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1. Introduction 

In an essay1 by the present writer published in February 1922, it was remarked 
that transparent crystals, such as ice and quartz, when traversed by an intense 
beam of white light, exhibit an observable blue opalescence due to the diffusion of 
the incident radiations by the thermally induced fluctuations of density and 
refractive index in the medium. Six years later,2 the use of monochromatic light 
and of spectral analysis in such studies revealed that in the radiations scattered by 
crystals, there are large and readily observable shifts of frequency. The field of 
investigation opened up in 1922 was thus vastly enlarged by the discovery of 
1928. Since that time, many investigations have been made and much valuable 
knowledge gathered regarding the scattering of light in crystals and the 
accompanying changes of frequency. 

In any attempt to connect the physical ljroperties of crystals with their ultimate 
structure, we inevitably come up against the followin,g questions. What is the 
nature of their vibration spectra, and how are the modes and frequencies of 
vibration of the atoms in a crystal related to its structure? The answers to these 
questions are of fundamental importance to the physics of the solid state. The 
study of the spectral shifts observed in light-scattering is the most powerful 
method available to us for obtaining information concerning these issues. It is the 
purpose of the present paper to show that a consideration of the facts ascertained 
by such btudies enables us to reach definite conclusions regarding the questions 
raised above. 

2. The two types of light scattering in crystals 

Spectroscopic studies have shown that the scattering of light in crystals is of two 
distinct species which differ fundamentally in their observable characters and 
which correspond respectively to the two phenomena whose existence was 
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recognised in 1922 and in 1928. The first type of light-scattering is an effect 
primarily of thermal origin; the frequency shifts in it vary with the angle of 
scattering and are so small that they can only be measured with the most powerful 
instrumental aids at our disposal. Quantitative studies of this type of scattering 
have shown that it arises from the presence in the crystal of sound-wave patterns 
of thermal origin which diffract the light-waves traversing it. In other words, the 
light-scattering of the first kind is a macroscopic phenomenon which can be 
explained in purely classical fashion. The second type of light-scattering differs 
from the first in the magnitude of the freq~ency~shifts which are much larger and 
correspond to wavelengths in the infra-red spectrum. From this and the fact that 
similar effects are also observed with other states of molecular aggregation, viz., 
gases, liquids and amorphous solids, we infer that the second type of light- 
scattering, unlike the first, is a molecular phenomenon which is explicable only on 
quantum-mechanical principles. This conclusion is confirmed by many other 
facts of observation and especially by the results of comparative studies made 
with materials in diverse states of molecular aggregation. Such studies enable us 
to understand how the state of aggregation influences the observed phenomena 
and assist us in reaching a correct interpretation of the effects observed with 
crystals. 

3. The elastic vibrations of crystalline solids 

The spectral shifts of frequency observed in the scattering of light by gases are of 
three distinct species and of widely different orders of magnitude which we 
associate respectively with the three possible kinds of movement of a free 
molecule, viz., translation, rotation and vibration. Likewise, in the case of 
crystals, we shall be justified in assuming that the two types of light-scattering 
actually observed are associated respectively with the two possible kinds of 
movement of the lattice cells of a crystal, viz., translations and internal vibrations. 
The translatory movements have no pre-determined frequency of their own 
whereas the internal vibrations may clearly be expected to possess characteristic 
frequencies fixed by the structure of the crystal, viz., by the masses and positions 
of the atoms and the strength of the interatomic forces. It is thus evident that the 
two classes of movement differ fundamentally in their nature and they have 
therefore to be considered separately. 

The translatory movements of the lattice cells may properly be identified with 
the displacements of the volume-elements in the crystal contemplated in the 
classical theory of elastic wave-propagation in solids. The whole of that theory is 
based on the assumption that a solid may be subdivided into volume elements 
small enough to justify their being treated as single particles for the evaluation of 
their kinetic energy and yet large enough for the potential energy of deformation 
to be evaluated on the same basis as for a solid of macroscopic dimensions. The 
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assumption is a justifiable approximation, provided the wavelength of the elastic 
vibration is large compared with the lattice spacings of the crystal and its 
frequency is small in comparison with the characteristic frequencies of its 
structure. But as we go down in the scale of wavelengths or go up in the scale of 
frequencies, we would inevitably reach and pass the limits beyond which these are 
no longer valid assumptions. It follows that the ideas and methods of the classical 
theory of elasticity are limited in their application to the movements in the lower 
ranges of frequency where the elastic displacements may properly be identified 
with translatory movements of the lattice cells of the crystal, and only 
infinitesimal alterations in the interatomic distanbes are involved. The situation is 
entirely different in the second class of movements, viz., the internal vibrations of 
the lattice cells which we now proceed to consider. 

4. The characteristic vibrations of crystal structures 

The vibrations of a free polyatomic molecule and the internal vibrations in the 
lattice cells of a crystal differ in so far as that in the latter case, the interactions 
between each unit of the structure and those surrounding it have to be considered. 
The results of such interaction can be foreseen by considering the simple example 
of two pendulums of equal length suspended from a common support. The 
yielding of the support and the consequent coupling of the pendulums results in 
the system having two different periods of oscillation instead of one; the 
oscillations of the two pendulums have equal amplitudes in both cases, but their 
phases are the same in one case and opposite in the other. In a paper published 
eight years ago in these  proceeding^,^ the writer gave a formal proof of the 
following theorem which is the generalised three-dimensional analogue of the 
theory of coupled oscillators. In the normal modes of vibration of the structure of a 
crystal, equivalent atoms in adjacent cells have the same amplitude of vibration, 
while their phases are either the same or else opposite in successive cells of the lattice 
along each of its three axes. An easy verification of this theorem is furnished by 
considering the effect of giving the crystal a unit displacement along any one of 
thelthree axes of the lattice. Such displacement brings the atoms in a cell into the 
positions previously occupied by the equivalent atoms in an adjacent cell: since 
the normal mode is a characteristic property of the crystal structure, we should 
expect it to remain unaltered following the unit translation, and it is readily seen 
that this is so in all the cases covered by the theorem and in no others, In other 
words, the theorem provides us with a means of completely enumerating the 
possible normal modes of vibration of the structure of the crystal. 

Since the phases of the vibration of equivalent atoms in adjacent cells may be 
either the same or opposite along each of the three axes of the lattice structure, we 
have 2 x 2 x 2 or 8 distinct situations regarding the relative phases of the 
vibrations in a unit cell and in those surrounding it. Thus, when we proceed to 
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write down the 3p equations of motion of the p atoms in a unit cell, taking into 
account the interactions with the atoms in surrounding cells, we have to consider 
8 different sets of 3p equations, each of which contains 3p variables. Accordingly, 
we obtain 24p solutions in all. This total number may be subdivided as follows: 
(3p - 3) solutions represent normal modes of vibration in which the phases are 
the same in adjacent cells of the structure; 21p solutions represent normal modes 
in which the phases of vibration are opposite in adjacent cells along one, two or 
all three of the axes of the lattice; and finally a residue of 3 solutions which 
represents the three excluded translations. An element of volume whose 
dimensions are twice as large and whose content is therefore 8 times as great as for 
a unit cell of the crystal, would contain 8p atoms whose total degrees of freedom 
would number 24p. The (24p - 3) normal modes of vibration indicated by the 
theory may therefore be regarded as the modes of internal vibration of the atoms 
included in this 8-cell unit, and the 3 excluded solutions as the three translations 
of such unit. 

5. The nature of the vibration spectrum 

The results of the two preceding sections may be summed up by the statement 
that the character of the vibration spectrum is totally different in the two regions 
of it arising respectively from the translations and vibrations of the lattice cells of 
the crystal. The translatory movements give us a continuous spectrum of elastic 
vibrations lying in the lower range of frequencies, while the vibratory movements 
give us a line-spectrum which is characteristic for the crystal and appears in the 
upper or infra-red range of frequencies. The total degrees of freedom of atomic 
movement in the crystal are divided between the two species of vibration in the 
proportion of (24p - 3):3. Thus, even in crystals with the simplest structures for 
which p = 1, only one-eighth of the total degrees of freedom appears as vibrations 
ofthe elastic solid type. For crystals with more complex structures for which p = 2 
or 3 or any larger number, the proportion is correspondingly smaller and the vast 
majority of the degrees of freedom appear as the characteristic modes of vibration 
of the crystal structure. 

The foregoing results enable us without further explanation to understand the 
phenomenon exhibited by crystals in light-scattering. It is known that the 
frequency shifts exhibited by crystals appear, in general, as sharply defined lines. 
They evidently owe their origin to the activity in light-scattering of one or more of 
the (3p - 3) characteristic modes of vibration in which the phase is the same in 
adjacent cells: the remaining 21p modes are necessarily inactive, since their 
vibrations alternate in phase along one or more of the axes of the lattice. The 
number of frequency shifts actually observed in any case may be fewer than 
(3p - 3). For, as a consequence of the symmetry properties of the crysta1,some 
of the (3p - 3) modes may have the same frequency and the number of distinct 
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frequencies would thereby be reduced. Again, some of the ( 3 p  - 3) modes might 
be inactive by reason of their being of an antisymmetric type. 

The continuous spectrum of elastic vibrations would necessarily be inactive in 
light-scattering, since the phase alternates in successive cells of the stationary 
wave-pattern. An exception, however, arises when the separation between the 
nodal planes of the pattern is so related to the wavelength of the light traversing 
the crystal and the angle of incidence on the nodal planes that there is a coherent 
reflection of the incident light waves by the elastic wave pattern. Such a reflection 
would exhibit frequency shifts, both positive and negative, the magnitude of 
which depends on the angle of scattering, as is actually observed. 

6. Overtones and combinations 

The so-called second-order spectra of light-scattering are very feeble and can only 
be recorded under intense excitation. They appear when the amplitudes of atomic 
vibration in any particular mode or modes are finite in comparison with the 
interatomic distances. For, in such a case, the anharmonicity of the optical 
polarisability would result in the scattered radiations including spectral compo- 
nents whose frequency shifts are overtones and summations of the vibration 
frequencies of the modes under consideration. 

It is evident that the thermally excited vibrations of the elastic solid type would 
be incapable of giving any observable second-order effects. For, the energy of any 
such vibration having a specified frequency would be distributed over the volume 
of the crystal and the amplitudes of vibration could, therefore, only be 
infinitesimal. The interatomic displacements associated with the translatory 
movements would be of a still smaller order of magnitude. Hence, the local 
variations in optical polarisability associated with the elastic vibration of any 
particular frequency would be excessively small, and since they vary in phase 
from point to point within the crystal, their external effects would cancel out 
completely. In other words, the elastic vibrations of all frequencies are inactive in 
light-scattering not merely in the first approximation, but absolutely, except in 
the particular case of a coherent reflection already referred to. Even in this case, 
there could be a first-order effect but none of higher order. 

The situation is altogether different in the case of the characteristic vibrations 
whose frequencies lie in the infra-red range.-The excitation of these vibrations is a 
quantum-mechanical effect, and the energy of excitation would necessarily be 
localised in the element of volume under consideration, viz., a group of lattice 
cells whose linear dimensions are of the same order of magnitude as the range of 
the intermolecular forces. A quantum of vibrational energy when distributed over 
such a small volume would result in atomic movements of finite amplitudes and 
hence, as the result of optical anharmonicity, give rise to scattered radiations with 
overtones or summational frequency-shifts. 
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The second-order spectra arising in the manner explained could include 
overtones and summations of the frequencies of all the (24p - 3) modes and not 
merely of those modes which are active in the first-order. The 21p modes which 
are inactive in the first approximation may thus become accessible to observa- 
tion, though only as overtones or summations. The second-order spectrum of 
light-scatterilig would necessarily be a line spectrum. But as the overtones and 
summations would be numerous, it would be a crowded spectrum, and further 
crowding up may arise from subsidiary effects, such as a splitting up of individual 
overtones or summations into several distinct components as the result of 
mechanical anharmonicity and removal of degeneracy. We cannot, therefore, 
expect the line character of the second-order spectrum to be quite so obvious to 
inspection in all cases as with the spectrum of the first-order. 

7. The theoretical conclusions 

We may now sum up the conclusions reached in the preceding sections. 

I. The frequencies of characteristic vibration of the structure of a crystal 
constitute a line spectrum. This is accompanied by a continuous spectrum of 
elastic vibrations in the lower ranges of frequency. Only 3 out of every 24p degrees 
of freedom appear in the latter. 
11. The (3p - 3) characteristic modes in which the phase of the vibration is the 
same in adjoining cells of the structure may appear as frequency shifts in light- 
scattering; the 21p modes in which the phase alternates along one, two or all the 
three axes of the lattice are inactive. 
111. Overtones and summations of the frequencies of all the (24p - 3) modes are, 
however, allowed as frequency shifts in light-scattering. 
IV. The continuous spectrum of elastic vibrations is inactive in light-scattering 
except in the particular case of a coherent reflection of the light-waves by the 
elastic wave-patterns. Overtones and summations of their frequencies are totally 
forbidden. 

8. Some illustrative examples 

(i) Diamond (figure 5 in plate I11 and figures 6 and 7 in plate 1V)-The simplicity 
of the structure of diamond and its cubic symmetry enable its characteristic 
modes of vibration to be completely described and their frequencies to be 
evaluated by a rigorous procedure. The (24p - 3) or 45 modes possible give only 8 
distinct frequencies. Expressed in wave-numbers, they are, 1332(3), 1250(8), 
1232(6), 1 149(4), 1088(6), 1008(4), 752(6) and 620(8), the numbers enclosed in 
brackets being their respective degeneracies. The first or triply degenerate mode 
represents an oscillation having the same phase in adjacent cells of the lattice, 
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while the others are modes in which the motion alternates in phase in successive 
cells. The three elastic constants of diamond can also be computed theoretically 
from the same set of force-constants as the characteristic vibration-frequencies 
and used to evaluate the distribution of frequency in the continuous spectrum of 
elastic vibrations. Thus, all the data necessary are forthcoming for an indepen- 
dent calculation of the specific heats of diamond. A satisfactory agreement is 
found between the calculated and observed elastic constants, as also between the 
calculated and observed specific heats over the whole range of temperature for 
which data are available. 

That diamond exhibits a single sharp and intknse line with a frequency shift of 
1332 cm-' in light-scattering was discovered by C Ramaswamy in the year 1930. 
More recent investigations by R S Krishnan revealed the second-order spectrum 
with all the features predicted by the theory. Likewise, it was shown by him that the 
continuous spectrum of elastic vibrations is completely inactive in light- 
scattering except in the particular case of a coherent reflection of the incident 
light-waves by the elastic wave-pattern. 

The case of diamond thus affords a complete quantitative verification of the 
theoretical conclusions set forth above. The reader is referred to recent papers by 
P S Narayanan4 and D K r i s h n a m ~ r t i ~ ? ~  in these Proceedings for further details 
of the case and for literature citations. 

(ii) @-Quartz [figures 8(a) to (d) in plate V]--The three atoms of silicon and six of 
oxygen in each unit cell of the structure of quartz give us (3p - 3) or 24 modes of 
vibration having identical phases in adjoining cells. The trigonal symmetry 
reduces this number to 16 distinct frequencies and renders 4 of them inactive in 
light-scattering. Thus, only 12 frequency shifts are to be expected in the first-order 
spectrum. This is the number actually recorded in moderately exposed spectro- 
grams, provided two rather close doublets actually observed are counted as 
single lines. If all the (24p-3) or 213 fundamental frequencies of vibration of the 
structure could give octaves and summations with observable intensity, the 
second-order spectrum would obviously be very complex and difficult to 
decipher. Actually, by giving exposures about a hundred times greater than that 
necessary to record the first-order spectrum, R S Krishnan7 obtaided spectro- 
grams which revealed 29 frequency shifts of the second-order. Only 17 of these 
could be explained as octaves and summations of the (3p - 3) modes, and the 
remaining 12 therefore presumably'represent the strongest amongst the numer- 
ous others which are theoretically possible. 

(iii) Calcite and aragonite [figures 9(a) and (b) in plate V]-Since there are two 
CaCO, groups in each unit cell of the calcite structure, the (3p - 3) characteristic 
modes of vibration in which the phase is the same in adjacent cells number 27 in 
all. The trigonal symmetry of the crystal reduces the number of distinct 
frequencies to 18, of which no less than 13 are inactive in light-scattering, leaving 
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us with only 5 distinct frequency shifts to be expected in the first-order spectrum. 
Exposures about 500 times more prolonged than that sufficient to exhibit the 
first-order frequency shifts enabled R S Krishnan8 to record 11 additionak 
frequency shifts which could all be explained as overtones and combinations of 
the (3p - 3) characteristic frequencies of the structure. 

Likewise, in the case of aragonite, R S Krishnang obtained spectrograms 
exhibiting 25 frequency-shifts, 19 of which were fundamental frequencies and 6 
belonged to the second-order spectrum. 

(iv) Barytes and gypsum [figures 10(a), (b), (c), (d) in plate VII-Strongly exposed 
spectrograms obtained with a large clear block of barytes and a high-speed 
instrument enabled R S Krishnanl0 to record no fewer than 39 frequency shifts 
with this crystal. 20 of these which were sufficiently intense to appear on 
spectrograms obtained with a much slower instrument were interpreted as first- 
order frequencies, and the remaining 19 (with one exception) as octaves and 
summations of them. 

Likewise, in the case of gypsum1 ', 34 frequency shifts were recorded of which 
29 were identified as belonging to the first-order spectrum and 5 as octaves and 
summational frequencies. 

(v) The alkali halides [figures ll(a) and (b) in plate VII-By reason of the 
cubic symmetry of the structure of rock-salt, the (24p - 3) or 45 possible modes of 
its vibration give only 9 distinct frequencies. As each metallic ion is surrounded 
symmetrically by six halogen ions and vice-versa, the triply-degenerate oscillation 
of the two sets of atoms against each other is inactive and there is, therefore, no 
first-order spectrum of light-scattering. The total number of octaves and 
summations which could appear in the second-order spectrum is 45, and since the 
fundamental frequencies are themselves degenerate in different degrees, mechan- 
ical anharmonicity would result in the splitting up of the summational 
frequencies into several distinct components. Hence, the second-order spectrum 
of the alkali halides would necessarily be rather complex, and the difficulty of 
exhibiting its discreteness or line-character would be enhanced by the fact that 
the entire spectrum falls within a range of 350 wave-numbers in the case of rock- 
salt and of 300 wave-numbers in the case of potassium bromide. Even so, the fact 
that some of the lines are much more intense than the rest, e.g., 235 cm- ' in the 
case of rock-salt,,makes the true nature of the spectrum evident to inspection, and 
it becomes even dearer when the spectrograms recorded by R S Krishnanl' with 
instruments of lower and higher dispersing powers are compared with each other. 

9. Descriptive notes on the spectrograms 

The majority of the spectrogiams illustrating this paper were obtained by Dr R S 
Krishnan in the investigations aiready referred to. A few are by other authors 
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(T M K Nedungadi, P S Narayanan, M M Patel, V M Padmanabhan and Roop 
Kishore). All except those in plate I were obtained with the intense excitation 
provided by the 12537 radiations of a water-cooled magnet-controlled mercury 
arcin quartz. The spectrograms have been reproduced as negatives for the sake of 
clarity. 

Plate I ,  figures 1 and 2-The spectrograms of naphthalene (crystal), benzo- 
phenone (both as liquid and as crystal) and of methyl methacrylate (glass) 
appearing in these figures illustrate the close similarity of the spectroscopic 
behaviour of liquids, amorphous solids and crystals in the region of higher 
frequencies. In all these cases, the larger frequency shifts are seen as sharp lines. 

Plate I I ,  figures 3 and 4-This series of six spectrograms illustrates the sharpness 
of the spectral shifts given with crystals and the increase in their number with 
increasing complexity of crystal structure. Fluorite gives only one frequency shift, 
while alumina gives 7, beryllium silicate 25, topaz 32, Rochelle-salt 49, and cane- 
sugar 63 distinct frequency shifts. The mercury lines have been marked off with 
the symbol 1 in the spectrograms to distinguish them from the frequency shifts 
given by the crystal. 

Plate I I I ,  figure 5 and plate IV, jgures 6 and 7-These illustrate the case of 
diamond. The development of a second-order spectrum in the region of frequency 
shifts between 2666 and 2176 with increasing exposures and its absence in the 
region of the elastic wave-spectrum even in heavily exposed spectrograms will be 
seen from figures 5(a), (b) and (c). The microphotometer record in figure 6 and the 
high-resolution spectrograms in figure 7 exhibit very clearly the sharp lines with 
frequency shifts 2666,2460-70 and 2176 which are the octaves of the fundamental 
frequencies 1332, 1232 and 1088 respectively. 

Plate I  V ,  figure 8-This series of four spectrograms illustrates the development 
of the second-order spectrum of quartz with increasing exposures. , 
Plate V ,  figures 9(a) and (b)-These illustrate respectively the spectra of 
aragonite and calcite which are seen to be strikingly different. Some of the sharply 
defined lines appearing in the second-order spectrum of calcite are marked in 
figure 9(b). 

Plate V I ,  figures 10(c) and (d)-These illustrate strongly exposed spectra of 
barytes. Its second-order spectrum is clearly seen in both figures, but better in the 
more heavily exposed spectrogram. 

Plate V I I ,  figures 11 (a) and (b)-Note the sharply-defined line with a frequency 
shift 235 seen in thesecond-order spectrum of rock-salt and the intense line with the 
frequency shift 126 in that of potassium bromide. 
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10. Summary 

The facts of light-scattering in crystals are reviewed and the nature of the atomic 
movements and the character of their vibration spectra in the different frequency 
regions are deduced therefrom. Whereas the movements based on the trans- 
lations of the lattice cells result in elastic wave motions in the solid with a 
continuous frequency spectrum, the modes based on their internal vibrations are 
localised and have monochromatic frequencies analogous to those of polyatomic 
molecules. The total degrees of atomic freedom a,re shared between the latter and 
the former in the ratio ( 2 4 p  - 3):3. The frequency shifts ordinarily observed in 
light-scattering arise from the group of ( 3 p  - 3) modes in which the phase of the 
vibration is the same in adjacent cells of the lattice. But these as well as the 2 1 p  
additional modes in which the phase alternates along the axes can give rise to 
shifts which are overtones and summations of their fundamental frequencies. The 
localisation of the internal vibrations permits of these overtones and summations 
appearing as frequency shifts with observable intensity. On the other hand, the 
continuous spectrum of elastic vibrations is completely inactive in light- 
scattering, apart from the particular case of a coherent reflection of the light 
waves by the elastic wave pattern. 
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Figure 1. (a) and (b) Naphthalene crystals, (c) Methyl methacrylate glass. 

Figure 2. (a) and (b)  Benzophenone liquid, (c) Benzophenone crystal. 

Plate I 
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Figure 3. (a) Fluorite, (b) alumina, (c) beryllium silicate, (d) topaz. 

Figure 4. (a) Cane-sugar, (b) ~ochelle salt. 

Plate I1 



(c) (4 (a). 

Figure 5. Diamond (medium spectrograph): (a), (b), (c) with increasing exposures. 

Plate 111 
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Figure 6. Diamond (medium spectrograph). 

(4 (4 (b) (a) 
\ 

Figure 7. Diamopd (large spectrograph): (a), (b), (c), (d) with increasing exposures. 

Plate IV 



Figure 8. Quartz: (a), (b), (c), (d )  with increasing exposures. 

Figure 9. (a) Aragonite, (b) calcite. 

Plate V 



Figure 10. (a) and (6) Gypsum, (c) and (d) barytes, with two different exposures in each case. 

3 
Figure 11. (a) Rock-salt, (b) potassium bromide. 

Plate VI 
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