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1. Introduction 

The thermal energy of a crystalline solid may properly be identified with the 
energy of vibration of the atoms in it about their positions of equilibrium. The 
theorem in classical mechanics due to Lagrange' which states that a connected 
system of N particles has 3N normal modes of vibration enables us to go further 
and identify the thermal energy with the sum of the energies of these 3N 
vibrations, each having its own appropriate frequency. The problem thus reduces 
itself to that of determining the distribution in frequency of the 3N vibrations. 
When this is known, we have only to sum up the expressions for the average 
energies of the individual vibrations given by Einstein's fundamental theoremZ to 
obtain the thermal energy content of the solid at any given temperature. 

In the well known thedries of the specific heat of solids due respectively to 
Debye3 and to Born and Karman,4 the frequency distribution is found on the 
basis of certain special assumptions. Following a suggestion due originally to 
J H Jeans,' these authors identify the 3N vibrations with 3N different wave-pat- 
terns filling the volume of the crystal. The 3N different frequencies which result 
from these assumptions make the vibration spectrum of the crystal a diffuse 
continuum. Lagrange's theorem, however, does not require that a system of N 
connected particles should necessarily possess 3N different frequencies. Indeed, 
since a crystal is an assemblage of an immense number of similar groups of 
particles, we should expect that they would all possess identical frequencies of 
internal vibration. The recognition of this led the present writer to make a fresh 
approach to the problem in a paper6 which was published in these Proceedings 
eight years ago. The results of that paper furnished a simple and forthright 
explanation of the nature of the vibration spectra of crystals as revealed by 
the frequency shifts in the scattering of light by them. The theory also indicated 
some new and previously unsuspected features of these vibration spectra which 
appeared not inaccessible to observation. Experimental investigations under- 
taken to test the predictions of the theory have confirmed their reality. In a recent 
paper by the writer7 published in these Proceedings, the whole of the work in this 
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field has'been reviewed and it has been shown that the behaviour of crystals in 
light-scattering completely substantiates the correctness of the approach to the 
subject made in the paper of 1943. 

The present paper is a survey of the theoretical aspects of the subject, while the 
one just referred to dealt with it from the phenomenological standpoint. Its main 
purpose is to make it clear that the treatment of the theoretical problem given in 
1943 was not only on the right lines but was also a complete and rigorous solution 
of it. The present paper contains also a critical examination of the premises on 
which the earlier theories of the subject were based. The identification of the 
normal modes of vibration of the atoms in a ciystal with an immense number of 
wave-patterns comprised in its volume is shown to be an unjustifiable and wholly 
misconceived hypothesis. It is also shown that the consequences of that 
hypothesis are contradicted by the facts of observation. 

2. Molecular vibrations in crystals 

We shall commence by considering a simple case which approximates to the 
actual situation in many crystals and assume that an immense number of 
molecules, all of the same kind, come together and are held in a regular three- 
dimensional array by forces which are very weak in comparison with the forces 
binding the atoms together in each molecule. A substance of this kind would have 
a low melting point and would sublime very readily. We may cite naphthalene as 
an example. The molecules of the substance in the state of vapour would move, 
rotate and vibrate independently of each other. In the crystalline state, their 
translations could no longer be independent. The free rotations would also be 
suppressed and replaced by periodic angular oscillations. We shall at first 
consider here only the internal oscillations of the molecules. In the free state, the 
modes and frequencies of such internal oscillations would be determined by the 
geometric form of the molecule, the masses of the atoms comprised in it and the 
forces holding them together. We may ask ourselves, what would be the situation 
concerning these vibrations in the crystalline state? 

Since by assumption, the intermolecular forces in the crystal are very weak, 
they could scarcely have any effect on either the modes or the frequencies of 
molecular vibration. The interactions, however, would have an important 
consequence, viz., that if any one molecule within the crystal is set in vibration, its 
energy would leak away to the other molecules surrounding it, and from these 
again to other molecules further out, and so forth, so that ultimately the energy 
would be dissipated through the crystal. The transfer of energy envisaged would 
be the slower, the weaker the intermolecular forces are, and would take a very 
long time before it reaches the external boundary of the crystal. It is thus evident 
that we are here concerned with a diffusion process and not one of wave- 
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propagation. From the assumptions made, it follows that the vibration spectrum 
of the entire crystal in the frequency region under consideration would differ but 
little from that of the molecules of which it is composed. In other words, it would 
exhibit a finite number of monochromatic frequencies. 

3. The effect of coupling on the molecular vibrations 

We may now remove the restriction which we laid upon ourselves for the sake of 
simplicity, viz., that the intermolecular forces were extremely weak. One effect of 
an increase of their strength would be to speed up the process of diffusion of the 
energy of vibration from an excited molecule to those surrounding it. Other 
important effects have also to be considered, viz., an increase in the frequency of 
the translational-cum-rotational oscillations of the molecules about their po- 
sitions of equilibrium. The coupling between each molecule and its neighbours 
would also multiply the number of possible modes of their internal vibrations and 
alter their frequencies. 

The problem which here arises was dealt with and solved in the paper of 1943 
quoted in the introduction. Every normal mode must satisfy two conditions, viz., 
that the particles must all vibrate with the same frequency and that their phases 
must all be the same or opposite. A third condition is set by the nature of the 
problem in the case of a crystal, viz., that a normal mode should remain a normal 
mode, following a unit translation of the crystal along any one of the three axes of 
the lattice. These three conditions taken together completely determine the 
possible modes of vibration of the structure of the crystal. There are only two 
possibilities in respect of the phases of vibration in successive cells of the structure 
along each axis, viz., that they are the same or else alternate. Thus, in all, there are 
2 x 2 x 2 alternative possibilities and therefore eight species of normal modes. 
The 3 p  equations of motion of the ~p atoms in the unit cell of the structure 
would necessarily be different in each species. Thus we have 8 x 3 p  or 2 4 p  
equations of motion and the same number of solutions. Only (24p  - 3) solutions 
would represent actual vibrations, while the 3 excluded solutions would represent 
simple translations. 

Thus, when the finiteness of the intermolecular forces is taken into account, 
the structure of the crystal has (24p  - 3 )  modes of vibration, each with its 
appropriate monachromatic frequency. These would include the translational- 
cum-rotational oscillations of the molecules which are possible 'by reason of their 
being held in a regular three-dimensional array. If we imagine the strength of the 
intermolecular forces to be gradually reduced, the frequency of such oscillations 
would diminish steadily, while the frequencies of the vibrational modes which are 
multiplied 8-fold in number by the coupling would converge towards the 
vibrational frequencies of the molecules in the free state. 



VIBRATION SPECTRA OF CRYSTALS 30 1 

4. The enumeration of wave-patterns 

We turn now to the examination of the premises on which the specific heat 
theories of Debye and Born-Karman are based. The enumeration according to 
frequency or wavelength of the stationary wave-patterns within an enclosure is 
effected, following Rayleigh,' by assuming for the latter a cubical shape, and 
counting up the terms of a three-dimensional Fourier expansion which individu- 
ally are solutions of the wave-equation valid inside the enclosure. It is essential for 
the argument that the waves travel freely within the enclosed space and are not 
subject to damping. The slightest damping of the wave during their progression 
would invalidate the entire procedure. We have, in fact, only to assume that the 
enclosure is large enough; the waves, if damped, would die away before they could 
traverse it from end to end and return to build up a stationary interference 
pattern. On the other hand, wave-propagation in material media is necessarily 
damped to an extent determined by the physical state of the medium and the 
wavelength or frequency of the vibration. Indeed, it may well happen that such 
damping is so enormous as altogether to preclude the possibility of wave- 
propagation through the medium. Hence, it follows that the identification of the 
normal modes of atomic vibration within nlaterial bodies with stationary wave- 
patterns determined by the external boundary conditions is a wholly miscon- 
ceived and erroneous hypothesis. 

We may illustrate the foregoing remarks by two typical examples. In the paper 
already cited, and again later in his book: J H Jeans put forward a mathematical 
argument based on the Fourier analysis which claims to prove that the energy of 
the translatory motion of the molecules in a gas can be identified with the energy 
of an appropriately chosen number of sound-wave trains in it, the great majority 
of them having wavelengths of the same order of magnitude as the mean distance 
between neighbouring molecules. The proof is, however, illusory, since it 
overlooks the fact that sound-waves in gases are damped by viscosity. No wave- 
propagation is possible in a gas if the wavelength is as small as the molecular 
mean free path, and this is itself many times larger than the average distance 
between neighbouring molecules. In other words, the sound-waves proposed to 
be enumerated by Jeans have no physical existence! 

The second example which we shall consider is that already dealt with in 
section 2 above. It is evident that a crystal consisting of discrete molecules having 
their own characteristic frequencies of vibration would present an impenetrable 
obstacle to the entry and propagation through the substance of "waves" having 
those self-same frkquencies. We have only to recall in this connection the optical 
behaviour of a cell containing the vapour of sodium or of mercury towards the 
entry into it of the resonance radiations from a sodium vapour or a mercury 
vapour lamp respectively, or the behaviour of a rock-salt crystal towards the 
entry into it of infra-red radiations previously monochromatised by successive 
reflections at the surfaces of crystals of the same substance. Since the waves 
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cannot even enter the medium, it would be clearly be a fantastic procedure to 
identify the molecular vibrations with wave-patterns enumerated on the basis of 
their free propagation inside the crystal. 

5. Wave propagation in periodic structures 

The title of this section is the same as that of a booklo by L Brillouin which was 
published a few years ago, having the sub-title "Electric filters and crystal 
lattices". The greater part of that book is devoted to an exposition of the ideas 
underlying the Debye and Born-Karman theories of crystal behaviour, and it is 
therefore appropriate that some reference is made to it here. Surprisingly enough, 
though the book concerns itself with the problem of finding the frequency spectra 
of crystals, one searches its pages in vain for any reference to the normal modes of 
vibration of the atoms in a crystal. It would seem, in fact, that Brillouin consipers 
b ' ~ a ~ e ~ "  and "normal modes" as equivalent expressions. This is clearly a 
misconception. While the fundamental theorem of Lagrange enables us to 
enumerate the normal modes of vibration of a system, a "wave" is not a normal 
mode since the phase of the motion in it changes from point to point and from 
instant and instant, and hence one cannot, in general, enumerate waves. Only 
when there is perfectly undamped wave-propagation within a perfectly reflecting 
enclosure does the restriction of the permitted wavelengths to a specifiable but 
infinite sequence of values resulting therefrom enable us to regard the stationary 
wave-patterns as equivalent to normal modes. But as already pointed out in the 
preceding section, there can be no undamped wave-propagation in any material 
substance consisting of atoms and molecules. It follows that the contents of 
Brillouin's book are without significance in relation to the problems of crystal 
physics which it professes to deal with. 

The behaviour of macroscopic systems exhibiting some sort of periodicity in 
their structure, e.g., a stretched string loaded at regular intervals with masses of 
the same or different kinds, is the theme with which most expositions of the Born- 
Karman theory commence. It is, therefore, necessary to examine the question 
whether the behaviour of crystals can at all be compared with those of mechanical 
models, and if so, with what limitations. 

Three basic facts about crystals which we can never hope to reproduce in any 
artificially constructed mechanical model are, firstly, the immense numbers of 
individual particles constituting even the smallest of crystals: secondly, the 
possibility of independent movement of the atoms and molecules which reveals 
itself in various ways, and thirdly, the high frequencies of vibration which lie 
mostly far above the limits of validity of the classical mechanics. Besides these 
vital differences, it should also be pointed out that no macroscopic model can 
claim to represent the behaviour of a crystal unless it satisfies the conditions 
requisite for dynamic similarity. In other words, the linear dimensions, masses 
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and operative forces in the model should be so proportioned to those of the 
I crystal that the actions taking place in the latter are reproduced in the former. If 

such a model were constructed-even if it be only on paper-it would immedi- 
ately make it evident that its behaviour, far from supporting the Born lattice 
dynamics, would show its basic assumptions to be untenable. 

6. Mechanical models of crystal behaviour 

We shall illustrate the foregoing remarks by cdnsidering a model of a diamond 
crystal, enlarged in its linear dimensions by a factor of 10' so that the individual 
atoms can be conveniently observed, and slowed down in the time-rate of its 
actions by a factor of loi2 so that the movements of the atoms can be visually 
followed. In the actual crystal, assumed to be 1.54 millimetre in diameter, the 
highest characteristic frequency of atomic vibration is 1332cm-' in spec- 
troscopic units, while the highest sound velocity is 18,000 metres per second. In 
the model which is 15.4 kilometres in diameter, the characteristic frequency is 
slowed down to 40 vibrations per second, while the fastest sound wave would take 
24 hours to travel from the centre of the model to its surface and return again after 
reflection to the centre. Let us now suppose that a group of atoms near the centre 
of the model is set in motion by impulses so directed that all of them move 
together initially in the same direction and with the same velocity. It is evident 
that this would result in an elastic wave which would spread outwards from the 
centre towards the surface of the model and return again to the centre after 
travelling 15.4 kilometres in 24 hours, provided, of course, that in the course of 
this lengthy excursion, its energy has not dissipated itself completely. Then again, 
let us suppose that in another experiment, the same group of atoms is excited by 
two simultaneous sets ofimpulses so directed that the atoms belonging to the two 
interpenarating Bravais lattices commence moving with equal velocities in 
opposite directions. In this case, it is easily seen that the result of the impulses 
would be to set up, not a travelling wave, but a local oscillation of the two lattices 
with respect to each other which would gradually spread outwards. Observations 
during a brief period of 60 seconds would suffice for a count of 2400 complete 
periods of the oscillation and hence also for a precise determination of its 
frequency. The presence of an external boundary many kilometers away from the 
centre of distu~bance could obviously have no influence whatever on the 
phenomena taking place during those 60 seconds. In other words, the nature and 
frequency of the oscillation excited by the impulses would depend solely on the 
structure of the model and on no other considerations. 

We may summarise the lessons taught by our model in the following two 
statements. (I) The elastic vibrations in a crystal are a consequence of the 
translatory movements of its volume elements and therefore also of its lattice cells; 
they extend through the volume of the crystal, and theirfrequencies are low and form 
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a difluse continuous spectrum. (11) The characteristic vibrations in a crystal 
represent the internal oscillations of the units of its structure; they are highly 
localised and their frequencies are also high and have sharply defined values 
constituting a line-spectrum. 

7. Born's lattice dynamics and its consequences 

Whereas Debye restricted himself for the mogt part in his original paper to 
"monoatomic" solids, in other words to crystals having relatively simple 
structures, no such restriction is contemplated in the Born-Karman theory. 
Indeed, the claim made on behalf of the latter is that it specifically takes into 
account the lattice structure of the crystal and embraces in its scope the case of 
complex structures containing many atoms per unit cell. If there be p atoms in 
each cell, and N cells in the crystal, the total of 3Np degrees of atomic freedom of 
movement are identified with the same number of wave-patterns in the crystal. 
3N wave-patterns represent the "acoustic" branches of the spectrum, and the 
remaining (3p - 3)N wave-patterns the "optical" branches. Each wave-pattern is 
identified with one of the terms in a three-dimensional Fourier expansion, and the 
summation of all the terms with the totality of the possible vibrations in the 
crystal. 

As has already been shown earlier in the paper, the identification of normal 
modes with wave-patterns is theoretically not a permissible procedure in the case 
of material media, and hence the entire structure of the Born lattice dynamics falls 
to the ground. It is unnecessary in these circumstances for us to consider the 
question dealt with in a paper by Lederrnann" whether the so-called "cyclic 
postulate" is or is not an appropriate way of getting over the difficulty of the 
unknown boundary conditions at the external surface of a crystal. On the other 
hand, it might be useful to consider what the actual consequences of the Born 
lattice dynamics are in relation to the nature of the vibration spectra of crystals, 
so that we could proceed to compare them with the facts of experiment. 

It is an immediate consequence of the Born-Karman theory that the vibration 
spectrum of a crystal presents the aspect of a diffuse continuum throughout the 
entire range of frequency. This is apparent from the numerous diagrams printed 
in Brillouin's book and from the calculations for various cases published by Born 
and his collaborators. The reason for it is also obvious. Since the wave-patterns 
from a Fourier sequence, their wavelengths are crowded together as we approach 
the limit where the sequence is assumed to be terminated and the wavelengths are 
therefore of the same order of magnitude as the lattice spacings of the crystal. A 
difference in wavelength necessarily means a change in frequency, and the 
variations thus arising become large for the "optical branches" of the spectrum 
near the lower limit of wavelength. Hence the frequency spectrum is spread out 
very widely in this region. But the spread is far from being negligible even in the 
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range of greater wavelengths. Though no actual calculations have been published 
for the case of crystals containing ions or molecules having their own 
characteristic frequencies of vibration, one may feel sure that if such calculations 
were made, the result would not exhibit any visible resemblance to the vibration 
spectra of such ions or molecules as we actually know them from experimental 
studies. 

8. The scattering of light in crystals 

For reasons which can well be understood, a crystal is intensely opaque to 
electromagnetic radiations over a wideerange of frequency on either side of its 
own characteristic frequencies in the infra-red. In consequence, only rather vague 
and fragmentary indications were available regarding the nature of the vibration 
spectra of crystals, until the spectroscopic study of the scattering of light 
introduced a new and simple as well as powerful and accurate way of exploring 
this field of knowledge. From the analogies presented by the case of gases, liquids 
and amorphous solids where the same method is equally applicable, it is obvious 

' 

that the frequency shifts observed in light scattering furnish us with a straight 
answer to the question of the nature of the vibration spectrum of a crystal, viz., 
that it consists of a set of sharply-defined monochromatic frequencies in the infra- 
red. The general acceptance of this simple view of the case has, however, been 
held up by the belief in theories which were put forward at a time when 
there was no experimental knowledge which could set theoretical thinking on the 
right path. To get over the patent contradiction between those theories and the 
experimental facts, it was suggested that while the real vibration-spectrum is 
continuous, the frequency shifts observed in light-scattering represent the result 
of the elimination of everything except the so-called limiting frequencies of 
vibration with large wavelengths by a selection principle based on the idea that 
the mechanical waves give a coherent reflection of the incident light waves, while 
the rest of the spectrum is hidden away from sight by a species of optical 
interference. 

That the way proposed for escape from the difficulties is not a reasonable one 
becomes evident when it is recalled that large frequency shifts are also observed in 
the scattering of light by the molecules of gases and of liquids. They are very 
properly described in these cases as the result of an incoherent scattering in which 
the individual molecules of the substance exchange energy with the incident 
radiation. If this be a correct description of the process in the cases offluid media, 
there is no reason why the obviously analogous effects observed with crystals 
should be regarded differently and ascribed -to a coherent reflection of the light 
waves by mechanical waves. The mere change from a fluid to the solid state 
cannot be claimed as a justification, for it is found that organic glasses also give 
sharply-defined lines as frequency shifts in light-scattering. Such glasses are solids 
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in every sense of the term, and since they do not possess any periodicity of 
structure, it is not possible in their case to invoke any selection principle which 
could convert a diffuse continuum into a line spectrum. 

Another observed fact which is absolutely fatal to the Born lattice dynamics is 
the appearance in numerous cases of sharply-defined lines as frequency shifts 
which do not agree with the fundamental frequencies of vibration, but are 
overtones or summations thereof. For frequency shifts of this kind to appear, it is 
essential that the amplitude of the atomic oscillations should be comparable with 
the interatomic distances, and this again would not be possible if the energy- 
quantum of the particular frequency is distributed as a wave extending over the 
whole volume of the crystal or even any limited region inside it. Overtones and 
summations could appear as frequency shifts with the observed intensities only if 
the oscillations are highly localised, in other words, are restricted to volumes 
which are comparable in their dimensions to the unit cells of the crystal structure. 
It is clearly not possible in these circumstances for the proposed selection 
principle to function which would pick up a single frequency from a continuous 
spectrum of frequencies. 

Finally, we may refer to the specially interesting cases, of which diamond is the 
best example, in which strongly exposed spectrograms reveal frequency shifts 
appearing as sharply-defined lines which are not explicable as overtones or 
summations of the (3p - 3) normal modes in which the phase is the same in 
adjacent lattice cells of the crystal lattice, but which compel the 21p additional 
modes in which the phase alternates also to be considered. Diamond, for instance, 
exhibits besides the line with a frequency shift of 2664cm- ' which is the octave of 
the principal frequency of 1332 cm-', also several other lines as frequency shifts 
which are identifiable as overtones and summations of the eight fundamental 
frequencies of the diamond structure. In a recent paper in these Proceedings, 
P S Narayananiz has described and discussed the results of his studies on the 
case of diamond and shown that tbey are altogether incompatible with the conse- 
quences of the Born lattice dynamics. It is unnecessary to re-traverse the same 
ground here. 

Summary 

The enumeration of wave-patterns within an enclosure on a scale of wavelengths 
or frequencies presupposes that the waves are perfectly undamped and that the 
enclosure is perfectly reflecting. In any material medium, however, wave- 
propagation is necessarily damped and such damping may be so enormous as 
altogether to preclude wave-propagation. It follows that it is not permissible to 
identify the modes of atomic vibration in crystals with wave-patterns. Since the 
specific heat theories of Debye and of Born-Karman are based on such 
identification, they cannot be sustained. 
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For any mechanical model to represent the dynamic behaviour of a crystal, it is 
necessary that it should satisfy the requirements for dynamic similarity. When 
these requirements are satisfied, the behaviour of the model does not support the 
ideas underlying the Debye and Born-Karman theories, but on the other hand 
agrees with the results of the theory of the dynamics of crystal lattices put forward 
by the writer in 1943. 

The phenomena of light-scattering observed in crystals are also discussed and 
it is shown that the experimental facts are incompatible with the ideas underlying 
the Born-Karman theory. 

- 
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