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General solution for classical sequential growth dynamics of causal sets
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A classical precursor to a full quantum dynamics for causal sets has been formulated in terms of a
stochastic sequential growth process in which the elements of the causal set arise in a sort of accretion
process. The transition probabilities of the Markov growth process satisfy certain physical requirements of
causality and general covariance, and the generic solution with all transition probabilities nonzero has
been found. Here we remove the assumption of nonzero probabilities, define a reasonable extension of the
physical requirements to cover the case of vanishing probabilities, and find the completely general
solution to these physical conditions. The resulting family of growth processes has an interesting structure
reminiscent of an ‘‘infinite tower of turtles’’ cosmology.
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I. INTRODUCTION

The causal set approach to quantum gravity posits that
the deep structure of spacetime is a locally finite partially
ordered set [1]. One of the key open questions is a for-
mulation of a quantum dynamics for causal sets. As a
preliminary step towards such a formulation, one can
define a classical stochastic dynamics for causal sets in
terms of a sequential growth process in discrete stages,
each of which involves the addition of a new element to a
causal set obtained from the previous stage. In this context,
the dynamical law is an assignation of probabilities to each
such transition from every finite causal set to its possible
‘‘children’’ in accordance with certain physical principles
inspired by the continuum notions of general covariance
and causality [2].1 Reference [2] finds the most general
solution for the transition probabilities subject to these
principles and the additional assumption that none of the
transition probabilities vanish. Thus the solution is generic
but not the most general one.

The causal sets which arise from the generic classical
sequential growth models are reasonably well understood.
For example, there is significant evidence indicating that
they do not produce ‘‘manifoldlike’’ causal sets [4]. It is of
interest to know whether the picture changes significantly
if we allow vanishing transition probabilities. The quantum
theory of causal sets is expected to arise from a decoher-
ence functional (or quantum measure) defined on sets of
histories (causal sets). In some appropriate limit (say after
coarse graining to achieve decoherence), one expects to get
probabilities which obey a Kolmogorov sum rule, and there
address: madhavan@rri.res.in
address: d.rideout@imperial.ac.uk.
ics is classical in that no allowance is made for

ference between possible distinct transitions from
t to its children. A quantum dynamics would be
erms of a quantum measure, or decoherence func-
generalizes the notion of probability measure to

rference of distinct possibilities [3].

06=73(10)=104021(10) 104021
is no reason to expect that none of these will vanish. Thus it
is important to know if there is any drastic effect which
arises from the case of vanishing probabilities.

In this work we extend the considerations of Ref. [2] to
the general case in which the transition probabilities are
required merely to be nonnegative rather than positive. We
will see that the general dynamics which results can be
regarded as a sequence of different copies of the generic
dynamics described in Ref. [2], each being a ‘‘turtle’’ in an
infinite (temporal) tower of turtles.2 This has been inves-
tigated earlier by Joohan Lee [5]. In our treatment we
assume some familiarity with the terminology and proofs
of Ref. [2].

The outline of the paper is as follows: We extend the
physical principles of discrete general covariance and Bell
causality to the case of vanishing transition probabilities in
Sec. II. These principles, in conjunction with the
Markovian and internally temporal nature of the growth
process [2], restrict the dynamical law in certain important
ways. We derive these restrictions in Sec. III. In Sec. IV we
show that these restrictions taken together allow an explicit
characterization of the most general classical dynamics
describing a growth process consistent with the physical
principles mentioned above. Section V contains our con-
clusions, and a few useful lemmas are proved in the
Appendix.
II. PHYSICAL REQUIREMENTS ON THE
DYNAMICS

As in Ref. [2], consider P , the poset of all (isomorphism
equivalence classes of) finite causal sets (causets) wherein
if a causet can be formed by accreting a single element to a
second causet, then the former (the ‘‘child’’) follows the
2This is in reference to a popular legend about and old woman
who, at the end of a lecture by a famous scientist, attempts to
argue that the Earth is really flat and rests on the back of an
infinite tower of turtles.
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latter (the ‘‘parent’’) in P and the relation between the
causets is a link (a relation not implied by transitivity). A
sequential growth process corresponds to a path (i.e. a
series of transitions from one causet to another) in P ,
starting from the empty causet. Recall that a link may
correspond to more than one distinct transition (the number
of distinct transitions are the number of inequivalent em-
beddings of the parent as a partial stem of the child, where
two embeddings are equivalent if related by an automor-
phism of the child; a partial stem is a subcauset which
contains its own past). A dynamical law is defined to be an
assignation of transition probabilities (i.e. real numbers in
�0; 1�) to each such distinct transition for every link of P .
We shall require that the dynamical law be consistent with
the principles of general covariance and Bell causality as
well as the Markov sum rule defined below in Secs. II A,
II B, and II C. As noted in Ref. [2], the dynamics, by virtue
of its formulation as a sequential growth process, automati-
cally incorporates the property of internal temporality
(which simply means that no new element can be born to
the past of an existing element of any parent).

As in Ref. [2], we set the probability q0 of forming the
single element causet (a 1-chain) to unity.

A. General covariance

A dynamical law is defined to be generally covariant if
and only if the following:
(i) T
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he transition probabilities for distinct transitions
associated with the same link in P are identical.
(ii) I
f � is any path through P which originates at the
empty set and terminates at a causet C, the product
of transition probabilities along its links is the same
as for any other path from the empty set to C.
For any generally covariant dynamics, we shall refer to
the product of transition probabilities along the links of a
path connecting the empty set to a causet C as the specific
probability of formation of C.3

For any assignation of transition probabilities consistent
with general covariance, we define a virtual causet as one
whose specific probability of formation vanishes. Thus any
path from the empty set to a virtual causet contains at least
one link with zero transition probability. All causets which
are not virtual are called real. Virtual causets (and hence,
their descendants) are never formed in the growth process.
This is the reason that our definitions of Bell causality and
is in contrast to the total probability of formation of C
in Ref. [2]. The latter is obtained by multiplying the
probability by the number of inequivalent natural label-

f C [2]. Note that even the total probability of formation
ovariant meaning, in that it refers to the probability of

a particular finite causet after a specific stage of the
process. Physically meaningful probabilities can be
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ns to cylinder sets of unlabeled causets, as described in
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the Markov sum rule below pertain only to real parents.
Since only specific probabilities of formation are of inter-
est, two dynamical laws which generate the same set of
specific probabilities of formation will be referred to as
equivalent. We restrict our considerations in the remainder
of this section to generally covariant dynamics.

B. The markov sum rule

We impose the same requirement as in Ref. [2], except
that we demand it only of real parents. Thus, we require
that the sum of the full set of transitions issuing from a
given real causet is unity. (The full set of transitions
constitutes one for each choice of partial stem of the
parent. The coefficients in the sum rule of Ref. [2] arise
when multiple partial stems result in the same child
causet.)

C. Bell causality

As mentioned above, Bell causality is only defined for
real parents. Let C be a real parent and C1 and C2 be two of
its children. Let B be the union of the precursor sets for the
two transitions. (Recall that a precursor set is the past of the
new element whose introduction forms the child causet C1

or C2.) Clearly there is a path in P starting from the empty
set, ending at C and passing through B. Since C is real so is
B.

Let B1 and B2 be the causets defined by adding an
element to the future of the corresponding precursor sets
in B and let P�C! Ci�, P�B! Bi� be the transition prob-
abilities for the transitions C! Ci, B! Bi, i � 1, 2. In
Ref. [2], Bell causality was formulated as

P�C! C1�

P�C! C2�
�
P�B! B1�

P�B! B2�
: (2.1)

This equation was meant to capture the idea that events
occurring in some part of a causet should be influenced
only by the portion of the causal set lying to their past.
Equation (2.1) is only sensible when all transition proba-
bilities are nonvanishing as in Ref. [2]. We seek a general-
ization of this equation to the case of vanishing transition
probabilities [i.e. when one or more of the children in (2.1)
are virtual].

Let P�C! C0� � 0 for some transition from a real
parent C to its child C0. Then a natural condition inspired
by the idea alluded to just after Eq. (2.1) would be to forbid
all transitions from real parents which involve the same
(isomorphism class of) precursor set as in C! C0. Since
the transition from the empty set to the 1-chain has proba-
bility q0 � 1, it would follow from such a condition that no
antichain to antichain transition could be virtual. As we
shall see in item 6(b) of the proof of lemma 2 in Sec. III, the
general solution to such a dynamics is that of Ref. [2] in
which the tk can be zero.
-2
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Our aim is to provide as general a dynamical law as
possible, following the spirit of the conditions imposed in
Ref. [2]. In particular, we would like to allow for the
vanishing of any of the transition probabilities, including
those of the antichain to antichain transitions. A natural set
of conditions which allows this and serves as a reasonable
generalization of Eq. (2.1) may be arrived at by the follow-
ing qualitative discussion.

The formulation of (2.1) may be thought to involve two
distinct ingredients:
(a) T
he idea that there is a propensity for a transition to
occur depending solely on the nature of the transi-
tion, i.e. the precursor set involved. This is incorpo-
rated in (2.1) by requiring that the transitions
C! Ci, B! Bi have the same precursor sets for
each of i � 1, 2.
(b) T
he implication of the Markov sum rule that the net
probability of formation of all possible children
from a real parent is fixed and equal to unity. This
forces (2.1) to be an equality of ratios of probabil-
ities rather than probabilities themselves.
Viewed in terms of (a) and (b), a transition probability
could vanish due to two distinct reasons: (1) the transition
is intrinsically forbidden so that all transitions involving
the same precursor set are also virtual or (2) there are so
many competing siblings that they ‘‘take away the entire
available probability’’ and drive the transition probability
for the transition in question to zero. The consequences of
this viewpoint are as follows: Consider, as before, the real
causet C and its ancestor B. Every precursor set in B is also
a precursor set in C. Hence for every birth in B there is a
birth in C, but since C is larger than B, it has more children
than B. Clearly, if P�B! B1� � 0 then C1 must also be
virtual since C1 has even more competing siblings than B1.
On the other hand, if P�C! C1� � 0, then B1 must also be
real, since B1 has even fewer siblings than C1. The relative
propensity of the birth of C2 with respect to that of C1 is
then well defined as the ratio of the two transition proba-
bilities, and may be taken to quantify the relative propen-
sity of the birth B2 with respect to that of B1. In the case
that both C1 and C2 are virtual, the relative propensity of
their births is ill defined. The vanishing of P�C! Ci�, i �
1, 2 may be because C1 and C2 have too many competing
siblings. The corresponding children B1, B2 of B have
fewer competing siblings and hence it is possible that
either or both these children are real.

As a result of this qualitative discussion, we formulate
the Bell causality condition in terms of C, Ci, B, Bi, i � 1,
2 [which have been defined just before Eq. (2.1)] as fol-
lows:
(i) I
f all four transition probabilities are nonvanishing,
Bell causality is defined by (2.1).
(ii) I
f P�B! B1� � 0, then P�C! C1� � 0. If P�B!
B2� � 0 then P�C! C2� � 0.
(iii) I
f P�C! C1� � 0, P�C! C2� � 0, then P�B!
B1� � 0, P�B! B2� � 0.
104021
(iv) I
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f P�C! C1� � 0 and P�C! C2� � 0 then noth-
ing can be inferred about P�B! B1� and P�B!
B2�.
Note that if the transition probabilities vanished only
because the transition in question was intrinsically forbid-
den, we would obtain that P�C! Ci� � 0 if and only if
P�B! Bi� � 0, i � 1, 2 which would in turn imply (i)–
(iii) above and a stronger condition than (iv). In the re-
mainder of this work we use (i)–(iv) as our definition of
Bell causality. In addition we freely make use of the fact
that the Bell causality conditions (i)–(iv) hold when B is
replaced by any subcauset ofCwhich contains the union of
the precursors of the two transitions as a partial stem. That
this is so can easily be verified for any assignment of
transition probabilities consistent with general covariance
as defined above.

III. SOME IMPLICATIONS OF THE PHYSICAL
REQUIREMENTS

A few key consequences on sequential growth dynam-
ics, of general covariance, Bell causality and the Markov
sum rule, are derived in this section.

Lemma 1.—Let the j antichain to j� 1 antichain tran-
sition probability qj be such that qj > 0 for j � 1 . . . n.
Then for J � n, the gregarious transition from any real
parent of cardinality J has probability qJ. (Recall the
gregarious transition is that in which the new element
arises unrelated to any of the elements of the parent
causet.)

Proof.—Clearly, we need to consider parents which are
not antichains. Let such a real parent be A0 with cardinality
J. Refer to Fig. 1. The causets Bj are the gregarious
children of the Aj. The Dj are parents of the Aj, as shown
schematically in the diagram. The transition probabilities
between various pairs of causets are as labeled. Since A0 is
real, general covariance (referred to henceforth as g.c.)
implies that a0 � 0. Suppose x0 � 0. Then B0 is real and
g.c. implies that b0, w0 � 0. Now employ Bell causality
(henceforth referred to as b.c.) to compare the transition
probabilities w0 and x1 with a0 and b0, respectively, where
a disconnected element of A1 acts as a spectator. (Recall a
spectator is an element of the parent causet which does not
lie in the precursor set of either of the transitions in ques-
tion.) Since both a0 and b0 are nonvanishing, along with
w0, b.c. (iii) forces x1 to be nonzero as well. Thus we may
use b.c. (i) to prove that x0 � x1 as in Ref. [2] [simply
consider the b.c. (i) condition b0

a0
� x1

w0
along with the g.c.

condition a0x0 � b0w0]. This means that B1 is real. Since
D1 and A1 must be real, and a1 � 0, we can repeat the
argument with A1 in the place of A0, and proceed right-
wards across the figure.

Clearly, as in Ref. [2], the process terminates for i such
that: Ai has only one maximal element with nonempty past,
Ai�1 is the J antichain, Bi�1 is the J� 1 antichain andDi is
the J� 1 antichain. Then b.c. and g.c. imply that x0 � qJ.
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FIG. 1 (color online). All ‘‘gregarious child’’ transitions have probability qJ.
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Above we assumed that x0 � 0. To complete the proof,
we show by contradiction that this is so. Thus suppose
x0 � 0. Then
(a) s
uppose A1 is real.) b0 � 0. Then g.c. implies that
w0 � 0. Then b.c. (iii) implies that x1 � 0. [Again,
the disconnected element of A1 acts as the spectator.
Since w0 � 0, only x1 � 0 is consistent with b.c.
(iii).] Further since A1 is real, a1 � 0 and we can
repeat the argument with A1 as the new A0, asking
now if A2, which is the new A1, is real. In this
manner we can progress rightwards across the figure
[assuming the Aj are real, c.f. case (b) below].
(b) S
uppose A1 is virtual. Since A0 is real, we have that
D0 is real and hence b0 � 0. Then we cannot pro-
ceed rightwards across the figure since b.c. does not
apply for virtual parents. But sinceD0 is real we can
chooseD0 to be our new A0, with b0 � 0 now taking
the role of x0 � 0, and repeat the argument (by
asking again if the new A1 is real). Note that this
recursive argument must eventually end with
case (a). As a ‘‘worst case,’’ this recursion will
eventually arrive at the 2-chain for A0, whose only
corresponding A1 is the 2-antichain, which we know
is real even for n � 1 (since q1 > 0).
This procedure will terminate with some final choice of
real A0 with cardinality K, 2 � K � J, such that A0 has
only one maximal element with a nonempty past, D0 is the
K � 1 antichain, A1 is the K antichain, and B1 is the K � 1
antichain. Then x1 will be qK, K � J � n, which is non-
zero. But from (a) above x1 � 0, which is a contradiction.
This completes the proof of the lemma.

Lemma 2.—Let the antichain to antichain transition
probabilities q1; . . . ; qn all be >0. Then the most general
sequential growth dynamics to stage n furnishes probabil-
ities of formation of causets of cardinality � n� 1 in
accordance with Eq. (12) of Ref. [2],

�n �

P$
l�m

$�m
$� l

� �
tl

Pn
j�0

n
j

� �
tj

in which the coupling constants tk, k � 1 . . . n are such that
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tk 	 0, or equivalently in accordance with Eq. (7) of
Ref. [2],

�n �
Xm
k�0

���k
m
k

� �
qn
q$�k

with

Xn
l�0

���n�l
n
l

� �
1

ql
	 0:

Proof.—Consider a sequential growth dynamics consis-
tent with b.c., g.c., and the Markov sum rule. It is straight-
forward to repeat the considerations of Sec. IV of Ref. [2]
for real parents. Here we briefly repeat the arguments,
taking into account the possibility of vanishing transition
probabilities.
(1) L
-4
emma 1 holds so that any gregarious transition
from a J element real parent has transition proba-
bility qJ, J � n. (Lemma 1 is the analog of lemma 2
in Ref. [2].)
(2) C
laim.—The analog of lemma 3 in Ref. [2] holds for
real parents. Thus each transition probability �m of
stage m � n from a real parent has the form

�m � qm
Xm
i�0

�i
qi
; (3.1)

where �i are integers only depending on the tran-
sition in question.
Proof by induction.—Equation (3.1) is easily veri-
fied for stages 0 and 1. In particular stage 1 always
has one real parent and the above form for the �1

holds. Assume (3.1) holds for stage k� 1< n.
Consider a bold transition probability �k of stage
k from some real parent C. (Recall the timid tran-
sition is the one in which the new element arises to
the future of the entire parent causet. A bold tran-
sition is any save the timid transition.) For any such
causet, there exists a real parent B at stage k� 1
such that the bold and gregarious transitions from C
are in b.c. with appropriate ones from B. B can be
constructed by removing from C a maximal element
which is not in the precursor set for the bold tran-



4Not
path fr
anticha

GENERAL SOLUTION FOR CLASSICAL SEQUENTIAL . . . PHYSICAL REVIEW D 73, 104021 (2006)
sition. It is easy to see that g.c. implies that B is real
if C is real. Then b.c. (i and iii) gives �k

qk
� �k�1

qk�1
)

�k � qk
Pk�1
i�0

�i
qi

irrespective of whether the bold
child of C is virtual or not. The Markov sum rule
ensures that the timid child transition probability, �k
is given by �k � 1�

P
j�kj � 1� qk

Pk�1
i�0

P
j
�ij
qi

where j labels the possible bold transitions. As in
Ref. [2] this expression can be put in the form (3.1)
by setting �i � �

P
j�ij, i < k, and �k � 1.
(3) I
n transitive percolation all causets are real, save the
special cases when p � 0 or p � 1. From Ref. [2]
we know that, for transitive percolation, qn � qn,
where q � 1� p. The case of p � 1 is disallowed
by assumption, because in that case all q’s vanish.
The case p � 0 makes all qn � 1, yielding an infi-
nite antichain with probability 1. In the general case
f�ig for any transition from a real parent can be
obtained from a comparison of �k � qk

Pk
i�0

�i
qi

(k � n) with �k for transitive percolation just as in
Ref. [2] and we get the same answers as in Ref. [2],
namely,

�k �
Xm
i�0

���i
m
i

� �
qk
q$�i

; (3.2)

where $ is the cardinality of the precursor set for
the transition and m is the number of its maximal
elements. (Note that this formula also gives proba-
bilities consistent with transitive percolation when
p � 0, namely, that �k � 1 when m � 0, and 0
otherwise.)
(4) C
laim.—In order that for all transitions from real
parents the transition probabilities �k 2 �0; 1�, it
suffices that each timid transition probability for
every real parent is	 0, which is in turn guaranteed
if the timid transition probability from the k anti-
chain is 	 0 for all k � n.4

Proof.—The proof of this statement is identical to
that of Ref. [2] restricted to real parents, save that
each reference to a nongregarious transition proba-
bility being positive is replaced by the statement that
it is nonnegative. In order to use our definition of
b.c. in the proof, it suffices to note [as in item (2)
above] that for every bold transition from a real
parent C at stage k �2 � k � n�, there is a real
parent B of C which contains the precursor set for
the transition. Since qk and qk�1 are both nonzero,
our b.c. (i–iii) is equivalent to the b.c. formula used
in the proof, where now the � can vanish.
(5) F
rom item (4) it follows, in an identical manner to
the considerations of Ref. [2], that the transition
probabilities �k, k � n from real parents of size k
e that the k antichain, k � n� 1, is real since there is a
om the empty set to the k antichain comprising only of
ins and the transition probability for the ith link is qi > 0.

5Not
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are of the form

�k � qk
X$
l�m

$�m
$� l

� �
tl; (3.3)

with qk expressible in terms of tk as

1

qk
�
Xk
l�0

k
l

� �
tl: (3.4)

As in Ref. [2] the ‘‘coupling constants’’ ti can be
freely chosen subject to the conditions t0 � 1, ti 	
0, 1 � i � n.
(6) C
laim.—The transition probabilities for transitions
from real parents given by the formula (3.3) and
(3.4) with tj 	 0, n 	 j 	 1, t0 � 1 satisfy the
physical requirements.
Proof.—The proof is obtained simply by restricting
the proof of Sec. IV D of Ref. [2] to real parents. We
briefly describe how the results of Ref. [2] apply
here.

(a) General covariance: Assign transition proba-
bilities to all links (till stage n) in P accord-
ing to the formula (3.2) or (3.3).5 It is easily
verified that for any path from the empty set
to a causet C of cardinality jCj � n� 1, the
product of transition probabilities, apart from
the overall factor

QjCj�1
j�0 qj, is a product of

factors which are in one to one correspon-
dence with elements of C such that the factor
corresponding to the element x only depends
on the past of x in C. Hence this product is
path independent. If this product � 0, then C
is real, otherwise it is virtual.

(b) Bell causality: Restrict Eq. (3.2) to real pa-
rents. Then the transition probability for any
birth depends, apart from a factor of qk, only
on the precursor set for the transition. As in
Ref. [2], this implies that b.c. (i) holds. It also
implies that if any transition probability van-
ishes all births involving the same precursor
set are virtual. Thus the dynamics satisfies a
stronger version of b.c. than we require (see
the comment at the end of Sec. II). In this
regard, note that b.c. (iv) did not come in to
our derivation of the general dynamical law.
Thus b.c. (i–iii), in the presence of general
covariance and the Markov sum rule, implies
a stronger causality condition than that ex-
pressed in b.c. (iv). (Though the situation
changes when we allow the gregarious tran-
sition probabilities to vanish, and our weaker
e that t
al for a
such an
hese transition probabilities are nonnegative and
ll transitions corresponding to the same link in P .

assignation is consistent and defines a dynamical
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notion of b.c. becomes important in that
context.)

(c) Markov sum rule: The proof in Ref. [2] goes
through without any change. The proof ap-
plies to any parents and we can simply restrict
the proof to real parents.
Lemma 3.—Let n be the smallest number for which the n
antichain to n� 1 antichain transition probability qn van-
ishes. Then (a) there are no real gregarious children at stage
j, j 	 n and (b) at stage n the only real children are timid
children.

Proof.—

(a) A
gain consider Fig. 1. Let A0 be a real parent of

cardinality 	 n and assume that B0 is its real gre-
garious child. Hence a0, x0 � 0. As in the proof of
lemma 1, using g.c. and b.c. (iii), it is easy to see that
all the causets of Fig. 1 must be real. But these
causets include the j� 1 antichain, j 	 n. Since
qn � 0, there is a path (solely consisting of anti-
chains) from the empty causet to the j� 1 antichain
which has specific probability � 0. Hence the j� 1
antichain is virtual. This yields the desired contra-
diction. Hence B0 cannot be real.
(b) L
et C be a real parent (of cardinality n) at stage n.
Consider the b.c. relation involving any bold child
Cb of C and the gregarious child Cg of C. Let the
precursor of C! Cb be Cpre and the relevant (timid
and gregarious) children of Cpre be Cpre

t , Cpre
g .
6See II A for a definition of equivalent dynamical laws.
Clearly, there is a path in P from the empty set through
Cpre to C. Hence, since C is real, so is Cpre. Let us further
assume that Cb is real. The same reasoning implies that
Cpre
t is real. Then we have that P�Cpre ! Cpre

t � � 0, P�C!
Cb� � 0. Let the cardinality of Cpre be K (K < n since Cb
is bold). Then lemma 1 implies that P�Cpre ! Cpre

g � �
qK � 0. Also (a) above together with the fact that C is
real, implies that P�C! Cg� � 0.

But this assignment of transition probabilities is in
contradiction with b.c. (iii). Hence Cb cannot be real.
[Note that with Cb virtual, b.c. (iv) is satisfied.] Hence
the only real children produced at stage n are timid
children.

Implications of lemma 3.—To describe the implications
of lemma 3 and for our subsequent considerations, it is
useful to define the notion of a C-timid causet as follows.
We shall say that a causet C0 is timid with respect to a
causet C, or thatC0 isC-timid, ifC0 
 C and every element
in C0 n C is to the future of every element of C.

Now, let n be the minimum stage at which qn � 0 and
let there be P real (nonisomorphic) parents at stage n
formed as a result of sequential growth. Denote these as
Cj;n, j � 1; . . . ; P. By lemma 3, only the timid transition is
allowed at stage n. This means that at any subsequent stage
the new element added must be to the future of the entirety
of Cj;n. If not, a real growth process could be envisaged
such that the child at the nth stage was not timid. Thus,
every real causet formed as a result of growth after stage n
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is Cj;n-timid for some unique j (the uniqueness follows
from lemma A3 in the Appendix).
IV. THE GENERAL SOLUTION

In this section we derive the most general solution to the
dynamics which satisfies the physical requirements of
Sec. II. The derivation uses the results of Sec. III and
lemmas A1, A2, and A3 proved in the Appendix. We shall
present our derivation in the form of two lemmas 4A and
4B and a remark. Their import is as follows:

Let PCj;n be the subposet of P which contains Cj;n and
all Cj;n-timid causets for a fixed j (we have defined Cj;n at
the end of the previous section above). We define a dy-
namical law relative to PCj;n to be an assignation of
probabilities to links in PCj;n . Such a dynamical law will
be said to satisfy the physical conditions of Sec. II relative
to PCj;n if and only if
(a) th
-6
e transition probabilities for distinct transitions
associated with the same link in PCj;n are identical
and the product of transition probabilities along any
path in PCj;n starting from Cj;n to a causet C in PCj;n
depends only on C.
(b) b
.c. as defined in Sec. II holds among causets in
PCj;n .
(c) T
he sum of transition probabilities for all Cj;n-timid
children of any real parent in PCj;n is unity, where
reality is defined with respect to paths in PCj;n
starting from Cj;n.
Lemmas 4A and 4B show that in order to find the most
general dynamical law consistent with the conditions of
Sec. II, it suffices to find the most general dynamical law
relative to PCj;n which satisfies the physical principles of
Sec. II relative to PCj;n , for each j separately. Remark 1
shows that the latter assignation of transition probabilities
is in correspondence with a growth process from the empty
set. As we shall see, by applying lemmas 4A, 4B and
remark 1 iteratively, we shall be able to derive the general
solution to the dynamics in P .

Let Sn be a dynamical law for causets till stage n (i.e. the
maximum size of children is n� 1) which is specified as
follows: Let the transition probabilities till stage n� 1 be
assigned in accordance with (3.2) or (3.3). As in the last
paragraph of the previous section, let qn � 0 and let Cj;n,
j � 1 . . .P be the real nonisomorphic parents of size n.
Further, let the timid transition from each Cj;n occur with
unit probability and every other transition at stage n with
probability zero.

Lemma 4A.—Let S be a dynamical law whose restric-
tion up to stage n is Sn. If S is consistent with g.c., the
Markov sum rule and b.c. then an equivalent dynamical
law6 exists such that
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(a) a
t stage r 	 n transition probabilities for all transi-
tions to causets which are not timid with respect to
any Cj;n vanish.
(b) g
.c., the Markov sum rule and b.c. as defined in
Sec. II hold.
Proof.—Since the causets described in (a) are virtual by
lemma 3, lemma A1 ensures that we may define an equiva-
lent dynamical law S0 by setting the transition probabilities
of (a) to zero. (b) is trivially true for S0 from lemma A1.

Lemma 4B.—Let S be an assignment of transition prob-
abilities (i.e. numbers in �0; 1�) to links in P such that
(a) S
 coincides with Sn to stage n.
Beyond stage n:
(b) tr
ansition probabilities for all transitions to causets
which are not timid with respect to any Cj;n vanish.
(c) S
 restricted to each PCj;n provides a dynamical law
relative to PCj;n which satisfies the principles of
Sec. II relative to PCj;n for each j separately.
Then S is completely specified by (a)–(c) (i.e. (a)–(c)
ensure that every link in P is assigned a unique number in
�0; 1�) and is consistent with the physical principles of
Sec. II.

Proof:
Claim 1.—S is completely specified by (a)–(c).
Proof.—Transition probabilities from any causet of size

� n are specified by Sn. Any causet of size >n is either
Cj;n-timid for some j or not timid with respect to any Cj;n.

If the latter then lemma A2 shows that its only offspring
are nontimid with respect to any of the Cj;n and (b) speci-
fies the transition probabilities. If the former, then
lemma A2 ensures that it is not Ck;n-timid for any k � j.
Its children are either Cj;n-timid in which case (c) specifies
the transition probabilities or, using lemma A2, nontimid
with respect to any Ck;n, k � 1 . . .P in which case (b)
specifies the transition probabilities.

Claim 2.—If (a)–(c) hold, S is generally covariant.
Proof.—From lemma A2 and the consistency of the

dynamics of Eqs. (3.2) and (3.3) with g.c., Sn is clearly
consistent with g.c. Hence g.c. needs to be checked only for
causets of size >n� 1. If the causet is not timid with
respect to any Cj;n, then by (b) every path to it has at least
one link with zero transition probability. Hence such paths
satisfy g.c. If the causet is Cj;n-timid, lemma A2 shows that
every path to it is such that
(i) i
t passes through Cj;n.

(ii) i
t does not pass through any causets of cardinality

>n which are not timid with respect to any Ck;n,
k � 1 . . .P, nor through any Ck;n-timid causets, k �

j thus implying that it must pass through only
Cj;n-timid causets after stage n.
Since Sn is consistent with g.c., (i) and (ii) in conjunc-
tion with (c) show that paths to Cj;n-timid causets are
consistent with g.c.

Claim 3.—If (a)–(c) hold, S is consistent with the
Markov sum rule.
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Proof.—It is easy to see that Sn is consistent with the
Markov sum rule. Hence we only need to check it for real
parents of size 	 n� 1. Such parents must be Cj;n-timid
for some j. As discussed before, lemma A2 implies that its
children are either Cj;n-timid or not timid with respect to
any Ck;n, k � 1 . . .P. (b) ensures that the latter do not
contribute to the sum rule and hence (c) ensures that the
Markov sum rule is obeyed.

Claim 4.—If (a)–(c) hold, S satisfies Bell causality.
Proof.—Clearly Sn to stage n� 1 is consistent with b.c.

since it is just the dynamical law of Eqs. (3.2) or (3.3). So
we need to check b.c. with regard to real parents of size
	 n.

Case A R
-7
eal parents of size n: The only such causets are
Cj;n, each of which has a single real child. Let C1

and C2 be children of Cj;n for some j. There are 2
cases:

(i) C1 is timid and C2 is virtual: Clearly there
is no b.c. with offspring of any smaller
causet D � Cj;n. Let D 
 Cj;n be some
real parent with children D1 and D2 such
thatD1,D2 enjoy a b.c. relation withC1,C2

(our notation is such that D1 has Cj;n as its
precursor set). Since C2 is an ancestor of
D2, claim 2 ensures that D2 is virtual. As
can be checked, this fact ensures that b.c. is
satisfied.

(ii) C1 and C2 are virtual: b.c. is only nontrivial
for offspring of D 
 Cj;n. Since C1, C2 are
ancestors of D1, D2, respectively, claim 2
ensures that D1, D2 are virtual and b.c. is
satisfied.
Case B R
eal parents of size >n: The only real parents of
size >n are Cj;n-timid. Fix j and let C be a real
Cj;n-timid parent with children C1 and C2. There
are 3 cases:

(i) C1 is Cj;n-timid, and C2 is not Cj;n-timid:
Note that C2 cannot be Ck;n-timid for any
k � 1 . . .P by lemma A2. Hence C2 is
virtual. Obviously the union of precursor
sets is either Cj;n itself or is Cj;n-timid. In
the former case it is easy to check that (a)
ensures that b.c. is satisfied. In the latter
case C1 and C2 are in a b.c. relation with
appropriate children D1 and D2 of some
real causet D which contains Cj;n as a
partial stem. From lemma A3, since D is
real, D1 is Cj;n-timid and D2 is not
Cj;n-timid and hence virtual. For D � C,
g.c. (i.e. claim 2) ensuresD1 is real if C1 is
real and hence b.c. is satisfied. [If C1 is
virtual then b.c. (iv) is an empty condi-
tion.] If D 
 C, then D2 is virtual (as
argued above). Further, since C1 is an
ancestor of D1 in our definition of b.c.,
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claim 2 ensures that D1 is virtual if C1 is
virtual and that C1 is real if D1 is real.
Thus b.c. holds.

(ii) C1 and C2 are not Cj;n-timid: Thus C1 and
C2 are virtual and b.c. says nothing about
transitions fromD � C. ForD 
 C,D1 

C1 and D2 
 C2 so that g.c. (i.e. claim 2)
ensures that D1, D2 are virtual and hence
b.c. holds.

(iii) C1 and C2 are Cj;n-timid: b.c. is with chil-
dren of D which contain a Cj;n-timid pre-
cursor set as a partial stem. Lemma A3
implies that D and its children D1, D2 are
also Cj;n-timid.7 Note that lemma A2 im-
plies that if a causet is Cj;n-timid it cannot
be Ck;n-timid for k � j. Thus b.c. holds by
(c).
degener
D is Cj;
j;n

.

From the above it follows that if (a)–(c) hold then S is
consistent with b.c. This completes the proof of lemma 4B.

Remark 1.—Any dynamical law relative to PC for some
causet C, which satisfies the physical principles of Sec. II
relative to PC is in correspondence with a growth process
satisfying b.c., g.c. and the Markov rule and which starts
from the empty causet. The correspondence is that every
causet C0 of the latter defines the causet C00 � C [ C0 of the
former, with every element of C0 being to the future of C in
C00. This remark is easily verified by inspection.

The final picture.—An iteration of lemma 4 and remark 1
yields the following picture: The formation of any real
causet is through a series of growth phases, each of whose
transition probabilities are given by Eqs. (3.2) or (3.3). A
real causet formed at the end of such a growth stage will be
called a branch point causet. Such a causet heralds a new
phase of growth, with new values of the coupling con-
stants. The transition probabilities in this new stage are
given by the same formulas (3.2) or (3.3), with a com-
pletely new set of coupling constants qn or tn (these can be
freely chosen; for example, we could choose them to
depend on the previous branch point causet in some
way), and the $ and m are interpreted ignoring the pres-
ence of the previous branch point causet. Every branch
point causet Cf�jk;nk�;�jk�1;nk�1�...�j1;n1�g

is labeled by a set of
ordered pairs of natural numbers f�jk; nk�;
�jk�1; nk�1�; . . . �j1; n1�g.

The notation signifies that Cf�jk;nk�;�jk�1;nk�1�...�j1;n1�g
grew

from the empty causet as a result of k phases of indepen-
dent growth. Call the causets which arise from each phase
of independent sequential growth as turtles (i.e. a turtle is
the difference between adjacent branch point causets.) The
first stage of growth, characterized by q0 � 1, qi > 0, i �
1 . . . n1 � 1, resulted in a set of real turtles C�j1;n1�

each of
ate case where D1 � D2 are the timid child of
n itself, the conclusion remains, since these are
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size n1. Next, qn1
vanished. Choosing a fixed j1, the growth

of the second set of turtles commenced, each new point
being to the future of the entirety of C�j1;n1�

, and hence in
correspondence with a sequential growth in which C�j1;n1�

is replaced by the empty set. The second set of turtles were
fully formed when the effective n2 antichain to n2 � 1

antichain transition probability, q�j1;n1�
n2

, vanished. The third
set of turtles’ growth commenced from the parent
Cf�j2;n2�;�j1;n1�g

such that every new element was added to
the future of Cf�j2;n2�;�j1;n1�g

and so on. Thus any real causet
formed in the growth process consists of turtles stacked one
on top of another (see footnote 2).
V. CONCLUSIONS

The generic class of classical sequential growth dynam-
ics derived in Ref. [2] excluded the possibility that any of
the transition probabilities vanished. It is of interest to
know if the picture changes drastically when zero transi-
tion probabilities are allowed. In this work we generalized
the considerations of Ref. [2] to the case where the tran-
sition probabilities could vanish, deriving the most general
dynamical law which satisfied our generalizations of the
physical principles of Ref. [2]. We found that this dynam-
ics is similar to that of Ref. [2]. The transition probabilities
are given by the same equations, except that the free
parameters which define the dynamics are now allowed
to vanish. A unique feature emerges, however, when cer-
tain of these free parameters vanish. In this case the devel-
opment of the universe can abruptly change over to one
with completely new values for these parameters, such that
each element of the newly growing universe is born to the
future of the entirety of the old universe. In more technical
terms, we found that our dynamics differs from that of
Ref. [2] in two ways. One minor difference is that the
coupling constants tn are allowed to vanish, with the
corresponding implications on the transition probabilities.
The more major difference arises from the vanishing of the
‘‘gregarious’’ transition probabilities qn. Each such vanish-
ing heralds the onset of a new era, dubbed a ‘‘turtle,’’ in
which a completely new collection of coupling constants tn
may be used to describe the subsequent sequential growth,
and the added condition that each new element that arises
is to the future of the entirety of all the previous turtles.

It is interesting to note that, in spite of the fact that a
turtle must finish its development at a particular stage in
the growth process, it is still compatible with covariance.
This is reminiscent of the situation with cosmic renormal-
ization and the formation of posts [7], in that the existence
of a post also implies a C-timid future evolution (where C
is a causet with a unique maximal element). A key differ-
ence however is that cosmic renormalization occurs
‘‘within a single turtle,’’ with a single set of coupling
constants. One can show that originary dynamics (e.g.
that which occurs after a post) can be identified with a
-8
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turtle dynamics in which the ‘‘origin element’’ is a turtle
followed by an infinite second turtle.8 When we consider
something like a ‘‘double post,’’ in which C has multiple
maximal elements, it is important to note that only the
restriction to C-timid causets is compatible with g.c.
Causets which attempt to generalize originary dynamics
by enforcing a causet with more than one maximal element
as a full stem (as suggested in Ref. [2]) will violate
covariance.

As emphasized in the main body of the paper, the
relevant output of any physically satisfactory dynamical
law is the specific probability of formation of any causet
rather than the transition probabilities of individual tran-
sitions. In the case of exclusively nonvanishing transition
probabilities, one can be derived from the other, but in the
case of possibly vanishing transition probabilities, two
dynamical laws differing in their assignations (consistent
with the physical principles discussed in Sec. II) of tran-
sition probabilities to links emanating from virtual causets
still yield the same specific probabilities of formation.
Though indeed even the specific probabilities of formation
themselves are not physically relevant since they pertain to
finite causets formed at a particular stage of the growth
process. What is of physical relevance is the resulting
probability measure on a suitable space of completed,
unlabeled causets [6], or rather sets of such causets to
which can be attached a physical meaning. The relevant
analysis for the dynamics of Ref. [2], showing that indeed
such a measure can be defined and characterized in terms
of answers to physical questions, has been done in Ref. [6].
The corresponding analysis for the dynamics described in
this paper has recently been completed by Dowker and
Surya [8]. The key open issue is of course the formulation
of the quantum dynamics. It is hoped that our understand-
ing of the most general classical dynamics, in conjunction
with the work of Ref. [8], may be of some use in the
formulation of the quantum dynamics and in investigating
aspects of its (semi)classical limit.
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APPENDIX

Lemma A1.—Given any dynamical law consistent with
the physical principles of Sec. II, we may set the transition
probabilities to zero for any links emanating from any
virtual causet. The new dynamical law thus defined is
also consistent with the principles of Sec. II and is equiva-
lent to the original one in that it provides the same specific
probabilities of formation.

Proof.—The proof is trivial since (a) b.c. and the Markov
sum rule apply only to real parents, (b) virtual/real causets
of the original growth remain virtual/real in the new one,
and (c) transition probabilities for links along paths leading
from the empty causet to any real causet are unchanged.

Lemma A2.—Let C be a causet of cardinality n. Then
every path from the empty set to any C-timid causet must
pass through C at stage n.

Proof.—(by contradiction): Suppose there is a path from
the empty set to a C-timid causet passing through C0 at
stage n, with C0 not isomorphic to C. Since the final causet
is C-timid, C must form at some stage p > n. But then
there will be p� n elements not in C which are not to the
future of every maximal element of C. Hence no such path
can exist.

From lemma A2 it immediately follows that

(i) n
-9
o path exists from a C-timid causet to a C0-timid
causet where C and C0 are nonisomorphic causets of
cardinality n;
(ii) n
o path exists from a causet which is not timid with
respect to C and which has cardinality >n to a
C-timid causet since, as can easily be verified, the
former can be formed along a path not passing
through C at stage n.
Lemma A3.—If a causet C is C0-timid and has partial
stem C00 with C0 and C00 both of size n, then C0 � C00.

Proof.—(by contradiction): Suppose C0 � C00 in C.
Then there exists x 2 C n C0 such that x 2 C00. Since C
is C0-timid, past�x� � C0. Since C00 is a partial stem,
past�x�  C00. This implies that C00 � C0 which in turn
implies that C00 � C0 since they are of the same cardinality.
tn by ~t0 � 1, ~tn � t1
.
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