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Summary. In the maximum entropy method of reconstructing a
brightness distribution B it has recently been recognized that a
whole family of functions f(B) can be used in place of the usual
choices f=InB and f=—BInB. In this note we suggest an
analogous family of functions for polarized brightness distri-
butions described by a correlation matrix B. The entropy is shown
to be the integral of the trace of f(B)and reduces to the form given
earlier by Ponsonby for the In B case. We obtain an expression for
the gradient of the entropy which is analogous to that for the
unpolarized case and can be used in a similar way in an iterative
scheme for finding the maximum entropy solution. Further, we
show that the entropy is a convex function of the brightness
matrix when f” <0, thus guaranteeing a unique maximum en-
tropy solution consistent with the measurements.
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1. Introduction

The Maximum Entropy Method (MEM) of restoring a brightness
distribution/spectrum from partial knowledge of its Fourier coef-
ficients (Burg, 1967) was strongly advocated for astronomical
applications by Ables (1972). In this technique one is required to
optimize the unmeasured Fourier coefficients by maximizing the
entropy expression E given below, subject to the measurements as
constraints.

11
E= { g SIB(x,y)ldxdy. (1)

Here x and y are fractional sky coordinates running from 0 to 1
and B(x,y) is the brightness distribution. Two forms of f are
common in the literature.

fi=In(B); f,=—BInB 2)

(Burg, 1967; Ables, 1974 for f; ; Frieden, 1972 ; Gull and Daniell,
1978 for f,). In recent times there has been much debate on the
foundations and relative merits of these two forms. However,
Hogbom (1978) and Subrahmanya (1978) both suggested that the
precise form of the function f is not crucial so long as it has the
general feature of discouraging ripple and negative brightness
values. Hefferman and Bates (1982), in the context of recon-
struction from projections, have recently given examples to show
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that the detailed form of the function being maximized is not
important. This viewpoint has received strong support in our
recent studies (Nityananda and Narayan, 1982, henceforth NN)
where we show that any form of f with the general properties
d*f/dB*=f"<0; d*/dB3=f">0 3)
will produce “good” reconstructions with flat baselines and sharp
peaks. Burg (1975) proved the important theorem that the recon-
structed B(x, y) for any particular choice of f is unique provided
the condition f” <0 is satisfied. This has considerably helped in
developing iterative numerical schemes to implement the MEM.

An extension of the MEM with the entropy form f; to
polarized brightness distributions was given by Ponsonby (1973)
who suggested that one should maximize

11
E= [ [In[I(x,y)— Q*(x,y)— U*(x,y)— V*(x, y)1dxdy )
00

subject to the measurements as constraints. Here I, Q, U, and V
are the usual Stokes parameters (see e.g., Landau and Lifshitz,
1975). Ponsonby (1973) did not discuss schemes to obtain the
MEM reconstruction. In this paper, we give the appropriate
generalization of Ponsonby’s (1973) entropy expression (4) for the
case when one has a general form for f and not just the logarithm.
We then show that the numerical schemes that have been
developed for the “scalar” brightness case can be directly general-
ized by introducing the “matrix” brightness. Finally we show that
f"<0 is a sufficient condition for uniqueness of the polarized
MEM reconstruction, thus completely establishing the close
parallel between the unpolarized and polarized problems.

2. Matrix generalization of the MEM for the polarized case

A polarized brightness distribution can be described using a two
by two matrix B(x, y) whose diagonal elements give the mean
square electric field along two orthogonal (spatial) directions. The
off diagonal elements give the complex correlation between the
two orthogonal electric field components. The correlation matrix
B is related to the Stokes parameters I, Q, U, and V as follows
(e.g., Landau and Lifshitz, 1975)

I+Q U+iV
=[B“ Blz}z 2 2 )
B, B,, U—-iv I1-0Q|
2 2
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All the quantities occurring in (5) are functions of the two sky
coordinates (x, y) and an interferometer with antennas separated
by a baseline (X, Y) measures the Fourier transform of B for this
spacing. In this notation, the entropy expression (4) given by
Ponsonby (1973) reads

Il

E—In4 In[I?-Q?—U?-V?]dxdy—In4

11
In[detB]dxdy= | | Trace [InB]dxdy
00

il
Otk Ot Ot =
Oty B Oty B Oy

[In 4, +1nA,]dxdy, (6)

where we have given four equivalent forms. Here 4, and 4, are the
eigenvalues of the matrix B, given by

A= 3@+ U+ VAT 4> 4, )

Physically, 4, and 4, represent the intensities of two orthogonally
polarized, mutually incoherent components into which the in-
cident radiation can be resolved. The final expression in (6) is just
the sum of the usual InB entropy for each of these components.
This is precisely the argument used by Ponsonby (1973) to write
down Eq. (4). The generalization to other forms of entropy is now
straightforward and leads to

E= g [[fGy)+fUy)ldxdy = || Trace[f{B(x, y)}]dxdy. (8)
0 00

The above generalization is physically motivated, whereas an
alternative generalization of (6) such as

E'= [ [ f[det{B(x,)}]dxdy ©)
00

would have no such basis.

Because of the contraints imposed by the measurements, while
maximizing E we should consider variations in B corresponding
only to unmeasured spatial frequencies i.e.,

SB(x,y)= Y. do(X,, Y)e2mtXutitn (10)

Xu, Yy

where the subscript u stands for “unknown” and we denote the
Fourier coefficients of B by ¢(X, Y). For a variation of the type
(10), the change in E in Eq. (8) is

11
SE=Y.Y[ | Trace [f{B(x,y)}de(X,, Y,)e* X" "1 ]dxdy.

X,Y,00

(11)

The above result is correct even when the matrices B and 6B do
not commute because the trace operation is invariant under cyclic
permutation of a product of matrices. Writing Eq. (11) explicitly in
terms of matrix elements and differentiating, we have

O0E

A v us a' (—Xu > - )]u 5
GonXy Y) ™ )

(12)

where we denote the Fourier coefficients of f'(B) by ¢(X, Y). Since
B is a Hermitian matrix, so is f'(B), and hence

0E
= GHX,.Y).

SeuXn V) (13)
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Equation (13) shows that the component of the gradient of E
corresponding to any unknown Fourier coefficient of B is the
complex conjugate of the corresponding Fourier coefficient of
f'(B). This is analogous to the result for the scalar brightness case.
Equation (13) can be directly used to develop a gradient type
algorithm to numerically maximize E (see NN for the scalar case).
Further (13) shows that when E is a maximum, all the 0,,(X,, ¥,)
are identically equal to zero, implying that f'(B) is band-limited.
This result is again analogous to that in the scalar case and can be
made the basis of fixed point algorithms to obtain the MEM
solution (e.g., Gull and Daniell, 1978; Willingale, 1981, for the
unpolarized problem).

3. Uniqueness of the polarized MEM reconstruction

Consider two polarized brightness distributions B,(x,y) and
B,(x, y) both of which exactly fit the set of interferometer measure-
ments. Let us assume that both maximize E given in (8). Since the
spatial correlations ¢,,(X,Y) are linear in B(x,y), any linear
combination
B,(x,y)=(1—p)B,(x,y)+pB,(x,y); 0=p=1 (14)
automatically satisfies the measured constraints. Also, if B, and
B, satisfy at each (x, y) the physical realizability conditions 1=0
and I*2Q*+ U?+V?, then so does B,
Consider any point (x, y). We have

& AN (d,
s [Trace (f(B)11= 10 (3) 1) (71;)

d*2 d*a
+lran +mz)d—p}}, (15)
where 4, and 4, are the eigenvalues of B,. With a little algebra it is
easily shown that this quantity is negative at all (x,y) if f”<0.
Since this is clearly impossible if both B, and B, are maxima of E,
we thus conclude that the MEM solution is unique.

The above uniqueness proof cannot be applied to the general
n(>2) multichannel case. This general problem (which, however,
has no application in aperture synthesis) still awaits a solution.

4. Conclusions

The main results of this paper are:

a) We have obtained a general expression [Eq. (8)] for the
entropy E of a polarized brightness map B in terms of a general
function f [which should satisfy the constraints in (3) for useful
results].

b) We have obtained an expression [Eq. (13)] for the gradient
of E with respect to unmeasured Fourier coefficients of B and
shown that the map B, , which maximizes E has f'(B_,,) band-
limited. Iterative numerical schemes to obtain B_, can be de-
veloped from these results as for the scalar brightness case (NN).

¢) We have shown that if " <0 then there is only one solution
B,... which maximizes E. This will lend robustness to numerical
algorithms since convergence to the unique solution is assured.

d) In an earlier paper (NN) we have described schemes to
control the resolution and sensitivity to noise of the MEM for
scalar brightness maps. The same techniques can now be em-
ployed for polarized maps because of b) and c) above.
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