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1. Introduction 

A theory of the specific heats of crystals has been put forward in part I of this 
series of papers which is based on the determination and enumeration of the 
normal modes and frequencies of vibration of the atoms in the crystal about their 
positions of equilibrium. The theory enables the thermal energy of a crystal to be 
expressed as a function of the temperature in terms of these frequencies. 
Diamond is admirably suited for a test of the theory, since the frequencies of 
vibration of the atoms in its structure may be evaluated theoretically and the 
same frequencies also admit of precise measurement by several different 
spectroscopic techniques. The specific heat of diamond can accordingly be 
determined in terms of these frequencies over the whole range of temperatures for 
which reliable data are available. As has been shown in part I1 of this series of 
papers, the theory emerges triumphantly from the test, its results being in 
complete accord with the results of the spectroscopic investigations on the one 
hand and with the measured specific heat data on the other. 

In the present memoir we shall consider the converse problem of deducing the 
nature of the atomic vibration spectrum for a given crystal from the empirically 
determined specific heat data. The method adopted for this purpose may be 
briefly stated here. We assume that all the atomic oscillators in the crystal have a 
common frequency of vibration and calculate from the observed specific heat at 
any given temperature what that frequency is. The frequency thus evaluated itself 
appears as a function of the temperature, and a graph showing its variation over 
the entire range of temperature gives us a useful indication of how the total 
number of degrees of atomic freedom is distributed over the entire range of 
frequencies covered by the atomic vibration spectrum of the crystal. The results 
obtained by this procedure and their significance are best understood by 
considering an actual example. We shall apply the method to the analysis of the 
specific heat data for diamond and show how useful conclusions may be derived 
therefrom. 
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Figure 1. Analysis of the specific heat of diamond. 

2. Analysis of the specific heat curve 

In figure 1 above, we reproduce the graph of the specific heat of diamond as a 
function of the temperature deduced from the spectroscopic data in part I1 of the 
present series of papers. The abscissae in the figure are the absolute temperatures, 
while the ordinates give the calculated specific heats, the scale for the same 
appearing on the left-hand side of the figure. Taking the value of the specific heat 
given by this graph for any given temperature and with the aid of a table of 
Einstein's specific heat function, a frequency of vibration is found which, if 
ascribed to all the atomic oscillators in the crystal, would give that value for the 
specific heat at that temperature. We may call the freqyency thus evaluated the 
egective average of the atomic vibration frequencies at that temperature. A graph 
showing how this effective frequency varies with the absolute temperature 
appears in figure 1 as a continuous curve; the scale of frequencies is that shown on 
the right-hand side of the figure. It will be seen that the graph is practically a 
horizontal line at the highest temperatures, the frequency having the value 
1016 cm-I at 1100O; it then drops very slowly, being 1013 at 10000,1006 at 8W0, 
and 992 at 600" K. Thereafter, it falls a little more quickly, being 978 at 500", 954 
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at 400°, 91 1 at 3W0, 826 at 200" and 767 at 160". At still lower temperatures, the 
frequency drops down steeply and at 25' reaches the value 247cm-'. 

The course taken by the frequency-temperature curve is readily understood if 
we recall the features exhibited by Einstein's specific heat function for various 
values of the argument; the function vanishes for large values of the argument, 
while for small values it reaches a limit in the vicinity of which the function does 
not vary appreciably with the argument; intermediately, however, the function 
decreases progressively as' the argument increases and at an approximately 
uniform rate. The specific heat curve which we have analysed was obtained by the 
summation of a set of Einstein functions with different arguments, giving them 
fractional weights proportionate to the number of oscillators having the 
particular frequencies. In these circumstances, the "effective average frequency" 
deduced in the manner explained would necessarily vary with the temperature; at 
high temperatures, the "effective average frequency" would be the same as the 
arithmetical average of the frequencies multiplied by their respective weights but 
with the very lowest frequencies excluded in casting the average. At moderately 
high temperatures, the effective average would continue to approximate to the 
arithmetical average, but if the temperature be so low that the Einstein functions 
for some of the higher frequencies become vanishingly small, it would show a 
marked fall and finally, when all the higher frequencies have dropped out in the 
summation, it is the few surviving oscillators with the lowest frequencies that 
would determine the effective average frequency. The latter would then be 
necessarily very small. 

The specific heat curve appearing in figure 1 was derived from a set of Einstein 
functions representing monochromatic frequencies whose values and respective 
degeneracies are the following: 1332(3), 1250(8), 1239(6), 1149(4), 1088(6), 1008(4), 
740(6) and 621(8) and, in addition, a residual continuous spectrum with a weight 
three. The arithmetical sum of all these vibration frequencies multiplied by their 
respective degeneracies and divided by the total of 48 is 987 cm- '. If, however, we 
omit the continuous spectrum and take the arithmetical average after division by 
45, we obtain 1022 cm- as thearithmetical average frequency. This is nearly the 
same as the'value of the effective average frequency at 1100" which is 1016 cm- '. 
The course of the graph in the middle ranges of temperature is determined by the 
relative weights of the different frequencies. It will be noticed that these weights 
are distributed in a more or less uniform manner over the entire range from 
1332cm-"to 621 cm- '. It is this feature which is responsible for the graph of the 
effective frequency dropping quite gradually from 978 cm- ' to 767 cm- ' in the 
temperature range between 500" and 160". 

3. Comparison with the observations 

As has already been shown in part I1 of this series of papers, a highly satisfactory 
agreement emerges when the specific heat computed from the spectroscopic data 
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is compared with the values measured by DeSorbo in the temperature range from 
40" to 300" and by Magnus and Hodler between 300" K and 1100" K. The same 
comparison may be made in a different manner, viz., by calculating from the 
observed specific heat at any temperature the effective average of the frequencies 
of the atomic oscillators and plotting them on the same graph as the effective 
average calculated from the theoretical specific heat curve. This has been done 
and the experimental values are shown as circles in figure 1. The specific 
heats from 40" to 300" were in the present instance taken from the table of 
smoothed means given by DeSorbo as best representing his determinations [J. 
Chem. Phys., 21 876 (195311. The experimentill data from 300" upwards were 
those determined by Magnus and Hodler [Annalen der Physik, 80 808 (1926)l. It 
will be seen that over the whole range of temperatures upto 400" the experimental 
values fall smoothly on the theoretical curve. Between 400" and 1000" the 
experimental values lie about the theoretical curve, but there are appreciable 
deviations of about & 10cm-l. In this region of temperatures, this would 
correspond to variation in the specific heats of about 2 per cent of the measured 
values. These differences may be reasonably explained as due to inevitable errors 
in the determination of the specific heats at such high temperatures with small 
quantities of the material (10 grams). 

4. Analysis of Debye's specific heat function 

The values for the specific heat of diamond given by Debye's theory have been 
analysed in the same manner as that explained above and represented in figure 1 
as a broken line. In making this calculation, the upper limit of frequency in the 
Debye integral has been taken to be 1332cm-' which is the spectroscopically 
observed highest fundamental frequency.,This limiting frequency also fits the 
experimentally observed specific heats between 450" and 1100" with an accuracy 
of 1 per cent, the deviations being as often positive as negative. It should also be 
remarked that the limiting frequency calculated from the elastic constants of 
diamond comes out as 1304 cm- l in fair agreement with the spectroscopic value 
of 1332cm-'. 

Comparing now the oontinuous curve and the broken line/appearing in 
figure 1, it will be seen that the latter lies entirely above the former in the 
temperature range from 1100" to 140'. The broken curve crosses the continuous 
curve at about 140" and lies below the latter down to the lowest temperatures. 

This difference in the course of the two curves is highly significant. For, it 
indicates that between 140" and 400", the Debye theory gives consistently lower 
specific heats than those actually observed, while between 40" and 140°, it gives 
higher specific heats than those observed. The actual specific heats, theoretical as 
well as those oliserved in these ranges, have been plotted in figures 2 and 3, 
as continuous and broken curves and as circles respectively, and exhibit this 
situation very clearly. 
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Figure 2. Specific heats of diamond. 

5. Comments on Debye's theory 

We shall now consider the theoretical implications which attach to the facts 
elicited by the foregoing analysis. 

In the first place we remark that since the effective average frequency in the 
temperature range between 1100" and 500" lies close to 1000cm-', any 
assumption whatever regarding the distribution of frequencies in the atomic 
vibration spectrum which gives us 1000crn-' as the effectke average would fit 
the specific heat data satisfactorily within the limits of error of the experimental 
determinations. If, for example, we assume that all the atomic oscillators had a 
frequency of 1000cm-', the calculated specific heat would agree with the 
observed values in that temperature range withinone or two per cent. Likewise, if 
we assume that half the atomic oscillators have a frequency of 1332 cm- ' and the 
other half have the frequency 666 cm- thereby giving us an average frequency of 
999 cm- I, the specific heat data would also be fitted in that range with the same 
measure of accuracy. It follows that the agreement between the specific heat 
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Figure 3. Specific heats of diamond. 

theory of Debye and the experimental determinations in this temperature range 
only indicates that the distribution offrequencies assumed in that theory gives the 
arithmetical average of the frequencies more or less correctly. That is so, since the 
arithmetical average is three-fourths of the limiting frequency and is therefore 
999 cm - I.  

The second remark we have to make is that the precise course of the specific 
heat curve in the middle range of temperatures, in other words, between 140" and 
50W, is of the highest importance in enabling us to decide whether or not any 
assumed distribution of frequencies agrees with or differs radically from the 
actual distribution. It has already been remarked that in this range the Debye 
function gives systematically a lower specific heat than that observed, the 
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maximum deviation expressed as a percentage being about 10 per cent at about 
200" K. The present analysis makes it clear that this difference arises because the 
distribution of the frequencies contemplated in the Debye theory differs radically 
from the actual distribution; instead of all the frequencies being densely crowded 
together near the upper end of the frequency range, they are actually distributed 
in a more or less uniform manner over a wide range of frequencies. It may be 
remarked that a deviation in the opposite sense, viz., with the calculated values 
higher than the observed ones, appears in the same temperature range if we 
assume that half the oscillators have a frequency of.1332 cm-' and the other half 
a frequency of 666cm-'. This makes it clear that the actual distribution of 
frequencies does not involve a division of the atomic oscillators into two groups 
with such widely separated frequencies. 

The third and the final remark that we have to make is in respect of the specific 
heats of diamond in the lowest part of the temperature range. The failure of the 
Debye theory to represent the course of the specific heat curve in this region is 
very conspicuous. A great many measurements were made by DeSorbo in this 
part of the temperature range and as he himself has pointed out, they deviate 
markedly from the course of the Debye function based on a constant limiting 
frequency. DeSorbo has exhibited this failure by drawing a graph representing 
the "characteristic Debye temperature" as a function of the temperature, and this 
exhibits a pronounced peak at 60". As will be seen from our figure 3, the specific 

, heat at this temperature given by the Debye theory assuming the limiting 
frequency to be 1332cm-' is 60 per cent in excess of the observed value. 

Debye claimed in his original paper that the explanation of the behaviour of 
the specific heat of crystals at the lowest temperatures constituted the major 
success of his theory. Since, as we have seen, the theory actually fails most 

. completely at these same low temperatures in the case of diamond, the only 
possible inference which can be drawn from the facts is that the identification of 
the thermal energy of crystals with the energy of stationary elastic vibrations in 
their interior on which the theory is based is a misconceived idea, in other words, 
that the theory itself is fundamentally untenable. 

6. Summary 

The functional dependence of the specific heat of a crystal on the temperature 
may with advantage be expressed as a variation with tkmperature of the effective 
average frequency of the atomic oscillators, the same being determined from the 
argument of the Einstein function which gives the observed specific heat at that 
temperature, The usefulness of this representation is shown in the paper by a 
detailed discussion of the experimental data for diamond. It emerges that the 
distribution offrequencies adopted in the Debye theory is irreconcilable with the 
observed course of the frequency-temperature curve. It is also pointed out that 
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the large excess which the specific heat calculated from that theory exhibits over 
the observed values in the region of low temperatures shows that the ideas on 
which that theory is based are miscon&ived and that the theory itself is 
untenable. 
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