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1. Introduction 

The quantum theory of the specific heats of crystals proposed by Einstein in the 
year 1907 regards a crystal as an assembly of an immense number of harmonic 
oscillators with specific frequencies, the energy of vibration of which obeys the 
quantum rule; these oscillators form a system in thermodynamic equilibrium of 
which the behaviour can be described statistically with the aid of Boltzmann's 
theorem. Einstein identified these oscillators with the structural units ("Element- 
argebilde") in the crystal and assumed that they could be grouped into sets, each 
set comprising a great number of oscillators characterised by a common 
frequency of vibration; the total number of oscillators of all sorts is taken to be 
thrice the number of atoms comprised in the crystal. He showed it to be a 
consequence of his theory that the thermal properties of a crystal would stand in 
the closest relationship with its spectroscopic behaviour. 

The assumptions on which Einstein's theory rests are clearly justified by the 
physical facts of the case. For, every crystal consists of an immense number of 
structural units similar to each other which are capable of mechanical vibration 
and which by reason of their similarity may be expected to exhibit identical 
dynamical behaviour. The theory is, in effect, a synthesis of the results indicated 
by classical dynamics for such a system with the notions of the quantum theory 
and the basic principles of thermodynamics. It involves no inherent contradic- 
tions and can therefore claitn to be a rational approach to the fundamental 
problems of crystal physics. The following questions, however, need to be answered 
before any use can be made of the theory. How are the oscillators of different sorts 
envisaged in the theory related to the known structure of a crystal? How are they 
to be enumerated? What is the procedure by which the characteristic frequency of 

' 

each set of oscillators may be evaluated? The present memoir concerns itself with 
finding the answers to these questions and thus giving form and substance to the 
ideas of a very general nature put forward by Einstein. 
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2. The normal vibrations of crystal structures 

That the specific heat of a crystalline solid ttnds with rising temperature to reach 
a limiting value proportional to the number of atoms comprised in it is a,clear 
indication that the theoretical approach to any explanation of the facts has of 
necessity to consider the subject from an atomistic standpoint. We have also to, 
recognize the existence of interatomic forces; hence, the movements with which 
we are concerned are not simple translations of the individual atoms but 
vibrations of the atoms about their positions of equilibrium in the structure of the 
crystal. Any attempt to describe these vibrations or to enumerate them has 
necessarily to be based on the fundamental theorem in classical mechanics which 
states that all the possible small vibrations of a connected system of particles 
about their positions of equilibrium are summations of an enumerable set of 
normal modes; in each such normal mode the particles of the system have all the 
same frequency and the same or opposite phases of vibration. Hence, any rational 
approach to the specific heat problem must of necessity start with a consider- 
ation of the normal modes of vibration-in the sense of the theorem just 
stated--of the atoms about their positions of equilibrium in the lattice structure 
of the crystal. 

The basic principle of crystal architecture is that the structure comes into 
coincidence with itself following a unit tr,anslation along any one of the three axes 
of the lattice. It follows as a necessary consequence that the normal modes of 
vibration of the atoms characteristic of the structure of the crystal should possess - 
the same property. This can evidently happen in two ways, thereby enabling us to 
divide the normal modes into two distinct classes. In the first class of normal 
modes, the amplitudes as well as the phases of oscillation of the equivalent atoms 
which come into coincidence following a unit translation are identical. In the 
second class of normal modes, the amplitudes of equivalent atoms are the same 
but the phases are all reversed and the normal mode therefore remains the same 
following the unit translation. Since these two alternatives are possible for a unit 
translation along each of the three axes of the lattice, we have 2 x 2 x 2 or 8 
possible situations. Considering each of these situations separately, we proceed to 
write down the equations of motion of the p atoms comprised in the unit cell in 
terms of 3p co-ordinates which determine their displacements. Since the 
displacements of the equivalent atoms in adjoining cells which interact with the 
atoms in the cell under consideration are also the same, the 3p equations of 
motion of the latter contain only 3p independent co-ordinates. They can therefore 
be completely solved, giving us 3p solutions for each of the eight possible 
situations referred to above. Thus in all, we have 24p solutions. (3p - 3) of these 
solutions represent normal modes of vibration of the first kind, 21p solutions 
represent normal modes of the second kind and the three remaining solutions 
represent simple translations which have necessarily to be excluded. 

The (24p - 3) normal modes of vibration of the atoms in a crystal indicated by 
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the theory may be regarded as the modes of internal vibration of the group of 8 p  
atoms comprised in a super-cell of the crystal lattice whose linear dimensions are 
twice as large as that of the unit cell consisting of p atoms. The three omitted 
solutions would then represent the translations along each of the three axes of the 
crystal lattice of the whole group of 8 p  atoms included in the super-cell. Thus, we 
recognise that the structural unit whose dynamical behaviour is representative of 
the entire crystal is not the unit cell of the crystal structure, but has twice its 
dimensions along each of the three axes of the lattice. 

Thus, following Einstein, we may regard a crystal as an assembly of ( 2 4 p  - 3 )  
sets of oscillators, each of the sets having its own distinctive frequency of 
vibration,, The number of oscillators in each set is the same as the number of 
super-cells containing 8 p  atoms which are included in the whole crystal. Each set 
of oscillators forms an assembly in thermodynamic equilibrium and its behaviour 
can therefore be described statistically with the aid of Boltzmann's theorem. The 
average energy of an oscillator in each set is given by Einstein's formula for the 
particular frequency. Multiplying this by the number of super-cells contained in 
the volume of the crystal, we obtain an expression for the energy of all the 

. oscillators in that set. Finally, summing up the expressions thus obtained for all 
the (24p  - 3 )  sets with their respective frequencies of vibration, we obtain an 
expression for the thermal energy arising from the excitation of the vibrations of 
the atoms having precisely specifiable frequencies. 

3. The vibration spectra of crystals 

The foregoing results may be summed up as follows. If a unit volume of the crystal 
contains S super-cells each including 8 p  atoms, the total number of degrees of 
atomic freedom is 24pS; a very large proportion of this number, viz., (24p  - 3 ) s  
degrees of freedom, appears in the vibration spectrum of the crystal as sharply 
defined monochromatic frequencies; ( 3 p  - 3 )  of these frequencies represent 
vibrations in which equivalent atoms contained in each super-cell have the same 
amplitudes and phases of vibration, while the 21p  other frequencies represent 
modes of vibration in which the amplitudes are the same but the phases are 
opposite for equivalent atoms along one, two or all three of the axes of the lattice. 

We have now to consider and determine the nature of the movements 
represented by the 3 S degrees of atomic freedom left out in the preceding 
enumeration. This is also the number of degrees of freedom of translation of the S 
super-cells included in the crystal. Any translation of an individual super-cell 
would necessarily set up forces resisting such movement and also tending to 
displace neighbouring super-cells. We are therefore led to assume that the 3 S 
degrees of freedom under discussion would manifest themselves as internal 
modes of vibration in elements of volume of larger dimensions that our super-cell. 
The larger such element of volume is, the lower would be the limit of the possible 
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frequencies of such vibration. The translations of the individual super-cells are 
therefore to be associated with a whole series of frequencies lying between zero 
and an upper limit which is set by the frequency of internal vibrations in our 
super-cell. To take account of the anisotropy of the crystal, we would, in general, 
have to assume separate upper limits of frequency for the translations along the 
three axes of the crystal. It is left to determine how the 3 S unassigned degrees of 
freedom are distributed amongst the oscillators of various frequencies lying in the 
permitted ranges 0 -t v,, 0 -, v,, 0 -, v,. 

The problem indicated above can be dealt with and solved in a very simple 
manner. Consider two volume elements in the crystal which have the same shape 
as our super-cell and whose dimensions are respectively m and n times larger. The 
number of degrees of freedom of translation of these enlarged super-cells is 
respectively three times the number of such cells included in the volume of the 
crystal; the difference between them, viz., 3 S(l/m3 - l/n3) would therefore be the 
number of oscillators whose frequencies lie between v, and v, which are 
respectively their lowest frequencies of internal vibration. But the principle of 
dynamical similarity enables us to write v, = k/m and v, = k/n where k is a 
constant having the dimensions of a frequency. Hence, as m approaches n, v, - v, 
may be set equal to dv and the number of oscillators whose frequencies lie 
between v, and v, may be written as 9 S v2 dv/k2. On integrating this between zero 
and v, (the upper limit of the permitted frequencies), we should recover 3 S as the 
total number of oscillators, and hence k3 is identified as v:. Accordingly, the law of 
distribution of frequency in the spectrum may be written as 9 S.v2dv/v: for the 
isotropic case. More generally, for an anisotropic crystal v, may be replaced by v, 
or v, or v, respectively for the three directions of translations and the numerical 
factor 9 is replaced by 3. 

The law of distribution of the frequencies thus derived indicates that the 
majority of the oscillators now under consideration have frequencies not far 
removed from the upper limit. The same result may be expressed otherwise by the 
statement that the majority of the oscillators are of very small dimensions not far 
removed from the lower limit, namely the dimensions of the super-cell. If, for 
example, we were to identify all the vibrations arising from the translations of the 
super-cell with the internal vibrations in a voldme element whose dimensions are 
twice those of the super-cell, we would not be seriously in error. All except one- 
eighth of the 3 S degrees of freedom would be accounted for in such an 
enumeration; the residue omitted would represent oscillations in still larger 
volume elements appearing with still lower frequencies. 

4. The thermal energy of crystals 

The atomistic approach to the specific heat problem proposed by Einstein, when 
fully developed, thus leads us to the following picture of the nature of the 
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vibrations in a crystal which are the carriers of the thermalenergy. The oscillating 
units are not the unit cells of the structure, but are twice as large as the unit cells in 
their linear dimensions; their oscillations are of two kinds, namely, those arising 
from their internal vibrations and those arising from their translatory move- 
ments. The oscillations of the former description appear with ( 2 4 p  - 3 )  discrete 
frequencies of vibration, p  being the number of atoms contained in the unit cells of 
the crystal structure. The translatory movements, on the other hand, appear with 
a spectrum of frequencies all of which are lower than those of the internal 
vibrations. These, for the most part, are concentrated near the upper limit of their 
permitted range; but there is a residue which tails off as a continuous spectrum to 
very low frequencies. 

Accordingly, making use of the reasoning employed by Einstein for evaluating 
the average energy of an oscillator in each of the sets under consideration, we 
obtain the following expression for the heat content of a volume of a crystal 
containing N unit cells of the crystal structure as a function of the temperature, 
namely 

The numerical factor 118 appears in the expression because each dynamic unit 
contains 8  unit cells of the crystal structure. On differentiating the expression with 
respect to T as usual, we get the formula for the specific heat. 

The following remarks may be made regarding the numerical evaluation of the 
expression given above. All the (24p  - 3 )  frequencies would be distinct from each 
other only in the case of a completely anisotropic crystal. If any symmetry 
elements are present, the number of distinct frequencies would be naturally 
diminished and the formula would then contain only such smaller number, but 
the individual terms would then have to be multiplied by their respective 
degeneracies. Such reduction in the number of distinct frequencies would 
naturally appear both in respect of the ( 3 p  - 3 )  frequencies in which both the 
amplitudes and the phases are the same in adjacent unit cells and in the 2 1 p  others 
in which the phases may be opposite as already explained. As an illuspation of 
these remarks, we may consider a case in which p  = 2  and the crystal belongs to 
the cubic class and its structure consists of two interpenetrating face-centred 
cubic lattices. The ( 3 p  - 3 )  distinct frequencies then reduce to a single triply 
degenerate frequency; the 21p  or 4 2  other vibrations reduce to only eight distinct 
frequencies, all of which may be readily described in geometric terms related to 
the structure of the crystal. 

Since the first term in the expression for the thermal energy is a summation 
extended over (24p  - 3 )  distinct modes of vibration, while the second represents 
only the three residual translations, it is evident that the latter would be of very 
minor importance relatively to the first, especially in those cases where p  is very 
large, in other words when the crystal has a multi-atomic structure. The position, 



394 C V R A M A N :  PHYSICS OF CRYSTALS 

is a little different when p is small, as for example, when p is equal to 1. The 
contribution from the second term would not then be altogether negligible in 
comparison with the first term. The second term also acquires some importance 
relatively to the first at very low temperatures. For, since the frequencies , 

appeafing in it are low, their contributions to the specific heat would survive 
when those due to the vibrations of the higher frequencies appearing in the first 
term have been effectively frozen out by reason of Boltzmann's theorem. 

5. The spectroscopic behavioui of crystals 

In his paper of 1907, Einstein emphasised the intimate relationship indicated by 
his theory between the thermal properties of crystals and their optical behaviour. 
It is appropriate therefore that we make a reference here to the decisive support 
given to the results of the theory set forth above by the experimental facts 
regarding the spectroscopic behaviour of crystals revealed by investigations 
made with a great variety of materials and by diverse techniques of investigation. 
We need not however dilate on this topic, since the experimental situation in this 
respect has been reviewed in my Lindau address, and since, moreover, the 
particular case of the diamond which illustrates the general principles in a very 
striking fashion has been dealt with in detail in a recent lecture published in these 
Proceedings. 

6. Summary 

In Einstein's atomistic approach to the specific heat problem, a crystal is regarded 
as an assembly of sets of individual harmonic oscillators, each set consisting of a 
great number of oscillators having a common frequency of vibration. In the 
present paper, this view is developed and an expression is obtained for the 
thermal energy of the crystal which appears as a summation of (24p - 3) terms 
arising from the individual monochromatic frequencies of internal vibration of 
the dynamic units of the crystal structure each containing 8 p  atoms, with a 
supplementary term which takes account of the translational movements of the 
same units manifesting themselves as a continuous spectrum of frequencies of 
vibration within the crystal. 
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