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1. Introduction 

As was pointed out by Laue (1926), the secondary radiations from the atoms in a 
crystal traversed by a monochromatic beam of X-rays suffer changes of frequency 
when the atoms oscillate about their positions of equilibrium, These changes of 
frequency play a fundamental r6le in determining the observed X-ray pheno- 
mena. For, the superposition of radiations which differ in frequency cannot give 
rise to observable interferences, while, on the other hand, secondary radiations of 
identical frequency are necessarily coherent and capable of interfering with each 
other even if the frequency differs from the primary X-ray frequency. Accordingly, 
if we fix our attention on a particular mode of vibration of the atoms in a crystal, 
the radiations of altered frequency arising therefrom can give rise to interference 
maxima in just the same way as the radiations from stationary atoms. It follows 
also, that if several vibrations co-exist in a crystal, each set of secondary 
radiations of different frequency thus arising would produce its own interference 
maxima independently of the others. If, further, the individual vibrations are of 
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infinitesimal amplitude, a considerable simplification becomes possible. For, then 
each vibration may be regarded as giving rise to its own secondary radiations and 
acting independently of all the others, provided its frequency is different from 
theirs. This statement, however, requires some qualification when the excursions 
of the atoms about their positions of equilibrium resulting from the totality of all 
the vibrations present have a finite amplitude. For, the total radiation amplitude 
of an atom is fixed and is equal to the superposed radiation amplitudes of various 
frequencies. Hence, the radiation amplitude due to any particular vibration 
frequency would naturally be less than it would,be in the absence of all the others. 
'It is evident also that as the atomic excursions increase, the strength of the 
secondary radiations of the original or primary X-ray frequency and of the 
interference maxima to which they give rise must progressively diminish, finally 
tending to zero. 

- The elastic or low-frequency modes of vibration have a continuous spectrum of 
frequencies and hence, as explained above, the optical effects of each vibration 
should be considered separately. Since the energy corresponding to a particular 
frequency is small and is further distributed over all the a t m s  in the crystal, the 
resulting atomic amplitudes are exceedingly small. Hence, the secondary 
radiations due to these separate vibrations are exceedingly weak, and since they 
are incoherent, their intensities and not their amplitudes should be added. In the 
final result, therefore, we have an effect which is inherently feeble and which can 
only become important when a large volume of the crystal is under consideration. 

The position is different when we consider the effect of modes of vibration of the 
crystal which appear as monochromatic frequencies in its infra-red spectrum. 
Each such line in the spectrum represents N co-existent modes of vibration, where 
N is the number of the lattice cells in the:rystal. In the ideal case when all the N 
modes are of identical frequency, it is evident that the secondary radiations of 
altered frequency due to these co-existing modes would all be coherent and must 
therefore be considered together and not separately. It is evident, therefore, that 
the vibrations of the infra-red type can give rise to effects of an altogether higher 
order of intensity than the elastic vibrations considered above. This result has 
already been deduced in an earlier paper from a coqsideration of the phase 
relations subsisting between the lattice cells in a crystal in an infra-red vibration. 
Its possibility, it may be remarked, is consequential on our rejection of the ideas of 
Debye and Born regarding the nature of the high frequency vibrations in a crystal 
lattice, and especially of the so-called postulate of the "cyclic lattice" due to Born 
which we have considered in detail and shown to be untenable. 

It should be noted that the elastic and infra-red modes of vibration of a crystal 
also differ in other respects. In the former case, the basic grouping of the atoms in 
the lattice cells remains unaltered, while in the latter, it is to be regarded as 
essentially a variable. Then again, the wave-fronts of an elastic vibration may 
have any possible orientation within the crystal, while for the infra-red vibrations, 
there is prima facie no reason for assuming that this should be the case. It has also 
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to be remembered that the elastic vibrations are of lower frequency than the infra- 
red ones; this makes a considerable difference in considering the influence of 
thermal agitation in the two cases. 

As already explained in the preceding paper, the recognition of the changes of 
frequency, the importance of which was first emphasised by Laue, leads us 
naturally to bring the X-ray problem within the scope of the quantum theory of 
radiation. It also makes the transition from the classical to the quantum 
mechanical considerations very simple. The changes of frequency indicated by 
the classical electrodynamics appear in the quantum theory as the result of 
exchanges of energy between the quantum and 'the crystal lattice. Similarly, the 
Laue conditions for a dynamic reflection are the same as those required for the 
conservation of momentum in the encounter between the quantum and the 
crystal. The principal difference between the classical and quantum points of view 
is in regard to the question of the absolute intensity of the secondary radiations 
and its dependence on temperature. Here, the quantum mechanical consider- 
ations replace such incorrect applications of the quantum theory to X-ray physics 
as are usually made by introducing the Planck factor and the zero point energy, 
neither of which is really relevant when considering the exchanges of energy 
between matter and radiation. 

2. Secondary radiations from an oscillating atom 

Under the influence of waves of unit amplitude, an atom emits secondary 
radiations which at a distance R from the origin of co-ordinates and in a direction 
making an angle 2I,b with the primary ray have the amplitude 

e2 1 ( R+2Dsin)) 
f sin /3.-.- cos2n vt - a 9 

\ 

where D is the perpendicular distance of the atom from a reference plane through 
the origin bisectilig the angle between the primary and secondary rays, f is the 
atomic structure factor, and /3 the angle between the electric vector in the incident 
pencil and the diffracted ray. It is evident that this expression would remain 
invariable if the atom moves parallel to the reference plane but would alter 
periodically if it oscillates perpendicular to it. 
Writing 

D=d+acos(2xv*t+z) (2) 

the periodic part of (1) may be written as 

cos [2nvt - Z - cos (2nv*t + z)]  (3) 

where 
2n(R + 2d sin @) 471a sin $ z=  

IZ , (= a . (4) 
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The expression (3) may be expanded in a series of Bessel functions. Neglecting the 
functions of higher order than the first, it may be written as 

Jo(I;) cos (2nvt - Z) + .J1(C) sin [2n(v It v*)t - Z * z]. (5) 

The three quantities Z, ( and z appearing in (5) are all phase angles. Z is the phase 
of the secondary radiation from the atom when it is in the position of equilibrium, 
I; the change of this phase produced by displacing the atom through a distance or 
in a direction normal to the reference plane, and z is the phase of the atomic 
vibration. Expression (5) indicates that the secondary radiation from the 
oscillating atom consists of three components whose amplitudes depend on the 
amplitude of the oscillation and which differ in frequency and phase. The first 
component has the frequency v of the primary X-rays and its phase is determined 
solely by the equilibrium position of the atom. Its amplitude has however been 
diminished by the movement of the atom in the ratio J,(I;): 1. The second and 
third components have the same amplitude, namely J1(I;), but they differ in 
frequency and phase. The component (v + v*) has a phase angle (Z - z), while the 
component (v - v*) has a phase angle (Z + 2). The secondary radiations of altered 
frequency thus increase in amplitude with increasing vigour of the atomic 
vibration, while their phases are determined jointly by the atomic positions and 
the phaste of the atomic vibrations. The equality of the amplitudes of the 
components of increased and diminished frequency indicated by (5) is a typical 
consequence of the classical electrodynamics which will later be amended in the 
light of quantum mechanics. 

3. Dynamic stratifications of density 

We may now proceed to deduce the optical effect of all the atoms vibrating with 
the same frequency but with a phase which may be assumed to vary slowly from 

Figure 1. Graphical derivation of the dynamic spacings. 
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place to place within the crystal. For the purpose of a graphical derivation of the 
conditions for interference, it is not necessary at the present stage to distinguish 
between the elastic and infra-red modes of vibration. We consider a particular set 
of lattice planes in the crystal marked d d d  in figure 1. 

It is evident that for any given setting of the crystal the phase of the secondary 
radiations as received at a distance will vary from point to point within the 
crystal. In respect of the secondary radiations of unmodified frequency, this phase 
is given by Z .  Hence, to obtain the maximum resultant intensity, Z must be 
invariable along a crystal plane and jump by 271 or an integral multiple thereof, as 
we pass from plane to plane. In other words, the planes d d d should make equal 
angles with the incident and diffracted rays, and their spacing d should satisfy the 
relation 

This is the familiar optical formula for a monochromatic reflection from a 
regularly stratified medium. 0, indicates the glancing angle for a classical or 
unmodified reflection. 

Considering now the secondary radiations of altered frequency, we see that 
their resultant is determined by the variation of ( Z  - z)  in one case and of ( Z  + z )  
in the other. Let A A A in the figure represent the planes along which the phases of 
the atomic vibrations, in other words the values of a, are constant. In order to 
obtain the maximum intensity for the resultant of the secondary radiations, the 
crystal should be so set that (Z - z )  or ( Z  + z)  as the case may be, is constant along 
the lattice planes; it is evident from the figure that this would be the case if the 
setting of the crystal is such that the incident and diffracted rays are equally 
inclined to the planes which run diagonally cutting the d d d and A A A planes, e.g., 
/*d*d*d* as shown in figure 1. For obtaining the maximum intensity, a further 
condition must be satisfied, namely 

2d* sin $ = A, (7 )  

where $ is, as before, half the angle between the incident and diffracted rays. It is 
evident from the figure that there are two sets of diagonal planes possible. But the 
same set will satisfy equation (7)  for both the frequency component$ (v + v*) and 
(v - v*), provided that we assume the phase angle Z advances in one case and 
recedes in the other case as we move across the figure. The diagonal planes d*d*d* 
thus represent the dynamic stratifications of electronic density resulting from the 
vibrations of the atoms contained in the lattice planes of the crystal. As the phase 
waves A A B move from left to right, the dynamic stratifications d*d*d* move 
upwards, keeping a constant spacing, while if the phase waves A A A move from 
right to left, the spacings d*d*d* move downwards in the same way. The changes 
of frequency from v to (v + v*) may thus be regarded as analogous to the Doppler 
effect in the reflection from a moving mirror. 
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4. Geometric law of dynamic reflection 

The spacing d* of the dynamic stratifications is connected with the spacing d of 
the static ones and the phase-wavelength A of the atomic vibrations by the 
vectorial relation, 

, T i  
Id*=-+-. 

d A (8) 

This is readily deduced by writing down the vectorial equation represented by the 
three sides of one of the triangles appearing in figure 1 and dividing the same by 
the area of the triangle. Denoting by 9 the angle between the planes d d d and the 
phase waves A A A, and by E the angle between the planes d d d and d*d*d*, we 
have from figure 1 and equation (8) 

Substituting the first of these relations in (7), we obtain 

Equation (10) is the general geometric law of dynamic reflection deduced by 
Raman and Nath (1940). It will be noticed from (9) that when the phase 
wavelength A is infinite, E = 0 and d* = d, from which it follows that $ = 8,. In 
other words, the static and dynamic reflections then coincide in direction. This is 
also obvious directly from figure 1. In general, however, d* and d are different, 
and the conditions for the possibility of static and dynamic reflections are not the 
same. While a static reflection can only occur at the particular setting of the 
crystal indicated by (6), a dynamic reflection is evidently possible over a wide 
range of settings of the crystal determined by the permissible values of the phase 
wavelength A. It is further to be remarked that while the glancing angles of 
incidence and reflection are equal for the static reflections given by (6), these 
angles when measured as usual with reference to the static crystal planes would 
generally differ from each other for the dynamic reflections. Further, the latter 
reflections would in general appear in a plane different from that of the incidence 
of the X-rays on the crystal spacings. To specify the actual plane of dynamic 
reflection, it is necessary to know the angle x which determines the azimuth of the 
phase waves. We may put x = 0 in the case when the dynamic reflection appears in 
the plane of incidence, the phase waves then being evidently perpendicular to that 
plane. When x # 0, the dynamic reflection swings out of the plane of incidence to 
an extent determined by the values of A, 9 and X.  

In the particular case when x = 0, it is evident that 

4 + 8 = 2 $ ,  and that 4 -8=2&,  (1 1) 

where 8 and 4 are respectively the glancing angles ~f~incidence and dynamic 
reflectioq measured as usual from the crystal planes. Equation (10) may then be 
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written as 

The value of 4 then depends on the angle 9. If we imagine 9 to march from 0 to n, 
equation (12) shows that the relation between 4 and 9 will alter from 

4 = 9 ,  when 9 = 0  or n (13) 

to 
n 

d(sin 9 + sin 4 )  = I ,  when 9 = - 
2 ' (14) 

Thus, when the phase waves are parallel to the crystal planes, the dynamic 
reflection always satisfies the ordinary geometric law of reflection from the crystal 
planes, while if the phase waves are transverse to the crystal planes, it appears in 
the direction given by (14) which may be written approximately as 

thereby indicating that the angle between the incident and reflected rays is 
approximately constant and independent of the crystal setting. 

5. Dynamic structure factor 

To find the conjoint effect of the secondary radiations from all the atoms in the 
unit cell of the lattice, we have to sum them up considering each component of 
frequency separately. This summation for the radiations having the primary 
X-ray frequency gives (omitting constant factors), 

The summation for the secondary radiations of frequency (v f v*) similirly gives 

jb  Jl(rp) sin [2n(v f v*)t - Zb k zb] 
P 

the index p referring to the pth atom in the cell, and the dashes in (17) indicating 
that the setting of the crystal and the angle of diffraction are not necessarily the 
same as those considered iq (16). Remembering, however, the conditions for a 
dynamic reflection discussed in the foregoing section, namely that Z f z should 
be constant along any particular lattice plane, we may simplify (17) and write it in 
the form 
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Zp having now the same signif~ance as in (16) for a static reflection by the same 
set of lattice planes. A further simplification arises when the angle between the 
primary and diffracted radiations does not differ greatly for (16) and (18). We may 
then write, approximately, j> = fp. If, further, the setting of the crystal in the two 
cases is not so greatly different, we may also write, rp = cp, as an approximation. 
Subject to the .restrictions indicated, (17) now takes the form 

The static structure factor of the unit cell as influenced by the particular vibration 
may therefore be evaluated by diminishing the structure factor of each atom in 
the ratio Jo(ep) to unity. At the same time, the lattice cell acquires a dynamic 
structure factor which is found in exactly the same way except that the structure 
factor of each atom is now multiplied by J1(cp). 

Very significant differences now arise in considering respectively the elastic and 
the infra-red vibrations. For the elastic vibrations, cp is the same for all the atoms 
in the unit cell. The suffix p may therefore be removed and the Bessel functions 
taken outside the summation sign. For an elastic vibration, therefore, the static 
and dynamic reflections may be evaluated from the expressions 

The static and dynamic structure factors in the case of an elastic vibration thus 
differ only by a multiplying factor which is the same for all the atoms in the unit 
cell. Thus, if a particular set of crystal planes gives zero intensity for a particular 
order of reflection, the dynamic reflections for the same planes and the same order 
of reflection must also vanish. The dynamic reflections by different sets of crystal 
planes would follow the same order of intensity as the static reflections by those 
planes, provided the amplitude of the elastic vibrations transverse to the planes 
may be assumed to be the same. A similar remark would also apply to the relative 
intensities of the successive orders of reflection by a particular set of planes, except 
that the factor Jo(c) diminishes while the factor J1(c) increases as the angle of 
diffraction becomes larger, vide equation (4). 

The position is greatly altered when we consider the infra-red vibrations of the 
lattice. Here, the displacements being different for the different atoms, the factors 
Jo(cp) and J1(Cp) must remain within the summation signs. Some of the atoms in 
the lattice cell must evidently move in directions opposite to the others if the 
centre of gravity of the cell is to remain undisplaced. Hence J1(CP) would be 
positive for some of the atoms and negative for the others in an infra-red 
vibration, while on the other hand J,(Cp) would always be positive and nearly 
equal to unity. It follows that the static and dynamic structure factors for an infra- 
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red vibration are determined by quite different considerations and cannot, in 
general, exhibit the close parallelism indicated by the theory for the elastic 
vibrations. Indeed, it may well happen that in particular cases, the static Structure 
factor vanishes while the dynamic structure factor remains finite, or vice versa. 

6. Quantum scattering by elastic vibrations 

The disturbance produced by an elastic vibration on X-ray propagation is of two 
kinds. Firstly, a compressional wave would evidently alter the average electronic 
density. It is thus itself a dynarqic stratification of the medium capable of 
reflecting the X-rays with a frequency (v & v*), increased or decreased as the case 
may be, depending on the direction of the wave. Such a reflection occurs when 

28 sin II/ = 1, (22) 

large values of A corresponding to small values of II/, and vice versa. Thus, since A 
may have any one of a practically continuous series of values determined by the 
dimensions of the crystal, and since the orientation of the wave is arbitrary, the 
reflection indicated by equation (22) would result in a cone of scattered X-rays 
(the Brillouin cone) having the direction of the primary beam as its axis. The 
angular extension of the cone depends on the smallest permissible values of A. 
The intensity of such scattering would depend on the energy of the vibration and 
the resulting variation of electron density. On the classical mechanics, the energy 
of an elastic vibration of thermal origin may be taken as KT, while if the wave is 
quantum-mechanically excited by the incident radiation, the energy would be 
hv*. The latter assumption would be the appropriate one to make if hv* >>KT, 
while if hv* << KT, the former assumption would be correct. This type of X-ray 
scattering should therefore be exhibited by crystals even at the lowest tempera- 
tures and in the absence of thermal agitation, and especially by crystals of high 
elasticity, e.g., diamond. We should expect the intensity of the X-ray scattering by 
such crystals to be greater than that indicated by the classical considerations even 
at ordinary temperatures. 

The second kind of disturbance to X-ray propagation arises from the 
distortions which the elastic waves cause to the regular stratifications of the 
crystal structure. The formulae of the three preceding sections enable us to 
evaluate these effects quantitatively in a very simple manner. As explained in 
section 3 and illustrated in figure 1, the superposition of an elastic vibration on a 
specified set of crystal planes gives rise to dynamic stratifications of density. As 
further explained in section 4, these stratifications reflect the incident X-rays in 
the direction given by the general geometric law (10). The intensity of such 
reflection is determined by the dynamic structure factor as explained in section 5. 

Considering the directipn in which the so-called dynamic reflection appears, it 
is evident from equations (9) and (10) that this depends on the wavelength A, the 
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angle 9 which the wave-fronts make with the crystal spacings, and also upon the 
azimuth x of the wave-fronts. A variation of x would throw the dynamic reflection 
out of the plane of incidence, while if x = 0, the reflection would appear in that 
plane. A dynamic reflection is only possible when the X-ray wavelength, the 
dynamic spacing d* and the glancing angle of incidence of the X-rays thereon 
are suitably related. But since we have at our disposal two variables, namely A 
and 9, we may, as is evident from figure 1, by suitably altering both of them get a 
dynamic reflection in any desired direction. In other words, the resultant eflect of all 
the elastic vibrations is a difluse scattering of the X-rays over a wide range of solid 
angles and not a geometric reflection in any specified direction. 

To find the X-ray scattering due to any particular set of crystal planes, we have 
only to evaluate the two expressions (20) and (21) given previously. Their 
magnitudes are in the ratio J,(t):J,(S). If [ be suficiently small, Jo(c) is practically 
unity while J,([) would be equal to 35. If m be the mass of an unit cell of the lattice, 
the energy of vibration of N such cells, each having an amplitude a with a 
frequency v* would be 2 ~ ~ r n N a ~ v * ~ .  This may be written in the form 
2n2.Ma2.a2/A2, where M is the mass of the whole crystal, a is the velocity of the 
elastic waves and A is their wavelength. Utilising equations (4), (7) and (9), we may 
write this in the simple form 

3c2 * MaZ.sin2 &/sin2 9. (23) 

This may now be put equal to KT (classical mechanics). Accordingly, we have 

&c2 = KT/MaZ.sinZ 9/sin2 6. (24) 

Equation (24) gives the ratio of the sum of the squares of the dynamic structure 
factors to the square of the static structure factor. It is evidently of the order 1/N 
and is thus an exceedingly small quantity. The X-ray scattering in any specified 
direction due to the distortion of the crystal planes by the elastic waves is 
therefore of vanishingly small intensity in comparison with the intensity of 
regular reflection by the same crystal planes and should be unobservable except 
when relatively large volumes of the crystal are under consideration. 

The numerical factor sinZ 9/sinz E appearing in equation (24) determines the 
manner in which the intensity of the scattered radiation varies with direction. It 
may be written also as AZ/d*z, where A and d* have the same significance as in 
equation (8). Thus the intensity of the scattering would be greatest in those 
directions for which the wavelength A of the elastic waves which effectively scatter 
the X-rays is greatest. This variation arises because the amplitude of the elastic 
waves is directly proportional to their wavelength, and the scattering is therefore 
greatest in the directions in which the waves of longest wavelength and lowest 
frequency are effective. The nature of the variation can be readily made out from 
figure 2, which represents the geometric relation between l/d, l/d* and 1/A given 
by equation (8), as also the relation between lld*, l/A and sin J/ expressed by 
equation (7). 
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Figure 2. Distribution of intensity of diffuse X-ray scattering. 

Spheres are drawn (sections of which by the plane of the figure appear as circles) 
round the terminus of the vector l / d  and with radii 114 points on the spheres 
represent various values and orientations of the vector 1/A drawn from their 
common centre. The spheres are drawn closely together near their centre and 
further away at a distance from it to suggest the rapid diminution of the 
amplitude of the elastic waves with diminishing wavelength. A sphere of reflection 
is drawn with radius 113, around 0 as centre. It cuts across the "spheres of 
diffusion" having the radii 1/A and the scattered radiations would therefore 
appear over the entire area of the sphere of reflection thus cut by the spheres of 
diffusion. When the sphere of reflection actually passes through the terminus of 
the vector l/d, the maximum of scattering intensity would fall on the sphere itself, 
but as it would then coincide with the regular reflection, the maximum would be 
unobservable. In other cases, the scattering would show a very broad and diffuse 
maximum of intensity corresponding to the minimum value of 1/A on the sphere 
of reflection. This maximum however becomes rapidly weaker and more diffuse 
as the sphere of reflection passes further away from the centre of the spheres of 
diffusion with altered settings of the vector l /d .  Hence, nothing even remotely 
resembling a regular geometric reflection which persists over a wide range of settings 
of the crystal would be exhibited by the X-ray scattering due to  the elastic waves. 

The same situation can be represented graphically by plotting the function 
sin2 9/sin2 E for various settings of the crystal. It is sufficient if this is done for the 
scattered radiations lying in the plane of inoidence. With the aid of the formulae 
(6), (7), (9) and (1 I), it is readily shown that 

sin2 9 -- a 

sin2 (8 + E )  

, sin2 E sin2 eC - 2 sin OC sin (8 + E) cos E + sin2 (8 + E)' (25) 

It is seen on differentiating the denominator of the expression on the right-hand 
side of (25) that it becomes a minimum and the whole expression is therefore a 
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maximum when 

Equation (26) is equivalent to saying that 1/A is then a minimum, as can be seen 
directly from figure 2.The values of sin2 8/sinz E have been plotted in figure 3, as 

3200- 

.9 = 24.58' 

& O O L  . 
' 0  2 9 6 0.10 12.0 ,7 4 6 8 10 12. 0 2 4 6 8 10 12' 

P E  2 E 2 E  in de9. 

Figure 3. Graph of the function sin2 S/sin:. 

functions of the angle 26 for six settings of the crystal indicated by the different 
glancing angles of incidence 0 entered in the figures. The particular case chosen is 
one in which 0, = 21'58'; in the first of the six settings, 0 has the value 0,, and in the 
others increases by successive steps of one degree. it will be seen that the peak of 
intensity which appears in the first setting coinciding with the classical reflection 
rapidly falls off and is replaced by a relatively weak hump in the curve which 
spreads over many degrees of arc. The actual value of the numerical factor 
sinZ 8/sin2 E also falls off rapidly and becomes insignificant as the crystal is turned 
away from the correct setting for a classical reflection. 

We have in the foregoing analysis tacitly made certain simplifying assump- 
tions, viz., that there is only one kind of elastic waves to be considered, that the 
velocity of the waves is a constant and that the atomic displacements due to the 
waves are in every casenormal to the crystal planes. In reality, there are three sets 
of elastic waves possible, their velocity is a function of the direction of travel of the 
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waves, and the directions of the displacement are different for the three sets of 
waves. It should be remembered, however, that the three sets of waves would not 
all be equally effective in varying the structure amplitudes of the lattice planes. A 
movement of the atoms parallel to the lattice planes would have no X-ray effect 
and we may therefore exclude from consideration the types of waves which give 
rise to such displacements. Further, only such waves as have their wave-fronts 
roughly transverse to the lattice planes would produce a scattering of X-rays in 
directions which are appreciably displaced from the static reflections, and are 
therefore within the range of observation. It follows that we are principdlly 
concerned with distortional waves travelling in'directions nearly parallel to the 
lattice planes under c~nside~ation and giving atomic displacements nearly 
normal to them. Hence, the simplified treatment we have adopted should be a fair 
approximation to the truth. The variation of the velocity of the elastic waves with 
the direction of travel may be readily taken account of in our formulae. In any 
event, such corrections as may be necessary would not affect the broad result 
which emerges from the theory, namely that the elastic waves produce only a 
diffuse scattering of the X-rays with very low intensity and not a geometric 
reflection of the X-rays in any particular direction. 

It may be emphasized that the humps of intensity in the X-ray scattering curves 
appearing in figure 3 correspond to the elastic waves of greatest wavelength or 
lowest frequency operative in such scattering. Indeed, the smaller the angle at 
which the hump or maximum appears, and the more pronounced it therefore is, 
the lower would be the frequency of the elastic waves responsible for it. 
Accordingly, it is sufficient, as we have done, to take the energy of the individual 
vibrations as KT and to treat the problem classically. At low temperatures, 
therefore, these maxima of scattering intensity should weaken still further and 
become altogether negligible. This should be so even for crystals of high ehrsticity, 
such as diamond, so long as we are considering the X-ray efects due to  the elastic 
vibrations of lowest frequency for which hv* < KT. 

7. Quantum reflection by infra-red vibrations 

The geometric law of dynamic reflection (10) indicates that when the X-rays are 
incident on the lattice planes at an appropriate angle, the static and dynamic 
reflections appear simultaneously and in the same direction. The length of the 
phase waves A of the lattice vibration is then infinite, in other words, the atomic 
vibrations have everywhere the same phase. To enable us to evaluate the dynamic 
structure factor, we require to know the geometry of the particular mode of 
vibration as well as its actual amplitude. The former may be derived from a 
knowledge of the crystal structure and .atomic forces, while the latter is 
determined by the energy of the vibration. The entire crystal being regarded as a 
single dynamic unit, the energy associated with a single non-degenerate mode of 
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its iribration would be KT on the basis of classical mechanics or hv* according to 
quantum mechanics. In considering the infra-red or monochromatic vibrations, 
however, the crystal must be considered as a system having a great number of 
identical or nearly ideptical frequencies. To obtain an idea of the results to be 
expected in consequence of this fact, we may make the simplifying assumption 
that all the N frequencies of the system are identical, N being the number of lattice 
cells in the crystal. It follows that the amplitude of the N modes of vibration 
should be superposed. Each cell in the lattice would then have energy KT 
(classical mechanics) or hv* (quantum mechanics). The resulting amplitudes of 
vibrations would be considerable and the dynamic structure factor would no 
longer be negligibly small in comparison with the static structure factor. 
Considering also the identity of the phase of the vibration in the N cells, it follows 
that it would result in a dynamic X-ray reflection having an intensity propor- 
tional to N2 and comparable with the intensity of the usual static reflections. In 
the language of quantum mechanics, we may express this by saying that the 
crystal takes up an energy of vibration hv* from the X-ray photon hv which is 
reflected by the lattice planes with diminished energy h(v - v*), but that the 
probability of such a process occurring is increased N-fold by the fact that all the 
N cells co-operate, their frequencies, amplitudes and phases of vibration being 
identical. 

On the basis of these ideas, we may evaluate thestructure factor for a dynamic 
, reflection when it appears in the same directioh as a possible static reflection. 

Denoting by mp the mass of the pth atom in the unit cell and by ~,itlrdisplacerncnt 
from the position of equilibrium, the energy of a vibration of frequency v* may be 
written as 

C2mpl$n2v*2 = hv*, 
P 

From this we have 

If the geometry of the vibrati~n io known, we may tvaluata tho {,'a fram (Z8k 
Resolving each tp in a direction nomnl to tho ohoacn oryrtal p1,lrnca wa obtrnin ite 
component a, and thenm? 0 1 8 ~  {,, whloh appolab in th@ dy~lslmi~ ~ ~ F U O W M  fa~tor, 
The latter may thus 'h  d@t~m~!n@d for any pll~tt~i18r m&@ ttf vibrlrtion and for 
the particular s ~ t  ofmyat~l p l a ~ r .  A airnilas groolodu~~ W Q U I ~  have t8 bO ~ O U O W ~  
if we wish to ~on~ider  any othqr parriblo mod@ of i n f f i f i w r c o d  vibmtion st anp o tkr  
set of !@ttIt~ plan@@. TWn lr (11 64?1 x 10"a7nr~am and with m, ll* 40 I x 10""gm and v* mS x lQt m"' ar npmntrtlve v@Iu@r, tho quantity 

wna out a, a ~mgth of ths ordn @I XU. T ~ M  mi0  of^,(^ and 
do(@ appclrrina mpeotlvoly In t h ~  sxpwadona b r  tho ddynamia and otatio M a r  
in then of th@ order 1:20 for an 8vsmp ~lyntlll. h 0 t h ~ ~  WP&, ~ d e r  th mat 
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favourable conditions, the quantum or modified reflections have intensities which are 
of the same order of rhagnitude as the classical or unmodified reflections though, as a 
rule, definitely weaker. 

It is worthy of remark that if a crystal has several possible infra-red modes of 
vibration, those of the lowest frequencies would in general, as indicated by (28), 
produce the most important X-ray effects. The special importance of the modes of 
lower frequency would however be less marked on the quantuin theory than on 
the classicai mechanics; this becomes evident on writing KT instead of hv* on the 
right-hand side of (27). We would then have v * ~  instead of v* in the denominator 
of (28). The question as to which of the possible infra-red modes is most effective 
is, however, not so summarily to be disposed of. Actually, each set of crystal 
planes would have to be considered separately in relation to the various possible 
modes of vibration in the lattice. It may well happen that the dynamic structure 
amplitude of a particular set of crystal planes is largely derived from one of the 
possible modes of vibration, while another set of planes is chiefly influenced by 
some other mode. It may also well happen that the dynamic structure factors 
determined by the aggregate effect of all the possible modes of vibration are 
widely different for different sets of crystal planes and bear no simple relation to 
the static structure factors of the same planes. Such special features would be 
characteristic of the individual crystal structure and of the particular modes of its 
infra-red vibration. 

The simplifying assumption made above that all the N modes of vibration of 
the lattice have an identical frequency is equivalent to stating that the only 
possible phase wavelength is the largest possible, viz., A = co. This is evidently an 
extreme assumption, and it would be more reasonable to expect that while the 
great majority of the possible modes of vibration correspond to a very great phase 
wavelength, the remainder correspond to lesser values of A, thus enabling the 
dynamic reflections to appear at other settings of the crystal as indicated by 
equation (10). It would then follow that the intensity of the dynamic reflections 
should diminish rapidly as the crystal is moved away from the setting at which the 
static and dynamic reflections appear superposed. The fall in intensity would, in 
fact, represent the distribution of the possible modes of vibration in respect of 
phase wavelength. 

The situation indicated above is indicated graphically in figure 4. The 
reciprocal of the phase wavelength, namely 1/A, which we may denote by 6 is 
represented as a vector drawn from the terminus of the vector lld which gives the 
spacing and setting ofithe crystal planes. The great majority of the possible values 
of 6 congregate at the origin 6 = 0. There are, however, some which spread out 
along the lines representing the permitted directions of the phase-wave normal. 
The quantum reflections would then appear at the point or points on the sphere 
of reflection at which the vectors 6 thus drawn meet the latter. As already 
explained, the dynamic reflections need not necessarily lie in the plane of incidence. 
The restriction of the vector 6 to fall in specific directions differentiates our present 
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Figure 4. Geometry of quantum reflection 

case (figure 4) from that of quantum scattering also represented geometrically in 
figure 2. Such a restriction arises naturally from the fact that we are now 
concerned, not with a displacement of the lattice cell as a whole in some arbitrary 
direction, but with a specific mode of vibration of the atomic grouping within the 
cell. The symmetry of such atomic grouping, the nature and magnitude of the inter- 
atomic forces and especially the geometrical characters of the particular mode of 
vibration are superposed, or when the binding forces in the crystal are relatively 
the ideal case, therefore, we may expect this to lie in one or another of certain 
precisely defined directions related to the symmetry of the Crystal and the 
symmetry of the mode of vibration. The quantum reflection would then appear, 
as indicated in figure 4, in a sharply defined direction (or in sharply defined 
directions, if, for instance, considerations of symmetry require that there should 
be several possible directions of the vector 6). It is evident that such a restriction of 
the phase-vector 6 to specific directions would result in a very great increase in the 
intensity of the observable effects; in fact, the sharper the reflection, the more 
intense it would be and therefore the more easily observed. Thus, even if only a 
small fraction of the total number N of possible modes of vibration appear as 
stragglers from the point 6 = 0, their restriction to specific directions of 6 should 
enormously increase the visibility of their effects. 

We cannot however always expect the dynamic reflections to exhibit the same 
sharpness and precisely defined geometric character as the static reflections by 
the crystal planes. When, for instance, the effects of different possible modes of 
vibration are superposed, or when the binding forces in the crystal are relatively 
weak and are further disturbed by thermal agitation, a certain lack of precision in 
the direction of the phase-vectors would be inevitable. In such a case, the 
quantum reflections would necessarily be a little diffuse. Since, however, the 
majority of values of the vector 6 congregate at the point 6 = 0, all the possible 
directions of the vector must necessarily crowd together as we approach the 
common origin. Hence, the reflections should appear not only more intense but 
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also more sharply defined as the crystal setting approaches the position in which 
the static and dynamic reflections coincide. The same considerations indicate that 
at the lowest possible temperatures when the disturbing influence of thermal 
agitation is removed, the diffuseness, if any, of the quantum reflections arising 
from its presence should diminish and disappear. 

As indicated in earlier discussions, the distribution'of the N possible modes of 
vibration amongst various values of the phase-wave vector 6 is closely connected 
with the perfection of the monochromatism of the vibration frequency. The 
distribution should, in fact, run parallel to the distribution of the N modes 
amongst the various possible frequencies of vibration. The fine structure of the 
spectral lines in the infra-red region should thus stand in the closest relation to the 
variation in intensity of the quantum X-ray reflections with the crystal setting. It 
is known from studies on light scattering that the spectral lines representing the 
lattice vibrations, especially those of the lowest frequencies, become sharper at 
low temperatures. This effect is presumably due to the rtmoval of the thermal 
agitation which disturbs the precisely defined geometric character of the infra-red 
vibrations and therefore also their monochromatism. Observations at low 
temperature should thus indicate a closer approach of the X-ray effects towards 
the ideal behaviour, viz., the appearance of sharply defined and correspondingly 
more intense dynamic reflections. Whether temperature directly affects the 
distribution of the N possible modes in the 6 diagram, in other words tends to 
transfer a larger proportion of the modes to the origin 6 = 0, thereby diminishing 
the number of stragglers must, for the present remain, an open question. It can 
only be answered when'we are in a position quantitatively to formulate the 
distribution lam The strength of the inter-atomic bindings within the lattice cell, 
and the strength of the forces which link the lattice cells to each other and make 
the whole crystal a coherent solid must necessarily enter into such a distribution 
law. Only in the ideal case when the lattice cells are firmly linked with each other 
and the influence of thermal agitation is negligible would be the assumption that 
the atoms within the lattice cells all vibrate together with identical frequency, 
amplitude, and phase approach towards the complete truth. It follows that our 
calculation of the intensity of the quantum reflection from equations (27) and (28) 
should be regarded as setting an upper limit to the intensity of such reflections 
which would be approached only in the most favourable cases. 

8. Temperature factor for quantum reflections 

The quantum theory of radiation is an application of quantum mechanics to a 
c~nsideration of the interrelations between matter and radiation. In our present 
problem we are concerned with the effect of passage of a train of waves through a 
regularly stratified medium in the particular case when the stratifications, may, in 
part, be time-periodic. If the existence of such time-periodic stratifications be 
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assumed, classical optics indicates - quite independently of all atomistic or 
quantum theoretical considerations - that both static and dynamic reflections 
would be observable under appropriate conditions, the latter appearing with a 
changepf frequency. We translate this result into the language of the quantum 
theory by saying that the change of frequency arises from the exchange of energy 
between the photon and the medium, while the optical condition for a dynamic 
reflection is equivalent to the conservation of momentum in their encounter 
(Tamm 1930). Quantum theory indicates that there is a finite probability of a 
vibration quantum being created or destroyed jn the encounter if there be a finite 
interaction energy between the radiation field and the vibrations of the solid. The 
fundamentally new feature arising in the quantum mechanics not indicated by the 
classical or semi-classical theories is that the vibrations, even if non-existent in the 
absence of the radiation, would be created by it. This is the basis of our equation 
(27) in which the energy of the oscillation is put equal to hv* and which correctly 
represents the situation at the lowest temperatures. In the presence of thermal 
agitation, we have to merely add a contribution due to its effect. In other words, 
instead of hv* we write the energy of the vibration in equation (27) as 

+ exp (hv*/KT) - 1 

The second term within the brackets is the Planck factor. The justification for its 
inclusion is that the probability of the creation of a vibration quantum would be 
proportional to the number of such quanta present, and (29) is therefore only 
valid when we are considering encounters in which the number of vibration 
quanta is increased by the incidence of radiation. In considering the cases in which 
the number is diminished, we must evidently take the energy as 

hv*. 
1 

exp (hv*/KT) - 1 

In our present problem, the effects of both types of encounters appear superposed, 
and we may therefore take the energy as the sum of (29) and (30), viz., 

exp (hv*/KT) + 1 
hv* . 

exp (hv*/KT) - 1 ' 

The effect of thermal agitation would be thus to increase the intensity of the 
quantum reflection or the quantum scattering as the case may be, by the factor 

exp (hv*/KT) + 1 
exp (hv*/KT) - 1 ' 

which we shall refer to as the temperature factor in what follows. 
In the particular cases when hv* >> KT, viz., when the frequency of vibration is 

very high or the temperature is very low, the temperature factor reduces to unity 
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Figure 5. Temperature factor of quantum reflection. 

and (31) becomes simply hv*. On the other hand, when hv* >>KT, viz., when the 
frequency of vibration is very low or the temperature is very high; the expression 
(31) reduces to 2 KT. The numerical factor 2 indicates that we are now dealing 
with the sum of the two effects having the frequencies (v f v*), whereas previously 
we are only concerned with (v - v*). Thus, at sufficiently high temperatures, the 
intensities of dynamic reflection and scattering become proportional to the 
absolute temperature. At what stage this occurs depends on the,value of v*. To 
illustrate this feature, the value of the temperature factor has been drawn as a 
function of the absolute temperature in figure 5 for a number of different values of 
v*. These are indicated in each case ie spectroscopic units against the curves. It 
will be seen that all the curves tend asymptotically to the value unity at low 
temperatures. For low values of v*, the curve begins to rise steeply at a fairly low 
temperature, while for high values of v*, it remains nearly horizontal over a large 
range of temperature. 

The foregoing is, of course, a simplified treatment, but it is sufficient to indicate 
the main features of the case. The treatment assumes that the intensity of dynamic 
reflection is proportional to the energy of the vibration giving rise to it. Such 
proportionality does not necessarily hold good when the thermal agitation is too 
violent. It should also be remarked that we are considering the different possible 
modes ofinfra-red vibrations as independent of each other, in other words, we are 
neglecting their mutual influence. Even when such neglect of the interactions is 
justified, we must necessarily consider their effects as superposed on each other. 
When there are several infra-red modes of widely different frequencies, it is 
possible that the temperature factor may be effectively different for the different 
sets of lattice planes in the crystal. In other words, those lattice planes whose 
structure amplitude is noticeably affected by the infra-red vibrations of lowest 
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frequency would show a large temperature factor, while those which are sensibly 
influenced only by the modes of higher frequency would show a relatively small 

. temperature variation. That such a situation would arise in crystals which are 
highly anisotropic in structure is extremely probable. That it may occur even in 
isotropic crystals becomes evident when we recall that the atomic density and the 
structure amplitude vary enormously for the different planes of a crystal. Some of 
the planes in a crystal have special properties, e.g., cleavage, determined by the 
grouping of the atoms and the nature of the atomic bindings. These factors also 
determine the modes of atomic vibration possible. Hence, it should not be a 
matter for surprise to find that the temperatur'e factor for dynamic reflection 
varies greatly for different planes also in isotropic crystals. 

9. Temperature factor for classical reflections 

We have already noticed in section 5 that the presence of a vibration which 
endows the lattice units with a dynamic structure factor simultaneously results in 
a reduction of the static factor. The reduction arises from the term J,(rp) which 
multiplies the atomic structure factor, this being the same for all the p atoms in the 
unit cell in the case of an elastic vibration, but different for the p different atoms in 
the case of an infra-red vibration. The energy of an individual vibration being only 
hv* multiplied by the relevant factors, see (29) and (30), the diminution of the static 
structure factor produced by it is negligible. The infra-red vibrations, however, 
have an N-fold degeneracy. The vibration of the atoms resulting from the 
superposition of the N modes would therefore be sensible and therefore also the 
diminution of the static structure factor produced by it. When the static reflection 
appears, the dynamic reflection is also superposed on it and is therefore effectively 
an addition to its intensity. Nevertheless, if the intensities of the two types of 
reflection are assumed to be proportional to the squares of their respective 
structure factors, the diminution of intensity is ~ o t  compensated by such 
superposition. In other words, the possibility of a quantum X-ray reflection by the 
crystal planes necessarily diminishes the intensity of the classical X-ray reflections 
by the same planes. 

In practice, there may be several modes of infra-red vibration possible. Their 
effect and also the aggregate effect of the low-frequency elastic vibrations of the 
lattice on the static structure factor of the atoms requires consideration. We 
therefore proceed to examine the case in which several different modes of 
vibrations are superposed. We write for the displacement of the pth atom. 

Dp = d, + a,, cos (2nv,* t + zPJ. (33) 
n 

The secondary radiations from the atom have then as their periodic part 
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The expansion of this in a series of Bessel functions is most easily carried out by 
writing (34) in an exponential form. It then appears as a product of a series of 
terms containing v, v:, vf, etc., in the exponentials. On writing out the products 
after expansion in a series of Bessel functions, we get terms which are periodic in v, 
(V f vT), (V f v!), etc., and also periodic terms involving overtones and combi- 
nations of v:, vf, etc. Neglecting these latter, the multiplier of the atomic structure 
factor for the frequency v comes out as 

While the multiplier for the atomic structure factor for the frequency (v + v:)is 

For values of 5 which are not too large, we may use the approximation 

Jo(C) = exp ( - $C2) and J ,([) = 125. (37) 

Thus, the multiplier for the static structure factor of the atom is 

the summation in the exponent being over all the n different frequencies of 
vibration. The multiplier for the dynamic structure factor of the atom for the 
frequency (v f v:) is 

the summation in the exponent being now made over all the frequencies of 
vibration except v:. It appears from (38) that all the modes of vibration assist in 
diminishing the static structure factor, while (39) indicates that the dynamic 
structure factor for a particular frequency of vibration is diminished in the same 
way by all the other modes of vibration. The ratio of (39) to (38) is 

and depends only on the displacements of the atom due to the vibration of 
frequency v:. In this particular sense, each different vibration may be regarded as 
acting independently of all others, in other words as giving a quantum reflection 
of which the intensity in relation to the classical reflection is determined 
exclusively by its own amplitude. 

In the summation indicated by the exponent in (38), we have to include all the 
frequencies of vibration of the lattice. We recall that 

4nup,, sin 8 
5, = 9 
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where apn is the displacement of the pth atom resolved normal to the crystal plane 
due to the vibration of frequency v t ,  the actual displacement t, being given by 
the geometry of the vibration and its energy. Considering the elastic vibrations 
first, we have already noticed that those of the lowest frequencies give the largest 
atomic displacements. On the other hand, the modes of the higher frequencies are 
far more numerous. Thus, the entire range of possible frequencies of elastic 
vibration would contribute towards determining the product (38) which alters the 
atomic structure factor. The treatment of the problem by Debye, Waller and Laue 
however greatly exaggerates the part which the elastic vibrations of the lattice 
play in this respect. Firstly, there is no justification for assigning all the 3 Np 
degrees of freedom to the elastic vibrations. The maximum number which can 
properly be so assigned is 3 N, the remaining (3p - 3) N degrees of freedom 
representing the infra-red or monochromatic vibrations of the lattice. Then 
again, the actual frequency limit for the elastic spectrum is automatically reduced 
by the diminution in the number of degrees of freedom allotted to it. Thirdly, the 
semi-classical way in which the quantum theory of specific heats and the zero 
point energy are usually brought into the X-ray problem is, of course, invalid. 
Finally, in the vast majority of actual crystals, the Einstein or monochromatic 
vibrations, besides being more numerous, have often quite low frequencies and 
therefore make a notable contribution to the thermal energy. Their influence on 
the intensity of the classical reflections indicated by (38) should therefore be of 
great importance, in fact much more so than that of the elastic vibrations of the 
lattice. 

It follows from what has been stated above that there should be a considerable 
degree of correlation between the intensity of the quantum reflection by a 
particular set of crystal planes and the temperature variation of the intensity of 
the classical reflection by the same set of planes. An intense quantum reflection 
can only arise if the structure amplitudes are stpngly influenced by the possible 
modes of infra-red vibration with a corresponding diminution of the static 
structure factor. We should then ordinarily expect a notable temperature effect of 
the intensity of classical reflection, pari passu with an increase of the intensity of 
quantum reflection with rising temperature. Since however, the static and 
dynamic structure factors for the unit cell are determined by different consider- 
ations, the factors for the unit cell are determined by different considerations, the 
correlation indicated above is not necessarily to be observed in all cases. 

10. Summary 

The ideas indicated in the preceding paper are here worked out quantitatively. 
The secondary radiation from an oscilldting atom in a crystal traversed by X-rays 
is analysed into its frequency components. It is shown that the interferences to 
which each component of altered frequency gives rise are determined jointly by 
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the positions of the atoms and the phases of their vibration. It follows that besides 
the static reflections of unmodified frequency by the crystal planes, we would also 
have dynamic reflections of altered frequency. The geometric law of such dynamic 
reflection is derived. The static and dynamic strusture factors are deduced and it 
is pointed out that the elastic and infra-red vibrations of the lattice stand on a 
different footing in respect of these factors. Considering first the elastic vibrations, 
formulae are obtained and graphs are drawn which show that such vibrations 
give rise to a diffuse scattering of the X-rays with low intensity proportional to the 
number of lattice cells. The N-fold degeneracy of the monochromatic infra-red 
vibrations, on the other hand, results in their.giving true geometric reflections 
with altered frequency and with intensity proportional to the square of the 
number of lattice cells. The intensity of such reflection is evaluated on the basis of 
the quantum theory of radiation. The variation of the intensity, direction and 
sharpness of the quantum reflections with crystal setting is discussed. A formula is 
then obtained for the temperature variation of the intensity of the quantum 
reflections. The temperature factor for the intensity of the classical reflection is 
also written down and the extents to which the elastic and infra-red vibrations 
respectively contribute to it are discussed. 
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