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A well known theorem in classical dynamics states that all the possible small 
vibrations of a conservative dynamical system about a position of stable 
equilibrium may be represented as a superp~sition of certain modes of vibration 
designated as the normal modes of the system. The number of normal modes is 
equal to the number of degrees of dynamical freedom of the system and in each 
such mode, the particles of the system execute harmonic vibrations with a 
common frequency characteristic of the mode and their phases are all the same or 
opposite, in other words, they all pass simultaneously through their positions of 
equilibrium. This identity or opposition of phase is a fundamental property of a 
normal mode of vibration. In the absence of this phase-relationship, the possible 
movements of the particles would be infinitely varied and hence incapable of 
enumeration. 

The theory of the specific heats of crystals has, of necessity, to be based on the 
theorem in classical mechanics stated above and on the principles of the quantum 
theory and of thermodynamics. It identifies the thermal energy of the crystal with 
the sum-total of the quanta of vibrational energy of the oscillators of various 
frequencies constituting the crystal. If these oscillators are correctly identified and 
enumerated, their total number should come out as equal to the number of 
degrees of dynamical freedom of the system, viz., thrice the number of atoms 
comprised in the crystal. This remark serves to remind us that the particles with 
which we are concerned in the specific heat problem are the atoms. It also 
emphasises that the vibrational modes enumerated should be normal modes, viz., 
modes in which the individual atoms all vibrate with the same frequency and in 
the same or opposite phases. It thus becomes clear that the core of the specific 
heat problem is the answer to the following question; do the atoms located in the 
structure of the crystal possess any normal modes of vibration having the stated 
characters and if so, what is the number of such modes and how is their number 
related to the number of atoms comprised in each unit cell of the crystal structure? 
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The questions raised above can be answered in the following manner. We make 
use of the fundamental property of a crystal that the structure comes into 
coincidence with itself following a unit translation along any one of the three axes 
of the lattice. Since each atom comes into coincidence with an equivalent atom in 
the next cell, all physical properties of the crystal determined by the atomic 
locations and the atomic interactions should also remain unaltered. Since the 
modes offree vibration of the structure constitute such a property, we are justified 
in the inference that a vibration having the stated characters of a normal mode 
should remain unaltered and continue to be a normal mode following a unit 
translation. This can happen in two ways. equivalent atoms brought into 
coincidence can have identical amplitudes and phases of vibration. Alternatively, 
their amplitudes can be the same but all the phases are reversed. (In the latter case, 
thk original phases are regained after a half-period and hence the normal mode is 
effectively unaltered.) 

The two alternative possibilities indicated above arise in respect of a unit 
translation along each of the three axes of the lattice. Since these are independent 
of each other, we have 2 x 2 x 2 = 8 different possibilities in all. In each of these 8 
possibilities, the amplitudes of vibration of the atoms in the cells adjoining a 
particular cell are the same as those of the equivalent atoms in that cell. Hence, if 
there are n atoms in each unit cell of the structure, their 3n equations of motion 
involving their interactions with the surrounding atoms which are assumed to be 
proportional to their relative displacements contain only 3n displacement co- 
ordinates. Hence the equations of motion can be completely solved, the solutions 
obtained giving us the frequencies and the ratios of the atomic displacements 
along each of the co-9rdinate axes. 

Considering all the eight possibilities referred to above, we have 8 x 3n = 24n 
distinct solutions or normal modes of vibration. In 3n of these modes, the 
vibrations of equivalent atoms have the same phase in the adjoining cells, while in 
the remaining 21n modps, they appear with alternating phases along one or two 
or all three axes of the lattice. By the nature of the case, however, 3 out of the 3n 
modes have a zero frequency, in other words, represent simple translations. 
Hence we have only (3n - 3) normal modes properly so-called of the first species 
and 21n normal modes of the second species. When n = 1, in other words, when 
the atoms in the crystal occupy the points of a simple Bravais lattice, we have only 
2lmodes of the second species, besides 3 translations. When ~t = 2, we have 
besides the 3 translations, 3 normal modes of the first species and 42 normal 
modes of the second species. 

When the crystal exhibits a high degree of symmetry, e.g., cubic symmetry, the 
number of normal modes remains the same, but many of the modes are similar to 
each other and the number of distinct frequencies is thereby greatly reduced. In 
the particular case of the alkali halides, the 3 normal modes of the first species 
exhibit a single triply-degenerate frequency, while the remaining 42 modes have 
only 8 distinct frequencies, viz., two frequencies each with a degeneracy of 4, two 



frequencies each having a degeneracy of 8, two frequencies each with a 
degeneracy of 3 and two others each with a degeneracy of 6, thus totalling up to 42 
distinct modes of the second species. 

The degeneracies listed above arise by reason of the geometric similarity of the 
various sets of normal modes. The triply degenerate frequency of the first species 
represents an oscillation of the two sets of non-equivalent atoms along one or 
another of the three cubic axes. The triply degenerate frequencies of the second 
species represent vibrations of the two sets of non-equivalent atoms lying in the 
cubic planes normally to themselves. The six-fold degenerate frequencies 
similarly represent vibrations of the layers of atoms appearing in the cubic planes 
tangentially to themselves. Four-fold degeneracy arises when the layers of atoms 
parallel to the octahedral planes move normally to themselves. Eight-fold 
degeneracy arises when the atoms in the octahedral layers move tangentially to 
those layers. 

The geometry of the various modes of vibration can be readily established. We 
begin with the case of a simple face-centred cubic lattice, the 24 normal modes of 
which are listed below, the phases of oscillation alternating in the successive 
planes. 

Description of the modes Degeneracy 
1. Simple translations 3 
2. Oscillations normal to the cubic planes 3 
3. Oscillations tangential to the cubic planes 6 
4. Oscillations normal to the octahedral planes 4 
5. Oscillations tangential to the octahedral planes 8 

- 
Total 24 

- 

The foregoing descriptions can be readily derived by considering the atomic 
movements in a face-centred cubic lattice for each of the 8 different possibilities 
regarding their phase-relationships discussed earlier. The directions of atomic 
movement are those indicated by the symmetry of the crystal. 

In the alkali halides, we are concerned with two similar face-centred cubic 
lattices which interpenetrate each other, their points being occupied respectively 
by the metal and the halogen atoms. In the cubic planes of the resulting structure, 
the metal and halogen atoms appear interspersed in the same layers, while in the 
octahedral planes, they appear in distinct but equidistant layers. Since the phases 
of oscillation of the metal and halogen atoms may be either the same or the 
opposite, the 24 modes listed above are doubled up, giving us 48 modes in all. The 
three translations of each lattice separately are replaced by three translations in 
which the two lattices move together in the same phase, and by three oscillations 
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respectively along the three cubic axes in which the two lattices move in opposite 
phases. 

Degeneracy 
I. Oscillation of the metal and halogen atoms in opposite 

phases 3 
11. Coupled oscillations of the metal and halogen atoms 

in the cubic planes 
(a) Tangential to the planes in opposite phases 6 
(b) Normal to the planes in the same phase 3 
(c) Normal to the planes in opposite phases 3 
(d) Tangential to the planes in the same phase 6 

111. Oscillations of the atoms appearing in the octahedral 
layers 

(a) Lighter atoms normal to the planes 4 
(b) Lighter atoms tangential to the planes 8 
(c) Heavier atoms normal to the planes 4 
(d) Heavier atoms tangential to the planes 8 

IV. Translations of both lattices in the same phase 3 
- 

Total 48 
- 

The nine modes have been listed in the faregoing table, the four vibrations of 
the cubic layers and the four vibrations of the octahedral layers being arranged 
amongst themselves in the descending order of their frequencies of ,vibration as 
indicated by the dynamical theory to be presented later in the memoir. 

Summary 

It is shown that crystal; having the rock-salt structure .have nine different 
frequencies of atomic vibration exhibiting the features of normal modes. One of 
them is an oscillation of the metal and halogen atoms in opposite phases. Four 
others are coupled oscillations of the atoms appearing in the cubic layers, while 
the remaining four are oscillations of the atoms in the octahedral layers. The 
oscillations in these eight modes alternate in phase from layer to layer and are 
respectively,normal or tangential to those layers. 
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