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In seeking to evaluate the thermal energy of a crystal on the basis of the principles 
of thermodynamics and of the)quantum theory, we have to find answers to the 
following questions: What are the oscillators of which the vibrational energies 
need to be quantised and totalled up? How can they be identified and 
enumerated? We shall presently see that the treatment of the problem of the 
modes of atomic vibration given in the earlier parts of the memoir itself provides 
the answers to these questions. 

We may begin with the case of a simple Bravais lattice. Since each atom in the 
lattice has 3 degrees of freedom, the general principle that equivalent atoms have 
the same amplitude while their phases of vibration are either the same or else 
alternate along one or two or all three axes, results in a simple lattice having 24 
possible kinds of movement. Of these, 21 have the character of normal modes of 
vibration, while the three others are simple translations. In the particular case of a 
face-centred cubic lattice, the unit cell is a rhombohedron. The total number of 
degrees of dynamic freedom of movement of the eight atoms located at the 
corners of this rhombohedron is also 24. Thus, the 21 modes of vibration of the 
lattice may also be considered as normal modes of vibration of this 8-atom group 
and its 3 translations as movements of the entire group. 

We have seen that the alkali halide structure has nine distinct frequencies of 
vibration of which the degeneracies are respectively 3,6,3,4,8,4,8,3 and 6. These 
add up to a total of 45, or if we include the three omitted translations, to 48. A 
sixteen-atom group consisting of eight metal and eight halogen atoms linked to 
each other by chemical bonds would also have 48 degrees of dynamic freedom of 
movement. Hence, we may appropriately regard such a group as the dynamic 
unit in the crystal and its nine distinct frequencies of vibration with their 
characteristic degeneracies as "oscillators" in the specific-heat theory. The three 
omitted degrees of freedom would be the three translations of the Idatom group. 

It should be remarked that the two cases considered above are only particular 
examples of a general theorem applicable to all crystals. As has been shown 
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earlier, if the unit cell of a crystal contains n non-equivalent atoms, the structure of 
the crystal has (24n - 3) normal modes of vibration. In (3n - 3) of these modes, 
the vibrations appear in adjacent cells of the lattice with the same amplitudes and 
phases, while in the 21n other modes, the amplitudes of vibration are the same for 
equivalent atoms but their phases alternate along one, two, or all three axes of the 
structure. Hence, the dynamic unit in the crystal has twice the linear dimensions 
and hence eight times the volume of the unit cell of its structure. It, therefore, 
contains 8n atoms. The total number of degrees of dynamic freedom of these 8n 
atoms is 24n. Accordingly, we may describe the (24n - 3) normal modes of 
vibration of which the structure is capable as the internal modes of vibration of 
the group of 8n atoms, while the 3 degrees of freedom not thus accounted for 
would be the three translations of the group. Thus, the group of 8n atoms, or 
rather each of its frequencies of internal vibration, is identified as the unit 
oscillator in specific-heat theory, each frequency being counted as many times 
over as the degeneracy which it may exhibit by reason of the symmetry of the 
crystal. / 

One can readily understand why the dynamic unit has twice the linear 
dimensions and therefore eight times the volume of the static unit in the structure 
of a crystal. In any normal mode, the vibrations in any one cell would necessarily 
be coupled with the vibrations in the adjacent cells. In such coupled vibrations, 
the phases of the vibration in adjacent cells along each axis of the structure may 
be either the same or opposite. There would thus be eight different possibilities 
and the vibration frequencies in each of them would necessarily be different. This 
is the same result as that stated above. 

Leaving aside for a moment the translatory movements of the Idatom groups, 
we shall consider their internal vibrations. These vibrations appear in the infra- 
red region of the spectrum and the interatomic forces which determine their 
frequencies are necessarily strong. But they operate only at short ranges and it 
m y  be assumed that they are negligible as between atoms which are further apart 
from each other than the dimensions of the 16-atom groups. In these circum- 
stances, the internal vibrations of these groups excited by the thermal agitation in 
the crystal may be expected to be uncorrelated, in other words, to exhibit no 
coherent relationships of phase as between the different groups. We are 
accordingly justified in the specific-heat problem in regarding the Idatom groups 
as independent oscillators and quantising their energies on that basis. 

The thermal energy of the crystal is a summation of the quantised energies of 
the oscillators of different frequencies included in its volume. There are nine 
distinct frequencies of vibration, and thenumber of oscillators having a particular 
frequency is the same as the number of Idatom groups contained in the crystal 
multiplied by the degeneracy of the particular mode. It follows that the Einstein 
specific-heat function for the particular frequency multiplied by the degeneracy of 
the mode and divided by 48 gives the contribution of all the oscillators having 
that frequency to the atomic heat of the crystal. Summing up the contributions 
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thus made by all the nine frequencies, we obtain the atomic heat of the crystal as a 
function of the temperature so far as it arises from the spectrum of internal 
vibrations with discrete frequencies. 

We have now to ascertain the contributions to the thermal energy arising from 
the three translatory movements of the 16-atom groups which we have so far 
ignored. These translations would necessarily result in displacing the neighbour- 
ing atomic groups and hence would set up forces resisting the movement. It 
follows that the degrees of freedom which do not appear as internal vibrations of 
the 16-atom groups would manifest themselves as the internal vibrations of 
atomic groups of larger dimensions. The larger such groups are, the lower would 
be their possible frequencies of vibration. Hence, the thermal agitation in the 
crystal associated with the vibrations of specific frequencies already considered 
would be accompanied by a residual spectrum which by the very nature of the 
case cannot be expected to exhibit any discrete frequencies and may accordingly 
be assumed to be continuous and to extend down to very low frequencies. 

If the number of 16-atom groups included in the volume of the crystal is N, the 
total number of degrees of freedom manifested in the residual spectrum would be 
3N. The manner in which the 3N degrees are distributed over the range of 
frequencies covered by that spectrum can be determined by statistical consider- 
ations of an elementary nature. We base ourselves on the very reasonable 
assumption that the lowest frequency of vibration of an atomic group which we 
denote by v is inversely proportional to the linear dimensions of the group. On 
this basis, the volume of each group would be inversely proportional to v3. 
Consequently, the number of such groups included in the crystal would be 
directly proportional to v3. Hence, the number of degrees of freedom manifested 
in the spectral range between v and v +  dv would be proportional to its 
differential, viz., 3v2dv. W'e assume the spectrum to extend between the lower limit 
0 and an upper limit v,. Since the total number of degrees of freedom obtained by 
integration over this range should be 3N, we obtain the law of distribution to be 
3N.3vzdv/vl. Multiplying this by the Einstein specific-heat function and integrat- 
ing the product between the limits 0 and v, and dividing by 48, we obtain the 
contribution of the residual spectrum to the atomic heat of the crystal. 

Since the residual spectrum represents the frequencies of internal vibration of 
atomic groups whose dimensions are larger than those of the 16-atom group, v, 
should be of the same order of magnitude as the lowest of its nine discrete 
frequencies of vibration. We shall not, therefore, be far wrong, at least in the case 
of the alkali halides, in taking v, to be equal to the lowest of the nine discrete 
frequencies. 

Of the total number of degrees of atomic freedom, only one-sixteenth part 
appears in the residual spectrum of frequencies. The largest part of this again is 
concentrated near the upper limit of that spectrum by reason of the law of 
distribution of frequencies in it. Indeed, only 1/128th part of the total number of 
degrees of atomic freedom would be left not accounted for if we omitted to 
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consider vibrations in volume elements whose linear dimensions are greater than 
twice the dimensions of the 16-atom groups having discrete frequencies of 
vibration. Thus, in the evaluation of the tliermal energy of the crystal, we are 
concerned almost exclusively with vibrations localised in extremely small 
elements of volume in the crystal. We shall not be seriously in error in assuming 
such oscillations to be uncorrelated in phase as between different elements of 
volume and hence permitting of being quantised independently of each other. 

Summary 

The determination of the normal modes of atomic vibration in the earlier parts of 
the memoir also enables us to identify and enumerate the oscillators of which the 
quantised energies of vibration constitute the thermal energy of the crystal. 
Besides the oscillators with the nine discrete frequencies, there are others which 
give rise to a residual spectrum of vibrations with lower frequencies. The 
distribution of frequencies in that spectrum is determined and its contribution to 
the thermal energy is evaluated, 
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