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1. Introduction 

A knowledge of the modes and frequencies of vibration of the atoms in a crystal 
about their positions of equilibrium is of the utmost significance for the theory of 
the solid state. For, such knowledge is complementary to that regarding the 
structure 'of the solid furnished by the data of X-ray and electron diffraction. 
These latter data enable the geometric positions of the atoms to be ascertained, 
while the modes and frequencies of atomic, vibration permit of the evaluation of 
the forces which hold them together as a rigid structure. The study and 
interpretation of the vibration spectra of crystals is thus the pathway to a fuller 
understanding of the nature of the solid state and the elucidation of the physical 
properties of solids generally. It follows that the theory of these spectra is a topic 
of outstanding importance for the progress of crystal physics. 

The problem of finding the nature of the vibration spectrum of a crystal may be 
approached from two different points of view. The first is that which bases itself 
on the known behaviour of elastic solids. Acoustic theory and experience alike 
indicate that a solid body has a whole series of normal modes of vibration 
determined by its external form and dimensions. These may be regarded as 
stationary vibration patterns resulting from the interference of elastic waves 
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which traverse the interior of the solid in different directions and suffer reflections 
at its outer boundary. On this view, the frequencies of the modes would be 
determined by the length of the waves and their type. The problem of 
enumerating the possible stationary vibrations and of arranging them in a 
frequency scale is somewhat more complicated than the analogous problem for 
an enclosed volume of fluid, since there are three types of waves instead of one as 
in the latter case, and since the wave-velocities in a crystal also depend on the 
direction of propagation. It is evident, however, that the general nature of the 
results would be similar in the two cases. There would be a crowding together of 
the modes as the wavelengths are diminished and the frequencies of vibration are 
correspondingly greater, their number becoming ultimately very large. Hence, 
the vibration spectrum would to all intents and purposes be a continuous one. It 
may be remarked that the method of enumeration of the vibrational modes in this 
manner According to wavelengths or frequencies does not in any way compel us 
to take account of the discrete structure of the medium and in effect regards the 
latter as a continuum. 

The second point of view from which the subject may be approached is that in 
which we fix our attention on the movements of the individual atoms in the solid. 
The structure of a crystal is built up of a great number of units of very small size, 
all of which are exactly alike and each of which comprises a finite number of 
atonls. Since the range of the interatomic forces is also very small, the problem of 
finding the possible modes of vibration of these groups of atoms is of the same 
general nature as that of finding the normal modes of vibration of a polyatomic 
molecule. The nature of the results to be expected would therefore also be similar, 
and the vibration spectrum of a crystal should accordingly consist of a finite set of 
sharply defin.ed frequencies, each of which represents an exactly specifiable mode 
of vibration. The characteristic frequencies would be the same for every one of the 
vibrating groups of atoms, and hence in relation to the entire crystal must be 
considered as being highly degenerate. 

Thus, the continuum standpoint and the atomistic standpoint lead to 
conceptions of the nature of the vibration spectrum of a crystal which are 
radically different from each other. The two points of view are therefore mutually 
exclusive, and since they both appear reasonable, we infer that the ranges of 
frequency in which they are respectively appropriate are quite different. The 
continuum standpoint is the one which would naturally be adopted in 
considering the lower part of the frequency range comprised in the spectrum, 
while the atomistic standpoint is obviously the correct one to take up when we are 
concerned with the upper part of the frequency range. In other words, the 
vibration spectrum of every crystal is composed of two parts which are essentially 
different in nature, namely the atomic vibration spectrum properly so called 
which exhibits a discrete set of monochromatic frequencies appearing in the infra- 
red, and the elastic spectrym which is continuous and forms a low-frequency 
appendage to it. 
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The present paper has a two-fold purpose. In the first part, we shall present a 
theoretical discussion of the problem and justify the statements made above 
concerning the nature of the vibration spectra of crystals. The arguments put 
forward are simpler without being less rigorous than those contained in an earlier 
presentation of this topic (Raman 1943). In the later parts, we shall review the 
experimental data for the spectroscopic behaviour of crystals as known at the 
present time and show that the facts are in complete accord with the theoretical 
ideas developed m the first part. Incidentally, we shall also comment upon the 
older theories of the subje~t which lead to the conclusion that the vibration 
spectrum of a crystal is a continuous one throughout the entire range of 
frequency. It will be shown that these theories are based on an extrapolation of 
the ideas derived from elastic solid behaviour into the atomistic field, and that 

\ such extrapolation is invalid and leads to results which are contradicted by the 
experimental facts. 

2. The eigenvibrations of crystal structures 

The structure of a crystal consists of a great number of similar and similarly 
situated cells each containing the same number of atoms, and the clue to the 
spectroscopic behaviour of the crystal is therefore to be found in the properties of 
the group of atoms contained in the unit cell. In other words, we have to consider 
the possible modes of vibration of the group of atoms included in the unit cell, and 
the problem is therefore generally analogous to the theory of vibrations of 
polyatomic molecules. There is however a notable difference between the two 
cases arising from the fact that the atoms in the unit cell are not isolated from the 
rest of the crystal; it is clearly necessary to take account of the interactions with 
the surrounding cells in so far as they affect the motion of the atoms in the cell 
under consideration. The frequencies of vibration with which we are concerned 
lie in the infra-red. Hence, the problem does not lie strictly within the scope of the 
classical mechanics. Nevertheless, as in the case of polyatomic molecules, we may 
hope that the methods of classical mechanics suffice to yield results which are in 
agreement with the facts in all essential respects. Also, as in the case of polyatomic 
molecules, we may in the first instance limit ourselves to the theory of small 
vibrations under harmonic forces. The modifications arising from the removal of 
these restrictions are, however, by no means unimportant. They will be dealt with 
later in the paper. 

In any eigenvibration of the atoms contained in the unit cell, their frequencies 
of vibration are  necessarily the same, while the phases are all the same or 
opposite. In considering the interactions with the surrounding atoms, we may 
properly assume that this is true also for the atoms included in the surrounding 
cells whose direct interactions with the unit cell under consideration are of 
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sensible magnitude. We proceed to find the cases for which these requirements are 
satisfied. 

The equations of motion of the atoms in a crystal for an oscillation 
proportional to sin a t  tace the general form 

Here, m denotes the mass of an atom, while the co-ordinates <, q, c indicate its 
displacements parallel to x, y and z respectively. The suffixes k and 1 indicate 
particular atoms in the unit cell, where the suffixes r and s refer to particular cells 
of the lattice in which the atoms are situated. F denotes a force-factor, its upper 
and lower suffixes indicating respectively the displacement of the particular atom 
on which it acts and the displacement of the particular atom giving rise to the 
force. The triple summation must be made over the <, q and c values of all the 
atoms in the crystal for which the force-factors are not negligible in respect of the 
particular atom under consideration; the size of the domain including all such 
atoms would depend on the range of the interatomic forces. We shall assume the 
crystal to be of sufficient size to ensure that its external boundary is very remote 
from the limits of such domain. To enable us to solve the set of 3p equations of 
motion of the p atoms comprised in the unit cell under consideration, we shall 
require to know the displacements of the atoms in the neighbouring cells which 
also appear on the right-hand side of the equations (1). To enable them to be 
found, we make use of the fact that in any eigenvibration, the equations of motion 
of the atoms included in these cells must also simultaneously be satisfied. 
Considering the atoms comprised in a cell adjacent to the rth which we denote as 
the (r f l)th, their equations of motion would have the form 

the cell index (s + 1) representing one adjacent to the cell of index s along the same 
axis is as that on which the rth and (r + 1)th cells are situated. 

Now the transitional symmetry of the crystal has the consequence that the 
force-constants for adjacent cells satisfy general relations of the form 

F$; = FFCk(r + 1) 
94s + 1) (3) 

Comparing equations (1) and (2) and taking account of the relations given by 
(3), we notice that provided general relations subsist connecting the displacement 
of equivalent atoms which are 
either of the form 

t k r  = t k ( r +  1) and ?l8 = ql(s+ 1) (4) 
or of the form 

t k r  = - <k(r+ 1) and qls = - 'll(s+ I), ( 5 )  ' 
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the 3p equations ( 1 )  and the corresponding 3p equations (2)  would become 
identical. In these circumstances, any set of displacement co-ordinates which 
satisfy the former set of equations would also satisfy the latter. Further, the 
number of unknown co-ordinates appearing in the 3p equations ( 1 )  would be 
reduced to 3p only by reason of (4)  or (S), thus enabling them to be completely 
solved. However, (4) and (5) being different alternatives, the 3p equations 
obtained by making use of these relations would be different, and the solutions 
obtained would also be different. Further, there would be two such alternatives in 
respect of the cells adjacent to each other along each of the three axes of the 
lattice, and these three sets of alternative possibilities would be independent of 
each other, so that there would be 2 x 2 x 2 or 8 sets of alternative possibilities to 
be considered. Each of these would, in general, give a different set ~f 3p equations 
and therefore a different set of solutions. Thus, in all, we would obtain 24p 
solutions on the basis of the relations indicated by (4) and (5) above. 

We shall now consider the significance of the alternative relations (4)  and (5) 
which we have assumed to subsist in order to enable the equations of motion to be 
reduced and solved. They evidently signify that the amplitudes of vibration of 
equivalent atoms in the different cells are the same, while their phases are either all 
the same or else alternate in successive cells along each of the three axes of the 
lattice. In either case, the energy of vibration is the same in the different cells of the 
lattice when the frequency is the same. It is obvious that such a state of affairs 
necessarily represents a possible stationary regime within the crystal. In other 
words, the 24p solutions of the equations of motion obtained on this basis 
represent the normal modes of vibration of the crystal structure. It will be noticed 
that only in 3p solutions would the phase of the vibration be the same in all the 
cells of the lattice; in the remaining 21p solutions, the phase of the vibration is 
opposite in adjacent cells of the lattice along one, two or all three of its axes. In 
these latter, the condition that the centre of inertia of the system should remain at 
rest is automatically secured. The constraints necessary to secure the same 
condition would however reduce the 3p solutions of the former kind to (3p - 3) 
solutions, so that in all we would have (24p - 3) eigenvibrations and not 24p. 

It will be noticed that if we mark out domains in the crystal which extend in 
each direction twice as much as the unit cells of the lattice, the pattern of vibration 
within each such domain would be the same as for neighbouring ones in each of 
the (24p - 3) modes of vibration indicated by the preceding argument. Hence, the 
results of that argument may be summarised by the statement that the units of the 
vibration pattern of the crystal are super-cells having twice the linear dimensions 
and therefore eight times the volume of the static units of the crystal structure. The 
number of atoms included in each such dynamic unit or super-cell in 8p, and we 
may therefore regard the (24p - 3) modes as its internal vibrations and the three 
excluded degrees offreedom as its three translations. This point of view is useful in 
two ways. Firstly, it indicates that in relation to the entire crystal, each of our (24p 
- 3) modes of vibration is highly degenerate, being in fact N-fold degenerate ifN be 
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the number of super-cells contained in the crystal. Secondly, the three excluded 
degrees of freedom which represent the translations of the super-cell provide an 
appropriate starting point for a consideration of the possible elastic modes of 
vibrations of the solid. We shall return to this aspect of the subject later in the 
paper. 

3. Some illustrative examples 

As an illustration of the general theory set out above, we shall now consider two 
specific cases, viz., that of a face-centred cubic lattice of atoms, as also the 
structure resulting from the interpenetration of two such lattices, viz., that of 
diamond or zinc-blende and describe their characteristic modes of vibration. 

The unit cells in a face-centred cubic lattice are really rhombohedra, the unit 
translations being those by which an atom placed at the corner of the cube goes 
over respectively to the three neighbouring face-centred atoms. The theorem that 
equivalent atoms in the lattice have the same amplitude of vibration and either 
the same phase or the opposite phases successively along the axes of the lattice 
enables us immediately to describe the possible modes. An atom located at a cube 
corner and the -three others located at the nearest face-centres form the four 
vertices of a regular tetrahedron the faces of which are the (1 11) planes, while its 
diagonal planes are the (100) planes of atoms in the crystal. It is easily seen that all 
the eigenvibrations are movements of these planes of atoms; alternate planes 
move in opposite phases, while the directions of movement are indicated by 
considerations of symmetry to be either normal or tangential to the respective 
planes. Thus, there are only four different kinds of vibration of the lattice, namely 
the normal and tangential vibrations respectively of the octahedral and cubic 
planes ofatoms, the tangential vibrations being twice as many as the normal ones. 
As there are four sets of octahedral planes and three sets of cubic planes in the 
lattice, the four species of vibration have degeneracies of 4,8,3 and 6 respectively, 
making up a total of 21 modes. Adding the 3 translations of the super-lattice cell, 
we obtain the total of 24 degrees of freedom of the 8 atoms contained in it. 

The possible modes of vibration of the diamond or zinc-blende structure may 
be obtained by coupling similar modes of vibration of the two face-centred 
lattices as des~ribed above with appropriate relations of amplitude and phase. 
There are only two possibilities, viz., that the oscillations of the planes of atoms 
adjacent to each other belonging respectively to the two lattices are in the same or 
the opposite phase. Hence, the four types of eigenvibration of a face-centred cubic 
lattice give us eight types of vibration of the structure. To this, we must add a 
ninth mode of vibration representing the translations in opposite phases of the 
two lattices with respect to each other. Thus in all, we have 9 modes with 
degeneracies 4,4,8,8,3,3,6,6 and 3 respectively, making up a total of 45 degrees 
of freedom. The 3 translations of the two lattices moving together in the same 
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phase are excluded from this scheme. Taking account of them, we recover the 48 
degrees of freedom of the 16 atoms included in the super-lattice cell. 

4. The elastic vibration spectrum 

We now turn to a consideration of the problem from the point of view provided 
by the theory of the vibrations of elastic solids. The principles on which an 
enumeration of the possible modes of vibration of an elastic solid may be based 
are indicated by the comparatively simpler pioblem of the vibrations of an 
enclosed volume of fluid. Considering a rectangular chamber whose edge-lengths 
are a, P, y respectively, it may be shown either directly or by application of 
Fourier's theorem that the general solution which includes all particular 
solutions of the equations of wave-motion satisfying the boundary conditions at 
the walls of the enclosure is 

C$ =xCC(Acoskat  + Bsinkat) 

n,nx n,ny n,nz 
X cos- COS - COS -, 

u P Y 

where 4 is the velocity-potential, A and B are arbitrary constants, while n,, n,, n, 
are positive integers and k is 2~11, where 1 is the "wavelength" of the stationary 
vibration. It is defined by the relation 

k2 = n2(n:/a2 + n$/P2 + n:/y2), (7) 

and hence 1 diminishes as n,, n2, n, are increased. If the medium he regarded as 
continuous, n,, n2, n, may be as large as we please, and the number of possible 
stationary wave-patterns is then unlimited. We may, however, if we so desire, set a 
limit to the total number of possible stationary patterns of vibration by assuming 
that the maximum possible values of n,, n,, n, are respectively N,, N,, N,. The 
total number of possible eigenvibrations is then the product N,N,N,. 

Equation (7) connects the "wavelength" of an oscillation with the linear 
dimensions of the vibrating body and the number of parts of its aliquot division 
by the resulting vibration in each of three mutually orthogonal directions. We 
shall not be wholly at fault in assuming a similar relationship to subsist in the case 
of the elastic vibrations df a rectangular block of solid. Earlier in the paper, we 
have seen that the atomistic approach to our problem leads to the result that the 
structure of a crystal has (24p - 3) characteristic modes of vibration, and we 
identified these with the internal vibrations of a group of 8 p  atoms included in a 
super-lattice cell having twice the linear dimensions and hence eight times the 
volume of the unit cell of the crystal lattice. The three excluded degrees offreedom 
on the same basis represent the three translations of the super-cell, and if there be 
N such super-cells comprised in the entire crystal, we have 3N degrees of 
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dynamical freedom of movement which are left unaccounted for in the atomistic 
treatment. In view of the remarks made in the introduction, we may properly 
identify these with the total number of possible elastic eigenvibrations of the 
crystal. Since there are three types of elastic waves in a crystal, we may ascribe 
one-third of the total number to each of the corresponding types of elastic 
eigenvitiration. Accordingly, on the basis of the foregoing argument, we set 

N = N,N2N3, (8) 

which signifies merely that the total number of eksticeigenvibrations of each type 
is the same as the total number of super-lattice cells comprised in the crystal. By 
virtue of (8), we may write (7) in the form 

which connects the reciprocal of the wavelength A of the vibration with the 
reciprocals of certain spacings d,, d2, d, whose product d,d2d, is equal to the 
volume of the super-lattice cell. As N,, N,, N, are very large numbers, the 
wavelengths permitted by (9) form a practically continuous sequence of values 
which become densely crowded together as n,, n,, n, approach their maximum 
possible values N,, N,, N,. When one of the three numbers n,, n2, n, has its 
maximum value and the other two are set equal to zero, A becomes equal to 2d1 or 
2d2 or 2d, respectively. Thus, the "limiting wavelengths" along the three edges of 
the rectangular block are related in a very simple manner to the linear dimensions 
of the super-lattice cell of the crystal structure. In the particular case where the 
edges of the block are parallel to the axes of the crystal lattice, the limiting 
wavelengths are just twice the edges of the super-lattice cell or four times the edges of 
the lattice cell of the crystal. Vice versa, if the limiting wavelengths of the elastic 
eigenvibrations are so chosen as to satisfy these relation, the number of degrees of 
dynamical freedom left out from the atomistic enumeration of the vibrations in the 
crystal are completely accounted for as its elastic eigenvibrations. It will be noticed 
that we are not assuming dl = d2 = d,, and hence the argumeht is not limited to 
the case of cubic symmetry but is more general, In passing from an enumeration 
of the eigenvibrations on the scale of wavelengths provided by (9) to an 
enumeration on a scale of frequencies, we must, of course, take account of the fact 
that the ratio of wavelength to frequency, is different for the three types of elastic 
waves and is also a function of the direction of propagation. 

We may illustrate the preceding argument by considering on& again the case 
of a face-centred cubic lattice. As mentioned earlier, the eigenvibrations of such a 
lattice are of four different kinds which may be described as being respectively 
normal and tangential oscillations of the cubic and octahedral planes of atoms, 
the movements of alternate planes of atoms being in opposite phases. The normal 
oscillations of the cubic planes are represented in figure 1. A similar figure with 
the arrows parallel to the atomic planes would represent the tangential 
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Figure 1. Eigenvibrations of a face-centred cubic lattice. 

Figure 2 Elastic vibrations of minimum wavelength in a face-centred cubic lattice. 

oscillations. With an altered spacing of the planes the figure would also represent 
the oscillations of the octahedral layers of atoms. 

As will be seen from the figure, there are no nodal planes or layers of atoms at 
rest, and since the nature of the vibration is completely determined by the lattice 
structure, the mode is a characteristic property of that structure and not an elastic 
vibration properly so called. Since, however, the motion repeats itself periodically 
along the crystal axes, we may ascribe to it a "wavelength" which as seen from the 
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figure is twice the distance between the atomic layers. Figure 2 represents an 
elastic vibration properly so-called with the smallest possible wavelength; every 
alternate layer of atoms is a nodal plane which remains at rest, while the 
intervening planes of atoms move in opposite phases. The "wavelength" is thus 
four times the distance between the atomic layers. A similar figure with the arrows 
parallel to the atomic planes would represent the transverse elastic vibration of 
smallest wavelength. 

We can, of course, similarly picture elastic vibrations in which every third or 
fourth or fifth plane of atoms is at rest, while the intervening planes of atoms 
oscillate with phases which are opposite on either side of each nodal plane. The 
"wavelengths" of such oscillations would be respectively 6, 8 or 10 times the 
spacing of the atomic planes, the motion repeating itself at these intervals and the 
energy of the vibration being the same in the successive layers separated by the 
nodal planes. Such an arithmetical progression of increasing wavelengths is 
however alt~gether different from that contemplated by equation (9) above in 
which they form a densely crowded sequence with wavelengths diminishing in 
harmonic progression, the permitted values being determined by aliquot division 
of the macroscopic dimensions of the solid. Moreover, the form and disposition of 
the nodal planes of elastic vibration are determined by the shape and dimensions 
of the outer boundary of the solid and not by its internal structure. Hence, having 
set the lower limit of wavelength at four times the lattice spacings, we must for all 
larger wavelengths and therefore lower frequencies of elastic vibration ignore the 
discrete structure of the solid and treat it as a continuum. Per contra, we are 
precluded from extending into the region of the higher frequencies of vibration a 
treatment based on the idea of free propagation of elastic waves of lengths 
determined by the external dimensions of the solid. 

5. Remarks on (some earlier theories 

The Debye theory-The foregoing remarks prepare us for a consideration of the 
earlier theories of the vibration spectra of crystals. The prototype of these theories 
is Debye's well known treatment (1912) of the specific heat problem for 
elementary solids. This is based on the postulate that the thermal agitation in a 
solid may be identified with stationary elastic vibrations in it of various 
wavelengths superposed on each other. All the three possible kinds of elastic 

' 

vibration are assumed to have frequencies inversely proportional to their 
respective wavelengths and to terminate at a common upper limit of frequency. 
The simplicity of the Debye formula for the specific heat is a consequence of these 
specific assumptions. Later writers have sought to modify the theory by 
postulating that all the three types of elastic vibration (one longitudinal and two 
transverse) have a common upper limit of wavelength instead of frequency. With 
this modification, the Debye theory and the results derived in the preceding 
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section may be readily compared with each other. Limiting ourselves to the case 
in which each cell of the crystal lattice contains only one atom, it is obvious that if 
all the possible atomic vibrations are considered as elastic eigenvibrations, they 
would be eight times more numerous, and the limiting wavelengths would be one- 
half of those derived in the present paper. The additional eigenvibrations are 
those having the smallest wavelengths and therefore the highest frequencies, and 
they form the great majority, viz., seven out of every eight. 

In order to appreciate the precise nature of the situation thus arising, we 
consider the specific case of a face-centred cubic lattice. Figures 1 and 2 above 
show respectively the characteristic eigenvibrations of the structure and the 
elastic vibrations of minimum wavelength possible in it according to our present 
point of view. It is evident that the great majority of the stationary vibrations 
assumed by the Debye theory (seven-eighths of the'total number) would have 
"wavelengths" intermediate between those represented by these two figures. We 
may remark, however, that a characteristic feature of stationary vibrations in a 
continuous elastic medium-vide equation (6) of the preceding section-is that 
the medium is partitioned by the nodal planes into cells in which the energy of 
oscillation is the same and the phase opposite in alternate cells. The same 
situation in the case of a discontinuous periodic structure is represented in 
figures 1 and 2, but there is clearly no possibility of a stationary vibration with 
these characters and of wavelength intermediate between twice and four times the 
atomic spacing. We can, of course, postulate waves of any intermediate 
wavelength that we may choose and assume them to traverse the discontinuous 
periodic structure in opposite directions. But the result of their superposition 
would in no way resemble the stationary vibrations described in equation (6) 
which form the basis of the enumeration, since the energy of the vibration would 
fluctuate arbitrarily along the direction of propagation. The situation is thus that 
the overwhelming majority of the stationary modes of vibration which are assumed to 
exist in Debye's theory are possible only in an elastic continuum but have no 
counterparts in a periodically stratijied structure. In other words, the Debye theory 
is based on an extrapolation of notions derived from the behaviour of elastic 
solids into the field of atomic theory, such extrapolation being, on the face of it, 
physically untenable. The postulates made in the theory are therefore invalid 
even in the case of crystals of the simplest structure to which the foregoing 
discussion has been limited. 

The Born-Karman theory-We now proceed to comment on the so-called lattice 
dynamics of Born and Karman. This claims to be more exact than the Debye 
theory and also to include within its scope crystals of complex structure 
comprising two or more atoms in each lattice cell. For this purpose, the theory 
(1923) divides the degrees of freedom of the system-namely thrice the total 
number of atoms-into distinct groups which are each equal to the number of 
lattice cells comprised in the crystal. Each degree of freedom corresponds to a 
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wave which is assumed to traverse the crystal, and we have thus present in it an 
immense number of sets of waves of different wavelengths, each set corresponding 
to a group of wavelengths chosen and allotted on the same common plan. (3p - 3) 
of the groups of waves represent the so-called "optical" vibrations of the lattice, 
while the remaining 3 groups represent its "acoustic vibrations". The frequencies 
of vibration depend on the wavelengths, and each group accordingly represents 
an immense number of different frequencies of vibration. The nature of the 
vibration spectrum has to be determined by calculation on the basis of specific 
assumptions regarding the nature and magnitude of the interatomic forces. As the 
computations are laborious, it is not surprising that comparatively few cases have 
actually been worked out in detail. The published results, however, indicate that 
the vibration spectra in both the "optical" and the "acoustic" branches are diffuse 
continua which overlap each other (Blackman 1935; Kellermann 1940). Such a 
result might have been expected a priori in view of the assumptions underlying 
the theory. For the "wavelengths" assumed are most crowded together when they 
are smallest and are most nearly comparable with the lattice spacings of the 
crystal. The "optical frequencies" depend notably on the wavelengths when these 
are small, and hence the assumed distribution of wavelengths results in spreading 
out the "optical spectrum" into a diffuse continuum, instead of its being a set of 
sharply defined lines as in the case of vibration spectra of polyatomic molecules. 

The Born-Karman theory rests on the premise that a crystal has as many 
different frequencies of vibration as it has degrees of dynamical freedom, and the 
sets of waves with which its vibrations are identified are indeed assumed to secure 
this result. Neither the premise nor the assumptions made to ensure its fulfilment 
can, however, be justified. As has been remarked earlier in the paper, a crystal 
consists of an immense number of similar groups of atoms whose characteristic 
modes of vibration are necessarily all similar, and hence a high degree of 
degeneracy is necessarily to be expected in respect of the vibration frequencies of 
the system. Further, a wave is not a normal vibration since the phase changes 
progressively along its course. Hence, an enumeration of waves is not a valid 
procedure unless it can be shown that a physical mechanism exists which selects 
particular wavelengths and transforms the motion to normal vibrations of a 
determinate type. Such a mechanism exists in respect of the elastic vibrations, 
being provided by the reflection of the waves at the boundaries of the crystal and 
the consequent formation of wave-patterns of a determinate type by interference. 
But as we have seen above, stationary wave-patterns of this kind can account for 
only a small proportion of the dynamical degrees of freedom even in the case of 
crystals of simple type having only one atom in each lattice cell. It follows that in 
the case of crystals of complex structure, the proportion of the dynamieal degrees 
of freedom represented by stationary wave-patterns would be even smaller. Hence, 
the identification of the so-called "optical vibrations" with waves having the same 
set of wavelengths as the elastic vibrations has no physical meaning or 
justification. In effect, the Born-Karman theory ascribes to the atomic structure 
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of a crystal an immense number of modes and frequencies of vibration which it 
does not really possess. 

6. Molecular crystals 
The arguments and results set out in section 2 above are, of course, quite general, 
and do not depend on the particular manner in which the p atoms in the unit cell 
of the crystal are linked with each other or with the atoms in the neighbouring 
cells. Some of them, for instance, may be constituent parts of ions or molecules, 
e.g., the CO, ions in calcite or the C,,H, molecules in a naphthalene crystal. 
Indeed, it is precisely such cases which make it most obvious that the vibration 
spectra of crystals in the infra-red should consist of a sharply defined set of 
monochromatic frequencies and not a diffuse continuum. For, we know that the 
ions or molecules in the free state have sharply defined spectral frequencies; 
though their mutual interactions in a crystal would have to be considered, these 
interactions are exactly specifiable and hence could only result in altering the 
vibration frequencies and increasing their number without changing the essential 
nature of the spectra. To show that this is the case, we may consider the particular 
example of a crystal in which the p atoms in each lattice cell form a single 
molecule. Each such molecule has 3 p  degrees of dynamical freedom which may be 
identified with specific modes of vibration in the crystal, since simple rotations 
and translations are excluded, at least ordinarily. The nature of a normal 
vibration, viz., that all the particles in the system vibrate with the same frequency 
and with the same or opposite phases enables us to define the manner in which the 
vibrations of the interacting molecules would be related to each other. Since every 
molecule vibrates with the same frequency as its neighbours, the forces which 
come into play must be the same for all. These forces include not only the internal 
ones arising within each molecule but also the forces of interaction between them. 
Hence, the latter should also be the same for all molecules. But the forces of 
interaction are determined by the amplitudes and'phases of vibration. Hence, to 
ensure thatthe forces of interaction are the same, it is necessary that the molecules 
which interact with each other vibrate with the same amplitude, while each 
molecule has the same relation of phase to its neighbours that every other 
molecule has. The latter requirement can only be satisfied if the phases are either 
all the same or else alternate in successive cells of the lattice along one, two, or all 
three of its axes. We have thus 2 x 2 x 2 or 8 different ways in which the 
requirements for a normal vibration may be satisfied. Hence, each of the 3 p  
possible modes of vibration of a molecule would be modified in 8 different ways, 
giving us in all 24p different normal vibrations, which is the same result as that 
deduced in section 2, if we exclude the 3 translations of the molecules moving 
together as a group. 

The foregoing approach to the subject is useful in elucidating the relations 
between thevibration spectrum of a crystal and the spectra of the same substance 
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in the liquid and gaseous conditions. The (24p  - 3 )  modes of vibration may be 
divided into two classes, namely, ( 3 p  - 3 )  modes in which the amplitude and 
phase of the vibration of a molecule are the same as those of its neighbours, and 
21p  modes in which the vibration occurs in opposite phase in alternate layers of 
the crystal structure. The ( 3 p  - 3)  modes of the first kind represent the internal 
vibrations and the rotational oscillations of the molecules, while the 21p  modes of 
the second kind would include also the 21 modes of translational oscillation of 
the molecules against each other. Unless the forces of interaction are large, the 
internal oscillations of the second kind would djffer but little in frequency from 
similar oscillations of the first kind, and both would be nearly the same as for the 
frm molecules. On the other hand, the rotational oscillations with discrete 
frequencies which are characteristic of the crystal are determined entirely by the 
interactions between the molecules, and hence they should differ notably in the 
first and second class of normal modes. 

7. Anharmonicity and interaction of vibrations 

So far, we have concerned ourselves with small oscillations under harmonic 
forces. In the actual problem, the amplitudes of vibration are determined by 
quantum-theoretical considerations and are by no means infinitesimal. Hence, a 
complete theory would require us to include, in addition to the forces 
proportional to the atomic displacements, also forces proportional to their 
squares and to their products. On introducing such additional terms into the 
equations, it becomes evident that the motion can no longer be described as a 
summation of independent normal vibrations and that interactions would arise 
profoundly modifying the dynamical behaviour of the system. Problems of this 
kind have already been considered in the theory of the vibrations of polyatomic 
molecules (Herzberg 1945), and we may therefore take over the known results of 
that theory mutatis mutandis in our present case. If the anharmonicity be not too 
large, the behaviour of the system may still be described by sets of quantum 
numbers, each set corresponding to one of the normal vibrations possible in the 
harmonic approximation. The quantum numbers do not, however, as in the 
harmonic case, represent equal increments of energy, but a diminishing sequence 
of increments. The selection rules aTe also modified and in particular, overtones 
and combinational frequencies forbidden in the harmonic approximation are 
permitted to appear. Overtones and combinations may also appear by reason of 
the electric moments associated with the vibrations having a non-linear 
dependence on the amplitudes. Anharmonicity results further in cases of non- 
accidental degeneracy in the splitting up of various higher energy levels which 
would be coincident in the harmonic approximation. Accidental degeneracy may 
also result in splitting up or displacing the energy levels concerned and in 
modifying the intensities with which they appear in the spectra. 

I 
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8. Influence of temperature 

Anharmonicity also plays an important role when we consider the effect of 
elevating the temperature of a crystal on its vibration spectrum. As the 
temperature rises, a considerable proportion of the various low-lying energy 
levels would be thermally excited, as also a smaller proportion of the higher ones. 
Hence, any further excitation caused, for instance; by the incidence of radiation 
on the crystal has to start from the thermally excited levels, and by reason of the 
anharmonicity, the energy increments would then be less than for similar 
transitions from the ground state. As a consequence, the spectral lines corre- 
sponding to various possibilities which are equivalent in the harmonic approxi- 
mation would no longer be coincident. The effect of elevating the temperature 
would accordingly be to lower the vibrational frequencies and simultaneously to 
spread them out over a finite range of values. Further, since the aajority of the 
induced transitions start from the thermally excited levels and not from the 
ground state, the electrical anharmonicity would also come into play and make 
the observed intensity of the lines less than what they would be if there were no 
such anharmonicity. 

It is evident that similar results would also follow from the interaction between 
the eigenvibrations of the crystal structure and the elastic vibrations of the solid. 
The energy of an elastic vibration is distributed over the entire volume of the 
crystal, and hence its amplitude would be exceedingly small. Hence, the elastic 
vibrations, considered individually, would have no sensible perturbing effect on 
the eigenvibrations. The position would however, be altered if we consider the 
aggregate effect of all the elastic modes of vibration when thermally excited, since 
their number is very large. A convenient way of regarding the matter is to fix our 
attention on a very small element of volume in the crystal. This volume element 
would, as the result of the thermal agitation, suffer fluctuations of density. These 
may be regarded as oscillations of varying amplitude and frequency. When the 
volume element considered is sufficiently small, the density fluctuations would be 
large enough to perturb the eigenfrequencies to an observable extent, lowering 
them and spreading them out over a finite range of values. 

9. Summary 

The paper presents the author's theory of the vibration spectra of crystals from a 
fresh point of view. It is shown that the nature of the spectra is necessarily different 
in the two regions of frequency in which they represent respectively the 
characteristic eigenvibrations of the crystal structure and the stationary wave- 
patterns of elastic vibration. The eigenvibrations repeat themselves in volume 
elements within the crystal having twice the linear dimensions and eight times the 
volume of the lattice cells. The number of modes of eigenvibration is (24p - 3), p 
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being the number of atoms in each lattice cell. The spectral frequencies which are 
(24p - 3) in number (or less by reason of crystal symmetry) are accordingly 
monochromatic. In relation to the entire crystal, they are highly degenerate. The 
three missing degrees of freedom are exactly accounted for when the possible 
elastic vibrations which give a quasi-continuous spectrum of frequencies are 
enumerated. The limiting elastic wavelengths come out as four times the lattice 
spacings of the crystal. The effects of anharmonicity are also considered. It is 
shown that they result in lowering and spreading out the spectral frequencies of 
the crystal when its temperature is elevated. . 
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