the figure. Figure 3 shows the diamond 
structure viewed in a direction normal to a trigonal axis of symmetry and exhibits 
the octahedral layers of atoms. The normal and tangential movements of these 
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Figwe 3. Diamond: normal and tangential oscillations of the octahedral layers. 

planes in the two possible relative phases give us four modes of vibration; the 
directions of movement of the atomic planes are indicated by arrows in the 
figures. Figure 4 shows the structure of diamond as viewed in a direction slightly 
inclined to a face diagonal and exhibits the cubic layers of atoms. The directions 
of movement of these layers in the four possible modes are likewise indicated by 
arrows in the figure. 

Very simple considerations enabler us to arrange the nine normal modes of 
vibration of the diamond structure in the descending order of their frequencies as 
indicated by the Roman numerals entered against them in figures 2,3 and 4. The 
triply degenerate oscillation of the two interpenetrating lattices against each 
other shown in figure 2 would evidently have the highest frequency of all, since 
the movement involves variation of all the four bond lengths and all the six bond 
angles at each carbon atom; the restoring forces brought into play would 
therefore be the maximum possible. It is likewise evident that the mode marked 
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Figure 4. Diamond: normal and tangential oscillations of the c'ubic layers. 

IX in figure 3 would have the lowest frequency of all and the mode marked VIII in 
figure 4 would be the next lowest. For, in neither of these modes is there any 
variation of the bond lengths; in mode IX, only two bond angles vary and in mode 

- VII only four bond angles, the rest of them remaining unaltered. Per contra, the 
same modes but with the relative phases of motion of the adjacent layers reversed, . 
viz., mode I1 shown in figure 3 and mode I11 shown in figure 4 may be expcted to 
have high frequencies which follow that of mope I in the order indicated. It 
remains to determine the sequence of the frecjuencies of the four remaining 
modes. It is obvious that the modes marked V and VI in figure 4 would heve 
identical frequencies; for in these modes, the cubic layers which move normally to 
themselves, in other words along the cubic axis, are equidistant, Finally, we 
remark that the modes marked IV and VII in figure 3 may be mpectd to have 
frequencies respectively higher and lower than the common frequency of modes V 
and VI, though the differences would not be large. In mode IV, the osc~lation 
involves the maximum stretching of one bond out of the#our-in the successive 
layers of the structure, the three ajhers remaining invariable, wbilc the made VII, 
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the bond along which the motion takes place remains of invariable length, while 
the three other bonds inclined at a large angle to the direction of movement are 
tilted periodically. The restoring forces acting in the direction of movement may 
be expected to be distinctly greater in the former case than in the latter. 

5. Numerical evaluation of the frequencies 

Exact formulae are readily derived for the eight distinct frequencies of vibration 
in terms of the force constants expressing the interactions between each carbon 
atom and the surrounding ones. The equations of motion from which these 
formulae are derived take a very simple form by reason of the fact that the relative - 
displacements of the atoms are either zero or else are twice the value of the 
absolute displacement of each atom. The force-constants are most conveniently 
d&ned in terms of the components of the relative displacements and the forces of 
interaction resolved along the three cubic axes and considering their ratios. The 
symmetry of the structure results in a very considerable diminution in the number 
of distinct force-constants: it is found that two constants express the interactions 
with the four nearest neighbours, five others the interactions with the twelve 
next nearest neighbours, and five more the interactions with the twelve more 
distant neighbours. However, on writing down the equations of motion, it 
emerges that only three of the five force-constants for the next nearest neighbours 
actually appear in them and that the five force-constants for the twelve more 
distant neighbours also appear in the equations as sums'of which there are onIy 
two. Accordingly, if we restrict ourselves to the interactions with the twenty-eight 
nearest neighbours of any given atom, we have only seven force-constants to deal 
with. 

The seven force-constants referred to above will be denoted by a, /? for the first 
four atoms; 8, (6, II/ for the next twelve and k and x for the twelve atoms still further 
out. By way ofexplanation, it may be stated that the force-constant a refers to the 
case in which the force and displacement are both along the same cubic axis, while 
fl refers to the case in which they are mutually perpendicular. The constant 8 
refers to the case in which the force and displacement are parallel to each other 
but are both perpendicular to the line joining the atoms which is a face-diagonal 
of the cube; (6 and II/ refer to the cases in which the component forces and 
displacements both lie in the same plane as this diagonal, but the force and 
displacement are parallel to each other for 4 andvperpendicular for $. The 
constant k refers to the cases in which the components of force and displacement 
are parallel to each other while x refers to the cases in which they are mutually 
perpendicular. k and x both represent the joint effect of a whole set of twelve atoms. - 
Table 1 shows the eight frequencies of vibration arranged in the sequence already 
explained which will be found entered in the first column. The second column 
shows the degeneracy of each of these modes. The total of the figures shown in this 
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Table 1. Evaluation of frequencies. 

a, B, 8, a, B, 0, 
Mode Complete formula a, B 4, $ 4, $9 

No. Degeneracy 4n2v2c2m =. only only k x , .  

I 3 4a + 12k 1332 1332 1332 
. I1 8 3a+/3+28+44-2$+3k 

- 3% 1250 1285 1250 
I11 6 2a(+2B+40+44+6k 

+ 6% 1162 1232 1239 
IV 4 a+28+28+ 44+4$+9k 

- 6% 952 1099 1149 
V & VI 3+3 2a+8$+6k 942 LO88 1088 

VII 4 3a-2f l+28+4#+4$ 
+3k+6% 93 1 1068 lo08 

VIII 6 2a-2/?+48+44+6k 
- 6% 65 1 752 740 

IX 8 a-/3+28+44-2$+9k 
+ 3% 460 538 62 1 

Table 2. Values of force-constants used. 

Force-constants Table 1, column 4 Table 1, column 5 Table 1, column 6 

a 3.135 x 105dynes/cm 3.135 x 1Q5 dynes/cm 2.78 x lo5 dyneslm 
1 1.637 x ,, 1.682 x ,, 1.746 x ,, 
8 0.012 x ,, 0.01OX ,, 
4 0262 x ,, 0.262 x ,, 
$ 0240 x ,, 0.228 x ,, 
k 0 . 1 2 ~  ,, 
X 0.00 x ,, 

column amounts tp forty-five as is to be expected. The third column s$ows the 
operative force-constants in each case in terms of the seven force-constants, viz.,a, 
/3 for the first group; 8,4, $ for the second group; k and x for the third group. In the 
fourth, fifth and sixth columns are given respectively the values of the frequencies 
calculated with only the first two constants, then with only five and finally with all 
the seven. The values of the constants in each case have been so chosen as to give 
the same frequency for the principal mode. They are given in table 2. 

It will be remarked from tables 1 and 2 that even with only two force-constants 
we obtain a rough approximation to all the frequencies and that with five 
constants we get a fair approximation to the values calculated with all seven 
constants shown in the last column of table 1. It wil1.also be seen from table 2 that 
the force-constants fall off rapidly in magnitude as we proceed to the more distant 
neighbours. The magnitudes of the force-constants in each group are also related 
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to each other in the manner that could have been expected a priori from their 
respective definitions as given above. 

6. The scattering of fight in diamond 

Spectrograms of the light scattered by diamond when illuminated by the light of a 
mercury arc lamp exhibit, for each of the monochromatic radiations1 of the 
incident light, a single sharp line with a frequency shift of 1332 cm- ' which may 
be identified with the highest of the frequencies listed in table 1. But no lines 
appear with frequency shifts other than that mentioned. This is readily 
understood, since in all the modes except that of the highest frequency, the atomic 
oscillations have opposite phases in the successive layers, and hence the effects 
arising at these layers cancel each other out. Overtones and combinations of the 
frequencies of all the normal modes are, however, permitted to appear as 
frequency shifts in light-scattering, thereby making the existence of these modes 
open to observation. That diamond would exhibit this type of light-scattering 
was theoretically predicted, following which experimental studies undertaken by 
Dr R S Krishnaa confirmed tbe dpectations. 

The second-order spectrum of light-scattering is of extremely low intensity, and ' 
one has necessarily to use diamonds of small size for the experiments. Further, it is 
necessary to record the spectrum under high dispersion to enable its features to be 
adequately exhibited. These difficulties are successfully overcomeby the aid of the 
extremely intense A2537 radiations emitted by a quartz water-cooled mercury arc 
when it is set between the poles of an electro-magnet. It is necessary, of course, t o  
employ diamonds which are transparent to the ultra-violet region of the 
spectrum. In these circumstances, it is also essential to use mercury vapour as a 
filter inside the spectrograph to absorb the intense 1 2537 radiations before they 
reach the photographic plate, and thus prevent its fogging. 

Spectrograms obtained in the manner explained are reproduced as figure 1 in 
plates I and I1 respectively. The spectrum in plate I was recorded with a 
medium-sized spectrograph and that in plate I1 with a larger instrument of 
higher resolving power. A microphotometer record of the spectrum obtained 
with the smaller instrument is reproduced in juxtaposition with the spectrum 
itself as figure 2 in plate I, below which has been placed the spectrum of the 
mercury arc alone as a comparison. Figure 2 in plate I1 reproduces the 
microphotometer record of the second-order spectrum obtained with the larger 
instrument and below it the spectrum itself to admit of ready comparison with the 
features seen in it. 

The features visually observed in the spectra and confirmed by inspection of 
their microphotometric records are 'diagrammatically represented in figure 5 
below, the measured frequency shift being indicated against each feature. 

Very conspicuous is the sharply defined peak of intensity terminating the 
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Figure 5. Frequency shifts in light-scattering. 

second-order spectrum and exhibiting a frequency shift of 2665 cm-'. This is 
clearly to be identified as the octave of the principal mode of vibration having a 
frequency shift of 1332 cm-': its measured spectral width of 8 wave numbers is 
also approximately double the spectral width of that frequency shift at room 
temperature. 

Very conspicuous also in the microphotometer records is the sharply defined 
peak of intensity with a frequency shift of 2176 cm- '.  his is clearly the octave of 
the common frequency 1088 cm-' of modes V and VI listed in table 1. 

Of much greater intensity than either of the peaks mentioned above is that 
which can be recognised both in the spectra and in the microphotometer records 
as a clearly resolved pair of lines whose frequency shifts are 2460 and 2470 cm- ' 
respectively. The calculated frequency of the octave of mode I11 in table '1 is 
2478 cm- ' and this is sufficiently close to the position of the doublet to justify our 
identifying the latter with it. 

Close to the doublet but clearly separated from it appear a group of rather 
diffuse lines whose frequency shifts are 2494 2502 and 2520 respectively. The 
mean of these three shifts is 2504 and we may therefore identify the triplet of lines 
as beingihe octave of mode I11 in table 1 whose calculated value is 2500cm-'. 

Finally, we have a group of rather inconspicuous maxima, of which the most 
evident is one with frequency shift of 2255 cm-' followed by a series of others 
with larger frequency shifts. The octave of mode IV the freqhncy of which is 
2298 crn-I lies wiihin this rarfge. 
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7. Some concluding remarks 

Spectroscopic investigation of the scattering of light in diamond thus decisively 
confirms the theoretical result that its structure poswsses a discrete set 6f normal 
modes of vibration with well-defined frequencies forming a sequencct as indicated 

, in table 1. Various details revealed by the study, viz., the great differences in the 
relative intensities with which the vsrious modes appear pnd the spectral splitting 
which some of them exhibit are also readily explicable. i 

The non-appearance of modes VIII and IX as frequency shifts even in the 
second-order scattering is not surprising. In these modes of vibration, neighbour- 
ing atoms of carbon do not approach or recede from each other but move 
laterally. Hence, no very sensible variations in the optical polarisability of the 
structural units are to be expected. Per contra, the approach and recession of 
neighbouring carbon atoms is very conspicuous in modes I, 11 and III and the 
appearance of the octaves of these modes with notable intensities is therefore in 
accord with expectation. That modes I1 and I11 appear even more strongly than 
mode I is clearly a consequence of their degeneracies being 8,and 6 respectively as 
compared with the degeneracy 3 of mode I. The strength with which the peak at 
2176cm-' is recorded is likewise explicable as due to the superposition of the 
effect of six modes having a common frequency. 

That a second-order spectrum of light-scattering is at all observable becomes 
intelligible when it is recalled that the oscillators which are set in vibration and 
diffuse the incident radiation with a diminished frequency are the structural 
elements in the crystal. These are of extremely small dimensions and contain 
relatively few atoms. Hence, the absorption by them of a quantum of energy 
would result in vibrations of which the amplitude cannot be considered as 
infinitesimally small in relation to the interatomic distances. It follows that the - 
periodic variation of optical properties resulting from the vibration would exhibit 
anharmonicity. Frequency shifts corresponding to overtones and combinations 
of the frequenciesof the normal modes can therefore appear in the scattered light. 
The mechanical anharmonicity associated with vibrations of finite amplitude 
may likewise result in the splitting up of energy levels which in the harmonic 
oscillator approximation can be considered as identical. 
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Figure 1 

Figure 2 

Scattering of light in diamond: medium spectrograph. 

Plate I 
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Figure 1 

Figure 2 

Scattering of light in diamond: large spectrograph. 

Plate 11 
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