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1. Introduction 

The branch of mathematical physics known as the theory of the elasticity of solids 
is based on certain notions regarding elastic stresses and strains which have been 
accepted doctrine for many years. It is therefore rather surprising to find that 
those notions are not sustainable and that the theory based on them has to be laid 
aside in favour of a stricter formulation. The need for such revision was broadly 
indicated in a recent publication in these Proceedings by the present authors 
(1955); but in view of the importance of the matter, the present paper is prefaced 
by a clearer and more precise exposition of the necessity for a revision of the 
classical theory. 

Our recent paper dealt with the case of isotropic solids in a formal manner, 
considering them as homogeneous substances exhibiting the highest possible 
symmetry in their elastic properties. Usually, however, the so-called isotropic 
solids are merely polycrystalline aggregates, and a discussion of their elastic 
behaviour should therefore properly be based on a consideration of the nature 
and properties of such aggregates. This is a task which we hope to be able to 
address ourselves in the not-too-distant future. In the present paper we shall 
consider the case of truly homogeneous but anisotropic solids, in other words, 
crystals. The subject will be dealt with from the phenomenological standpoint 
since this proves to be entirely adequate. We may remark, however, that the 
conclusions reached are in complete accord with the results of the atomistic 
approach to the theory of elasticity as developed both from the static and 
dynamic standpoints in a paper by one of us (Yiswanathan, 1954) and illustrated 
by a detailed discussion of a particular case of great interest, viz., diamond. 

2. The physical characters of elastic stress and strains 

A solid body may be defined as a material in which the volume elements retain 
their relative positions and orientations alike when the solid is at rest and when it 
is in a state of movement, translatory or rotatory, as the case may be. Elastic 
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stresses and strains arise when the situation thus described is departed from to 
ever'so small an extent. Hence, it is evident that the theory of elasticity is 
concerned with changes in the relative orientations of the volume elements of the 
solid, in other words, with linear displacements and/or angular movements of the 
volume elements with respect to their neighbours. This is illustrated by the 
familiar examples of a straight bar which is stretched or bent or twisted by the 
application of appropriate external stresses. From the general considerations 
indicated above as well as from the particular examples mentioned, it is clear that 
only in very special cases would elastic strains be such that a straight line drawn 
through the solid in any direction in the unstr'ained condition remains straight in 
the strained state, suffering only elongations or contractions. In the general case, 
and inevitably so when the strains involve differeatial rotations, a straight line in 
the unstrained condition would be curved in the strained state, and such 
curvature cannot possibly be ignored in the theory. Hence, it is clear that we have, 
in general, to consider strains and stresses which are heterogeneous, in other 
words, strains and stresses whose specifications vary from point to point within 
the solid. These variations necessarily enter into the equations of equilibrium in 
the static state and into the equations of motion in dynamic behaviour. 

3. Analytical specification of stresses and strains 

The mathematical theory of elasticity proceeds on the basis that the strains and 
stresses in the interior of the solid can be expressed in terms of the movements of 
the smallest possible elements of volume into which it can be imagined to be 
subdivided and of the forces acting on them. If the volume elements be small 
enough, their movements can be described completely in terms of the three 
positional co-ordinates of each element and their variations. Likewise, when the 
elements of volume are small enough, the interactions between each element and 
its neighbours can be expressed in terms of tractive forces alone, it being then 
clearly unnecessary to introduce anything in the nature of couples or torques. On 
the basis of these ideas, the state of strain in the solid at any given point can be 
expressed by resolving the displacement of the elementary volume originally 
located at such point along three mutually perpendicular directions and 
differentiating these three components of displacement again along each of the 
three axes in turn. We thus obtain the nine components of the strain tensor. 
Likewise, for specifying the state of stress to which the volume element is subject, 
we consider the tractive forces acting on an infinitesimal area drawn respectively 
normal to the three co-ordinate planes in turn at the position of the element and 
then again resolve these tractive forces along each of the three co-ordinate axes. 
We thus obtain the nine components of the stress tensor. 

It is evident that this method of representation of the stresses and strains 
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uniquely defines the state of the solid at any point and also enables us to 
determine whether the element of volume would or would not remain in 
equilibrium. If the components of stress do not vary along any of the three axes, 
the element would necessarily remain at rest. If, on the other hand, the stress 
components vary, their differential coefficients along the normals to the planes on 
which they act gives us a measure of the forces on the volume element in their 
respective directions. Adding up the three forces along each axis thus evaluated 
and putting their sums separately equal to zero, we obtain the conditions of 
equilibrium. 

The well known and familiar treatments given'in the standard treatises proceed 
on the basis that the components of the strain and stress tensors are both 
reducible in number from nine to six. The arguments on which the reduction in 
number from nine to six of the components of strain is based may be summarised 
by the statement that the elastic strains can be separated into what are called 
"pure strains" and "rotations," and that the latter can be ignored. That this 
argument is unsustainable will be evident at once from the remarks made in the 
foregoing section regarding the physical nature of elastic strains. We have, in 
general, to take account of both differential displacements and differential 
rotations and it is therefore not permissible tO eliminate the rotational parts of the 
strain, these being physically quite as real as the irrotational parts. 

The arguments justifying the reduction in the number of the independent 
components of stress from nine to six are based upon the idea that equilibrium 
would be possible only if the angular momenta of the tractions taken about each 
of the three co-ordinate axes in turn cancel each other out. That this idea is 
misconceived will be evident from the remarks already made earlier regarding the 
conditions necessary for equilibrium. In the case of homogeneous strains, the 
tractive forces acting on each volume element necessarily balance each other. In 
the case of heterogeneous strains, the conditions of equilibrium can be expressed 
in terms of the differential coefficients of the stress components along the normals 
to the planes on which they act, as already explained. In either case, if the 
equilibrium conditions for each volume element of the solid are satisfied, then the 
solid as a whole necessarily remains in equilibrium; vice versa, if the external 
stresses acting on the solid are such that it remains as a whole in equilibrium, the 
elastic stresses would everywhere necessarily be such as to ensure equilibrium of 
the individual volume elements. It follows that no general relations connecting 
the magnitude of the tensor components and enabling their number to be reduced 
from nine to six can be derived from considerations based on the conditions for 
equilibrium. 

We may summarise our conclusions by stating that neither the reduction of the 
strain components nor the reduction of the stress components in number from 
nine to six has any theoretical justification; a correct and complete theory of 
elasticity has necessarily to take all the nine components of the stress and strain 
tensors into consideration. 
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4. The stress-strain relationships 

- Writing the nine components of the strain tensor as 

and likewise the nine components of the stress tensor as 

the stress-strain relations can be expressed in the general form 

and involve 81 constants. Here the constant dm, relates the stress T, to the strain 
u, and is the ratio of the two for a deformation in which all components other than 
U, vanish. 

The 81 constants figuring in (1) are not all independent, but reduce in the first 
instance to forty-five for all solids in view of the relations 

The above relations follow from the well known theorem of reciprocity relating 
forces and the corresponding displacements of dynamical systems. The reciproc- 
ity relations further enable us to write down the expression for the deformation 
energy per unit volume in the neighbourhood of any point and this is given by 

9 

U 5 3  C Tm~m 
m =  1 

2U = c c dm,umu,. 
m n 

(3) 

Thus in the general case of a completely anisotropic solid, we have forty-five 
elastic constants instead of the 21 contemplated by the classical theory. 

The number of independent elastic constants which is forty-five for a 
completely anisotro ic solid diminishes in the case of solids possessing the 
various elements o fk ymmetry characteristic of the different crystal classes, 
coming down to four for crystals of the classes T,, 0 and 0,. The number of 
surviving constants in each symmetry class can be computed in an elegant fashion 
by adopting the group-theoretical method developed by Bhagavantam (1949). 
One is concerned in the present case with a linear relationship between nine stress 
components and nine strain components, the constants of proportionality being 
the elastic constants (matrix dm,). Further, the elements of the "elastic constants 9 



THEORY O F  THE ELASTICITY OF C R Y S T A L S  

by 9 matrix" satisfy the relation dm, = d,,. With these restrictions, the transform- 
aiion matrix for the elastic constants can be written out and the corresponding 
character can be deduced. This comes out as 

x;(R)= 16c4 f 16c3 + 8c2 f 4c + 1 (4) 

where c = cos 4, R is a symmetry operation and 4, the rotation. The plus sign is 
used for proper rotations, and minus for an improper one. The corresponding 
character for the 21-constant theory is 

x;(R)= 16c4f 8c3-$c2+ 1 (5 )  

Table 1 gives the number of independent constants according to the two formulae 
for each symmetry class, while the constants that survive and those that vanish 

Table 1 

No. of elastic constants 
Crystal system Point group I I1 

Triclinic All 21 45 

Monoclinic All 13 25 

Orthorhombi All 9 15 

Tetragonal 
7 13 

Dd422) 
c4v($m) 6 9 

s4. = D ~ ( 4 2 m )  
D4h(4/m2/m2/m) 

Trigonal 

Hexagonal 
5 11 

De.(622) 
Cd6mm! 5 8 
D3rCh2) 
D,h(6/m2/m2/m) 

Cubic 
3 5 

3 4 
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are exhibited in detail for the various cases in tables 2 to 12. A comparison of these 
tables amongst themselves will enable the reader to realise how the existence of 
common symmetry elements results in the appearance of common features in the 
tables of elastic constants. For example, all the twenty constants that vanish for 

Table 2 

Triclinic (C,, C,) 

dl 1 dl, 4 3  dl, d16 4 7 die 4 9  

4 2  4 3  4 4  d25 d26 4 7  d28 d29 

4 3  4 4  4 5  d36 d37 d38 4 9  

d44 d45 d46 d47 d48 d49 

d5 5 d56 d5 7 d58 4 9  

d66 4 7  d68 d69 

d77 d78 d79 vl den 4 9  
d99 

Table 3 

Monoclinic (C,, C,, C,,)-diad axis 11 z, plane of reflection I to z 

4 1 d12 4 3  (I 0 0 0 dl8 dl, 

4 2  d23 O 0 0 0 4 8  4, 
d33 (I 0 0 0 d38 4 9  

4 4  d45 d46 d47 O 0 
d55 d56 4 7  (I 0 

456 d67 O 0 
d77 0 0 

den 4 9  

$9 

Table 4 
- 

\ Orthorhombic (C,,, D,, D,,,) 

4 1 dl, 4 3  O 0 0 0 0 0 
d Z ~  d23 (I 0 0 0 0 0 

d33 0 0 0 0 0 0 
4 4  , d45 0 -. 0 0 0 

d55 0 0 0 0 
4 6  d67 O 0 

d7, 0 0 
den d89 

d99 
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Table 5 

Tetragonal (C4, S4, C4,,)-tetrad axis 11 z 

41 4 2  d13 O 0 0 0 4 9  

d l  1  d13 O 0 0 0 - 1 9  - d 1 8  

d33 O 0 0 0 4 8  - d 3 8  

d 4 4  d45 d46 0 0 0 
d55 O - d 4 6  O 0 

d 5 5  d 4 5  0 0 
d 4 4  0 0 

[L)! d 8 8  4 9  

d 8 8  

Table 6 

Tetragonal (C4,, S4,,, D 4 ,  D4,,)-tetmd axis II z 
k 

4 1  4 1  4 3  O 0 0 0 0 0 
4 1 d13 O 0 0 0 0 0 

4 3  0 0 0 0 0 0 
d 4 4  d 4 5  0 0 0 0 

d 5 5  0 0 0 0 
d 5 5  d 4 5  0 0 

d 4 4  0 0 
d88 4 9  

d 8 8  

Table 7 

Trigonal (C3, S6)-triad axis 1) z 

d l  1  d l ,  d13 4 4  d15 4 8  - d l 8  

d l  1  4, 4 - d l 5  - d l 6  - d l 7  d i e  ~ ~ 1 8  

d33 0 0 0 0 d38 - d 3 8  

d 4 4  d45 d46 0 d l l  - 4 1  

4 5  (I -d46 -d16 -d16 

= d l 1  - d 1 2 ' d S 9  
d 4 4  d 4 5  d l 5  d l  5  

d 5 5  d l 4  

p z q  d88 4 9  
d88 

monoclinic crystals also disappear in the orthorhombic, tetragonal and cubic 
systems. Likewise, all the thirty constants that vanish for orthorhombic crystals 
vanish also for those tetragonal crystals which possess three mutually per- 
pendicular diad axes and for all cubic crystals. A noteworthy feature is that the 
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Table 8 

Trigonal (D3, D3d,C3v)-triad axis 11 z 

-- 

Table 9 

Hexagonal C6, Ceh)-hexad axis 11 z 

4 1 4 2  4, O 0 0 O - d18 

4 1 O 0 0 (I d18 - d18 

4 3  O 0 0 (I d38 - d38 

d44 d45 d46 0 0 0 
d55 O -d46 O 0 

d44 d45 0 0 
d 8 8 = d l l - d 1 2 - d 8 ~  4 5  O 0 

p K z q  den d89 

d88 

Table 10 

Hexagonal (D3h, C,", D6, Dsh)-hexad axis 11 z 

dl 1 dl2 0 0 0 0 0 0 
dl 1 0 0 0 0 0 0 

d33 0 0 0 0 0 0 
d44 d45 0 0 0 0 

d55 0 0 0 0 
d44 d45 0 0 

d88=dll-d12-d89 4 5  0 0 
i'zzq den d89 

1 d88 
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Table 11 

Cubic (T, T,) 

dl 1 dl2 4 2  0 0 0 0 0 0 
dl 1 dl2 0 0 0 0 0 0 

d! 1 0 '0 0 >o 0 0 
4 4  d45 0 0 0 0 

d5, 0 0 0 0 
d44 d45 0 0 

Table 12 

Cubic (Td, 0,OJ 

dl 1 dl 2 dl2 0 0 0 0 0 0 
dl 1 dl2 0 0 0 0 0 0 

dl, 0 0 0 0 0 0 
dl4 d45 0 0 0 0 

d44 0 0 0 0 
4 4  d.4, o o 

d44 0 0 

]-I d44 d45 
d44 

< 

cubic crystals which exhibit a four-fold axis of symmetry have only four different 
elastic constants, whereas those cubic crystals that do not exhibit this feature 
have five constants different from each other. 

5. Wave-propagation in crystals 

The general equations of motion of an elastic solid are given by 
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where p is the density of the medium and T,,, . . . are the stress components. If the 
solid is in equilibrium, the quantities on the left-hand side of these equations, 
representing the acceleration of an unit volume element, will vanish and we get 
the conditions of equilibrium of the solid. 

To evaluate the velocity of propagation of waves in the solid in any given 
direction, we first seek solutions of the above equations which are in the form of 
plane waves of the type 

I 2n: 
u=Aexpi-(vt-eqr). 

A .  (7) 

Denoting the components of A in the directions of the co-ordinate axes by Ax, AY, 
I AZ and using once again the four-suffixed symbols for the elastic constants, we 

now get on substitution of (7) in (6) that 

and two similar equations for the y and z components. 
For a wave progressing in the direction (lmn) equation (8) can alternatively be 

written as 

(A,, - pv2)AX + AXYAY + A,,Az = 0 

A,AX + (A,,, - pv2)Ay + Ay,AZ = 0 (9) 
AXzAx + Ay,Ay + (A,, - pvZ)AZ = 0 

where A,,, A,, . . . . are given by the scheme 

dl1 daa d77 2d7a 
A,, d99 d22 d44 2d24 m2 

d66 d55 d33 2d35 n2 

d69 d25 d34 (d23 + d45) (d39 +d46) 
~ S B  d37 (d57+d3a) (ds7+di3) 
d28 d47 (d27 + d48) + d79) 

Equations (9) determine the velocities of propagation of the three types of 
waves in any direction for crystals of the triclinic system which possess no 
symmetry of structure at all. The number of constants figuring in the wave 
equations will diminish rapidly as we pass on to crystals of higher symmetry, and 
become only three for crystals of the T,, 0 and Oh classes. We tabulate below the 
wave equations for the different classes of crystals taking into account of their 
symmetry. 
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I .  Monoclinic system (C,, C2, C2,)-diad axis parallel to the z-axis 

(dl1l2 + d8,m2 + d77n2 + 2d181m - pv2)Ax + {d1912 + dZ8m2 + d4,n2 

+ ( 4 2  + dag)lm)AY + {(d3, + dS7)mn + (dl3 + d6,)n1)AZ = 0. 

{dlg12 + dz8m2 + d4,n2 + (d12 + d8g)lm)AX + (dg912 + dz2m2 + d4,n2 
+ 2dZglm - pv2)Ay + {(dZ3 + d,,)mn + (d3, + d4,)nl)AZ = 0. 

( ( d 3 8  + d57)mn + Id1 3 + d67)n1}Ax + { (d23  + d45)mn + (d39 + d46)nl) 
AY + (ds612 + d,,m2 + d3,n2 + 2ds61m pv2)Az = 0. 

The wave equations contain twenty independent constants. 

11. Orthorhombic system (C,,, D2, D,,) 

(dll12 + ds8m2 + d7,n2 - pv2)Ax + (d12 + dEg)lmAY 
(+ dl3 + d6,)nlAZ =0, 

( 4 2  + dEg)lmAX + (dgg12 + d2,m2 + d4,n2 - pv2)Ay 
+ (dZ3 + d4,)mnAZ = 0. 

(dl3 + d6,)nlAX + (d23 + d4,)mnAy + (d6,12 + d5,m2 
+ d3,n2 - pv2)Az = 0. 

The wave-equations involve twelve distinct constants. 

111. Tetragonal (C,, S,, C,,)-tetrad axis parallel to the z-axis 

{d1112 + dg8m2 + ds4n2 + 2d181m - pv2)Ax + {dIg(l2 - m2) 

+(dl ,  + dEg)lm)Ay + {(d,, - d4,)mn +(dl ,  + d,,)nl)A% 0 

{d19(12 - m2) +(dl ,  + d8,)lm)Ax + {dE812 + dllm2 + d4,n2 - 2d181m 
- pv2)Ay + {(dI3 + d4,)mn + (d,, - d3,)nl)AX = 0. 

{ (d38  -d46)mn + (d13  + d45)n1)AX + { (d13  + d45)mn + (d46 -d38>nl} 
AY + {d55(12 + m2) + d33n2 - pv2)AZ = 0. 

The number of independent constants containe'd in the wave equations is ten. 

IV. Tetragonal (C,,, S,,, D,, D,,)-tetrad axis parallel to the z-axis 
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The number of independent constants contained in the wave-equations is seven. 

V. Trigonal system ( C ,  S6)-triad axis parallel to the z-axis 

{d16(12 - m2) + (d38 - d46)mn + (dl3 + d,,)nl $ 2d151m)Ax 
+ {d15(12 -m2)+(d13 +d45)mn+(d46 -d38)nl-2d161m)Ay 
+ {d4,12 + dS5m2 + ds3n2 - pv2)AZ = 0 

where 

d88 = ( d l l  -d12-d89). 

The number of independent constants contained in the wave equations is twelve. 

VI. Trigonal (D3, D3d, C3,,)-triad axis to the z-axis 

{dll12 + deem2 + dS5n2 + 2d14mn - pv2)Ax + {2d14n1 
+ (al2 + ds9)lm)AY + {(dl ,  + d,,)nl + 2d151m)Az = 0. 

' {2d14nl + (d12 + d8,)lm)Ax + {dE812 + dllm2 + d4,n2 
- 2d14mn - pv2)AY + {d15(12 -ma) 
+ (dl 3 + d45)mn + d46nl)AZ 3: 0. 

{(dl3 + d,,)nl + 2d151m)Ax + {di5(12 - m2) 
+ (dl3 + d45)mn + d4,nl)AY + {d4,l2 + dS5m2 + d3,n2 
- pv2)AZ = 0. 

where 

d88 - d 1 2  -d89). 

The number of independent constants contained in the wave equations is eight. 



VII. Hexagonal (CJhY C6y Csh)-hexad axis parallel to the z-axis 

(dll12 + d8,m2 + d5,n2 + 2dl,lm - pv2)Ax + (d18(m2 - 12) 
+ ( 4 2  + dSg)lm)AY + ((d3, - d,,)mn + (dl ,  + d4,)nl)AZ = 0. 

{d18(m2 - 1') + (dl,  + dsg)lm)AX + {dS8l2 + dllm2 + d4,n2 
- 2d181m - pv2)Ay + ((dl ,  + d,,)mn + (d,, - d38)nl)Az = 0. 

- d46)mn + + d45)nl)Ax + ((dl ,  +d4,)mn 
+ (d4, - dJ8)nl)Ay + (d4,12 + ds5m2 ,+ d3,n2 - pv2)Az = 0. 

where 

d88 = (dl 1 - dl2 - d89). 

The number of independent constants contained in the wave equations is eight. 

VIII. Hexagonal (D3,, C6", D6, Dsh)-hexad axis parallel to the z-axis 

(dl ,12 + de8m2 + d,,n2 - pv2)Ax + (dl ,  + d8,)lmAY 
+ (dl,  + d4,)nlAz = 0. 

(dl ,  + dSg)lmAx + (dS8l2 + dllm2 + d4,n2 - pv2)Ay 

+ (d + d4,)mnAZ = 0. 

(dl,  + d45)(nlAX + mnAY) + (d4,12 + dSsm2 + d3,n2 - pv2)Az = 0. 

Here again the relation 

characteristic of crystals of the trigonal systems subsists, and number of 
independent constants appearing in the wave equations is six. 

I X .  Cubic (T and T,) 

(dl ,  + d4,)(nlAX + mnAY) + (dlln2 + d4,12 + d,,m2 - pv2)Az = 0. 

The number of independent elastic constants appearing in the wave equations is 
four. 

X. Cubic (T,, 0 and D,) 
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(dl, + d4,)lmAX + (dl ,m2 + d44(12 + m2) - pv2)AY 
. + (dlz + d4,)mnAz = 0. 

(dl, + d4,)(n1AX + mnAY) + {dl1l2 + d44(12 + m2) - pvZ)AZ = 0. 

The number of independent constants appearing in the wave equations is three. 

6. Static deformation problems 

Equations (1) express the nine stress components in terms of the nine strain 
coefficients. One can work out the inverse transformation of (1) and express 
instead the strain coefficients as linear functions of the stress variables. The strain- 
stress relations can therefore alternatively be written also as 

If A,, denotes the co-factor of the element dm, in the determinant of the 
transformation (1) and A = determinant Idmnl, then Dm, = (A,,JA). 

The strain-energy can be expressed purely as a function of the stress coefficients 
and we have another expression 

for the deformation energy which is equivalent to (3). 
In the classical theory the nine stress variables are reduced to six by means of 

the relations T,, = T,; T,, = T,,; Txy = T,,. The deformation energy of the solid 
is thus a function of the six stress variables only. Adopting the usual convention 
of writing Ti, Ti, Ti, Ti, T;, Tk for T,,, Tyy, T,,,Ty,, or T,, T,, or T,,, T, or T,, 
respectively, the classical expression (4) for the strain-energy becomes 

The coefficients smn occurring in the above expression are the well known elastic 
moduli of the classical theory. One can obtain formulae for these moduli in terms 
of our constants Dm, by considering cases of homogeneous stresses for which the 
relations Ty, = T,,; T,, = T,,; Txy = Tyx hold good. Making these substitutions in 
(1 1) and comparing the resulting expression with (2), we get s,, = Dm, when both 
m and n are 1,2, or 3 and relations of the type 

for the other coefficients. 
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We can now write down the expressions for the compressibility, Young's 
modulus, and the Poisson's ratio for any crystal in simple terms. In view of the 
fact that all these moduli are determinable from experiments dealing with purely 
homogeneous strains, the formulae for them are not essentially differ-ent from the 
corresponding ones of the1 classical theory. By following the same methods as 
those adopted in the latter3, we give below the formulae for these moduli in our 
present notation. 

When the crystal is subjected to a uniform hydrostatic pressure P, we have 
from the first three of the equations (10) 

u1 + 
= (sll + s12 + s13)P from (13) 

u2 = ( ~ 2 1  + s22 f s23)P 
u3 = ( ~ 3 1  + S32 + ~ 3 3 ) ~ .  

The linear compressibility modulus in the direction of the x-qxis is therefore given 
by 

kx =(Plu1)= ~ M ~ I I  +s12 +st,) (14) 
and the bulk modulus is expressed by the formula 

k = P/(ul + u2 + u3) = l/(sll + 822 + S33 + 2sZ3 + 2~3, + 2~12). (I51 

If the solid is subjected to a uniform tension T in the direction of the x-axis, 
obviously T, = T; T2 = T3 = . . . T, = 0. Hence it follows from (10) that the 
Young's modulus in the direction of the x-axis is given by 

Similarly the Poisson's ratio in the direction of the y-axis is given by 

0 = -(s12/s11). (17) 

To write down the expressions for the Young's modulus and Poisson's ratio in 
any general direction (1, m, n), we require the law of transformation of the strain as 
well as the stress components when one passes over from one co-ordinate system 
to another. If the direction cosines of the axes Ox', Oy', Oz' of a new co-ordinate 
system referred to the original one are (I, m, n,), (I2 m2 n2) and (I3 m3 n3) 
respectively, we have 

Tx,x, = lfTxx + m:~,, + n:T,, + m,nl(Tyz + T,,) 
+ n,l,(Tzx + T,,) + I,m,(Txy + Tyx) 

Tx'yl = 1112Txx + m1mzTyy + n1n2Tzz + (m,nzT,, + m2n1Tzy) 
+ (n1l2Tzx + n2l1Txz) + (~1m2Txy + 12m1Tyx) (18) 

'T,,xl = 1112Tx, + mlm2Tyy + n,nzT,, + (m2nlTy, + m1n2TZy) 
+ (n2 11 Tzx + n1 ~zT,,) + (12m1 Txy + 1, m2Tyx) 
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Now, if the solid is subjected to a uniform tension T over the planes x' = const. of 
which the normal has direction cosines (llmlnl), we get from the transformation 
rules 

T,,=l:T; T,,=m:T; T,,=n:T; Ty,=Tzy=mlnlT; 
T,, = Txz = nlllT; T,, = T,, =,llmlT. 

Further, u,,,  is given by (19). Hence denoting by q,, the row vector (1: m: n: m, n, 
n, Ill1 m,) with six components, we find the expression for the Young's modulus 
in the direction of the vector (1, m, n,) as 

Ex, = l/%,Sij,, (20) 

where S denotes the matrix (s,,). Similarly the Poisson's ratio in the direction of 
the y'-axis which has direction cosines (1, m, n,) with respect to Ox, 0, and 0, is 
given by 

where 4 = q,,S& and the differential coefficients are formed as if these arguments 
are independent. 

It is interesting to note that only twenty-one of the forty-five constants figuring 
in (10) gppear in the above formulae. As mentioned earlier, this is a consequence 
of the homogeneity of the strains applied to evaluate these static moduli, 

The stresses and strains which appear when elastic materials are subject to 
torsion or flexure are essentially heterogeneous, and hence in dealing with them, 
our elastic moduli Dm, will appear in combinations other than those which figure 
in homogeneous deformations. The present theory is quite competent to handle 
such problems, but to deal with them in detail would carry us far beyond the 
scope of this paper. 
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I 7. Some concluding remarks 

The main purpose of the present paper has been to establish the necessity for an 
amendment of the phenomenological theory of elasticity a's universally accepted 
hitherto. Any theory to be acceptable should include in its scope elastic stresses 
and strains of the most general type and specify them in an analytical form from 
which the equations of equilibrium in static problems and the equations of 
motion in wave-propagation can be written down immediately. These require- 
ments are not met by the present form of the theory but are completely satisfied if 
all the nine components of stress and strain in the usual tensor formulation are 
retained. When thus amended, the phenomenological theory is capable of 
handling all the problems of the subject, including those which arise in its 
practical applications. The more important of these are considered in detail in the 
course of the paper and the results are set out explicitly for the different crystal 
classes so that they could be readily made use of. 

As already remarked in the introduction, the phenomenological theory as 
amended gives results in complete accord with those derived from the atomistic 
approach to the theory of elasticity of crystals based on the most general scheme 
of interatomic forces. To discuss the latter further or to give an account of the 
somewhat confused history of the subject would lie outside the scope of the 
present paper. A few remarks regarding these matters will however be found in 
the attached appendix. 

Summary 

The fundamental aspects of the phenomenological theory of elasticity are 
critically examined arid it is shown that the tensor representation of the elastic 
strains and stresses in the general case should be in the unsymmetrical form. On 
this basis, the stress-strain relationships are deduced and tabulated for the 
different crystal classes. The equations determining the velocities of wave- 
propagation in different directions are also obtained and tabulated. Static 
deformation problems are then discussed and it is shown that in the particular 

I case of homogeneous strains, the elastic constants group themselves in linear 
combinations which are equivalent to the elastic moduli of the theory in its 
familiar form. In wave-propagation, however, the strains and stresses are 
heterogeneous and hence all the elastic constants are involved and appear in 
linear combinations which are different and also larger in number than those 
which figure in the formulae for homogeneous deformations. These results are 
completely in accord with the consequences of the atomistic theory based on 
interatomic forces of the most general type. 
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Appendix 

As is well known, the theory of the elasticity of solids in its present form was 
initiated by Cauchy who put forth the fundamental idea of expression elastic 
stresses and strains in the manner adopted in the phenomenological theory, and 
also developed the theory on an atomistic basis. Later theorists, notably Green, 
Stokes and Kelvin retained Cauchy's method of specifying elastic stresses and 
strains but adopted a purely phenomenological approach. The view advocated 
by them that a completely aelotropic body would have twenty-one elastic 
constants and not fifteen as derived by Cauchy received general acceptance. 

In a paper published in these Proceedings some years ago by one of us (Raman, 
1943), a theory of the dynamic behaviour of crystal lattices was developed based 
on the assumption of interatomic forces of the most general type. In subsequent 
years, the consequences of that theory was worked out in detail for the case of 
diamond and confirmed by a series of spectroscopic investigations on the 
scattering of light, the luminescence and infra-red absorption by that crystal. The 
high values of the interatomic force-constants disclosed by the spectroscopic 
behaviour of diamond were evidently related to its exceptional elastic behaviour. 
In the endeavour to place this relationship on a quantitative basis, a fresh 
approach was made by one of us (Viswanathan, 1954) to the atomistic theory of 
the elasticity of crystals, both from the static and dynamic points of view, and 
some surprising results emerged. Contrary to the assertion made in the papers of 
Max Born and his collaborators which also finds a place in their recent book 
(Born and Kun Huang, 1954), no difficulty was encountered in expressing the 
energy of static deformations in terms of interatomic forces of the most general 
type. It was found that this expression contained forty-five independent 

. constants, but for homogeneous or irrotational strains they appeared in twenty- 
one distinct linear combinations. The dynamics of wave-propagation in crystals 
was also investigated and it was shown that the expressions for the wave-velocity 
contained the same forty-five constants but in different linear combinations. The 
work of Born and his school on the dynamic problem was critically examined and 
it was shown that the assumptions made by them in the attempt to reduce the 
forty-flve constants which appeared in their theory to twenty-one had no 
theoretical justification. 

The results of Born and his school were also contradicted by Lava1 in some 
recent publications (1951). More recently till, a series of papers have been 
published by Le Corre in which Laval's ideas have been further developed. On 
reading those papers, one obtains the impression that their author believes the 
results of the atomistic and phenomenological approaches to differ essentially. 
For example, in order to account for the non-symmetric character of the stress 
tensor, internal couples are postulated to balance the differences in the angular 
momenta. We may remark that there is no room for such a postulate, since the 
analytical specification of the stresses in terms of the Qensor components should 
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itself suffice to describe the state of the solid completely. In the last paper of the 
series, a statement also appears that an atomistic approach is essential to solve 
such familiar problems in elasticity as torsion and flexure. 

In conclusion, we have to thank Mr A K Ramdas for his help in the 
preparation of the tables appearing in the paper. 
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