FTI981ARA © 7937 ZZ69K

Astron. Astrophys. 93, 269-281 (1981)

ASTRONOMY
AND
ASTROPHYSICS

The Maximum Entropy Method of Image Restoration-properties and Limitations

M. M. Komesaroff*, R. Narayan, and R. Nityananda
Raman Research Institute, Bangalore, India-560006

Received February 19, accepted August 5, 1980

Summary. The maximum entropy method (MEM) of spectral
analysis is examined from a somewhat novel viewpoint.

A spectral function being necessarily positive, its (discrete)
Fourier transform is an autocorrelation sequence. We show that
associated with an autocorrelation sequence there is a sequence
of unit vectors whose scalar products give the autocorrelations.
Specifying the autocorrelation up to some finite lag imposes
constraints on the vector sequence and thus on unspecified auto-
correlation terms. Each unspecified term lies within a convex
connected area in the complex plane. The first lies within a circle;
we give expressions for its centre and radius. Any choice within
this “circle of constraint” is consistent with positivity, but
choosing the centre maximizes the area available to the next
unspecified term, which is a circle of the same radius. Sequentially
setting each term to the centre of its circle maximizes the area
available for each subsequent term; this procedure also yields
the MEM spectral estimate.

The MEM is shown to be a type of model fitting; the model
consists of a number of asymmetric “peaks” equal to the number
of autocorrelation terms originally specified. Since each peak
requires two complex numbers to specify it, the individual char-
acteristics of the peaks are not independently adjustable. This
can lead to undesirable results, for example spurious splitting of
peaks.

If the circles of constraint contract to points the peaks reduce
to delta functions. Measuring error drives the autocorrelations
towards this fully constrained limit, and thus tends to enhance
the “peakiness” of the spectrum.

These and other features of the MEM are substantiated by
numerical examples.

Key words: maximum entropy — spectrum — autocorrelation —
deconvolution

I. Introduction

The most obvious basic problem in radio astronomy is to measure
the distribution of the radio ““brightness” as a function of angular
position in the sky. To achieve angular resolution finer than that
provided by the largest single reflector, one has recourse to the
technique of aperture synthesis. In principle, aperture synthesis
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may be thought of as a procedure involving only two aerials, each
aerial having its own receiver, and each aerial receiver combina-
tion accepting the same band of radio frequencies. A single obser-
vation involves measuring the correlation between the radio-fre-
quency signals from the two aerials for one particular spacing
between them. A set of such measurements made for all possible
spacings yields the spatial autocorrelation function of the electro-
magnetic field. The brightness distribution is then the Fourier
transform of this autocorrelation function. It is not necessary to
measure the autocorrelation as a continuous function of the
spacing between the aerials. It need only be measured at integral
multiples of a certain basic spacing calculated from the sampling
theorem. Thus the measurements yield a discrete set of numbers
which constitute an autocorrelation sequence. An immediate and
obvious difficulty appears; the brightness distribution is derived
from the measured autocorrelation sequence by a Fourier Trans-
formation. But this requires that we know the autocorrelation
sequence out to infinite spacing. The question then arises: since
our measurements can necessarily only yield a finite set of samples
of the autocorrelation sequence, what is the best estimate we can
make of the brightness distribution? The same problem arises in
the estimation of radio frequency power spectra by the autocor-
relation technique and also in various other branches of experi-
mental physics.

Traditionally two procedures have been adopted to cope with
this difficulty. In the first, all unmeasured values of the autocor-
relation sequence are set to zero and a Fourier inversion carried
out on the truncated sequence. The disadvantages of the procedure
are obvious. Setting unknown values to zero is completely
arbitrary, and leads to ripple, or sidelobes, in the resulting bright-
ness distribution. Furthermore, it leads to areas of negative
brightness which are clearly non-physical since brightness by its
nature must be positive.

Another procedure is to apply a set of weighting factors to the
measured autocorrelation values before carrying out the Fourier
inversion. The weighting factors decrease monotonically with
increasing spacing. This procedure can largely eliminate side
lobes, but at the cost of a degradation in angular resolution. An
objection which is perhaps more basic follows from the fact that
the autocorrelation sequence and the brightness distribution are
related by a Fourier transformation. A Fourier inversion of the
estimated brightness distribution should therefore yield the
measured autocorrelation sequence, but, of course, it now will
not do so. In this respect the result does not represent the mea-
surements.

Another approach was adopted by Biraud (1969). Starting
from a set of interferometric measurements on the source, h_e
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Fig. 1. Schematic representation of three identical aerial receiver
combinations

used a recursive technique to calculate a function, nowhere
negative, the Fourier transform of which fitted the data best in a
least squares sense. He was able to show that the brightness distri-
bution so derived was a better representation of the actual source
than the result of the more conventional technique.

The feasibility of a procedure such as that used by Biraud
depends on the fact that an autocorrelation sequence, which is
the Fourier transform of a non-negative function, is not the most
general type of Fourier transform, and therefore the terms of such
a sequence are not mutually independent. This means that if we
are given the values, gy, ¢; ... @,, of the first (n+1) terms of
such a sequence, we can set limits on the values which terms of
higher order can take. This fact is basic to the Maximum Entropy
approach to spectral analysis although several of the papers on
this subject do not state this explicitly.

In Sect. II of the present paper the possibility of extrapolating
an autocorrelation sequence is made plausible using a simple
example from aperture synthesis. We show that if we know the
values of two terms of an autocorrelation sequence, we can set
limits on a third term.

Sections III and IV represent an extension of an argument
due to Komesaroff and Lerche (1978). In Sect. III it is shown that
if we have a set of numbers g,, . . .9, normalized so that g,=1,
a necessary and sufficient condition that these should form part
of an autocorrelation sequence is that a set of unit vectors V;
should exist such that each autocorrelation term can be represented
as a scalar product of the form

em=ViVt.; 0=Em=n
for all j. This requirement can be restated in terms of the Toeplitz
matrix T'(n), defined by

Lix=0x—j=0F &

in which j and & run from zero to n. If g, . . .o, are members of an
autocorrelation sequence, then 7'(n) must be non-negative definite.
A further consequence is that if we know the values of g, . . .g,,
each term of higher order can be localized within a single con-
nected convex region in the complex plane. This result is true in
any number of dimensions (Appendix II).

Returning to the one-dimensional case, it is shown in Sect. IV
that if the first term of higher order is set to the centre of its
permitted region and this procedure is repeated indefinitely, the
result is equivalent to the maximum entropy spectral estimate.
This gives a new derivation, by the vector approach, of a result
which Burg (1975) has derived from the time series point of view.
This choice is shown to maximize the Toeplitz determinant
det (T'(n+m)) for all m> 0. As discussed in Sect. IV, van den Bos
(1971) has given a related but weaker result.

The form of the maximum entropy estimate is discussed in
Sect. V. It is first shown that if g, . . . g, are members of an auto-
correlation sequence, then provided the Toeplitz matrix T'(n) is
non-singular, the maximum entropy extrapolation procedure

.yields an autocorrelation sequence g(n+m) which decreases

exponentially to zero as m— co. The corresponding spectrum can
be resolved into a set of n “peaks”, each of finite width, and we
can set a lower limit on the width of any such peak. It is shown
that in general the individual peaks are not Lorentzian nor even
symmetric, as seems to have been assumed earlier.

For the special case in which the Toeplitz matrix is singular
the areas in the complex plane corresponding to terms of higher
order contract to points. The solution is then fully constrained,
and it is shown that the corresponding spectrum is a set of n delta
functions. Again we note that Burg (1975) has already derived
this result. The alternative derivation given here from the vector
point of view is particularly simple and appealing.

In Sect. VI, the special nature of the model which the maximum
entropy method (MEM) fits to the measured data is discussed.
Numerical examples are given demonstrating the very succesful
results which the MEM can yield in some cases, but also dem-
onstrating some of the artefacts and distortions which it can
introduce. The effect of measuring error on the MEM spectrum
is then discussed, both analytically and numerically.

II. A Simple Example

In this section a simple example from aperture synthesis is used
to illustrate the method adopted in this paper, and also to show
that if even the values of only two terms in an autocorrelation
sequence are specified, this allows us to set limits on the values
which unspecified terms may take.

Consider three identical receiving systems, as shown in Fig. 1.
Each consists of an aerial, a radio frequency amplifier and a mixer.
Each aerial-receiver combination has a uniform response within
the frequency range v, —A4v/2<vy<v,+4v/2 and zero response
outside that range.

In order to measure the (real part of the) spatial autocorrela-
tion term associated with the spacing 4B (and thus the correspond-
ing Fourier component of the brightness distribution) we cor-
relate the i.f. voltage from mixer 4 with that from mixer B, and
similarly for the other two correlations. Since each system is
band limited, we need only sample each i.f. voltage at integral
multiples of the time interval

At=1/2 Av.

Denoting the normalized autocorrelation term corresponding to
the spacing 4B by g 45 etc., we can then write

M M M
Q4= Z Vai Ve @sc= Z VaVeks Qac= Z Ve Vex (6))
k=1 k=1 k=1
where V., Vg, and Vg, are the kth voltage samples from receiv-

ing systems A4, B, and C respectively, normalized so that
< 2 d 2
Z V= Z V=
k=1 k=1

and MAt is the total duration of the observations.
Each normalized autocorrelation term has the form of the
scalar product of two unit vectors. We may write

0=V, Vg 3)

where the kth components of the unit vectors ¥, and V; are
respectively V,, and V. These vectors as so defined exist in a
space of M dimensions, and usually M is very large. In principle,
to measure the true autocorrelation g,, requires M—oco. How-
ever, as we are interested in the relations between the vectors and

}i chk =1 ¥))

k=1
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not in their absolute orientations, we may choose a system of
coordinates such that ¥, lies along the x axis and Vj lies in the
plane defined by the x and y axes. Thus the three unit vectors can
be represented in a space of three dimensions, and each correla-
tion term is equal to the cosine of the angle between the cor-
responding vectors.

Therefore, as illustrated in Fig. 2, if we know the autocorrela-
tion terms g ,5 and gz, we know that the angle between ¥, and
Vy is 6,5 and that V. must lie on a cone, of which Vj is the axis,

and of which the semi-apex angle is 0., where
cos 0p=045, C€OS Opc=0pc. “@

It is than clear from Fig. 2 that the angle 6, must satisfy the

inequality

|0 45 — Opcl =0 4c < the smaller of 0,5+ 05 and 27— (0 45+ Opc)

from which it follows that

cos (0,45 —Opc) 2 cos 6 ,c 2 cos (60 45+ 05c)

04805c+(1—058)"?(1—05)"* 2 04c 2 0.4505¢ 6
—(1—02p)*(1 - 05c)".

Thus given the values of g5 and gp., we can set limits on the
values which g ¢ can take. If the magnitudes of the known terms
are close to unity, these limits will be very narrow.

For the particular case in which the three receiving systems
are colinear and equally spaced we can write
Q4= 08c=01

since the correlation depends on the element spacing but not on
the location of the interferometer pair. Writing ¢ ,c=0,, it then
follows that

120,220} -1. @)

If 1—¢? is sufficiently small we can use this method to set lower
limits to higher order terms corresponding to successively higher
integral multiples of the basic spacing.

II1. The Fourier Transform of a Non-negative Function

a) A Finite Autocorrelation Sequence

The general problem we are investigating may be stated as fol-
lows. If we know that the function

F(x)20 ®)
for all x within the range

—1/2Sx<+1)2 ®

and zero elsewhere, what constraints does this impose on the
Fourier transform of F(x)?
In view of (8), F(x) may be expressed by

F)=f(x)f*G)=f(x)P. (10)

Since we are interested in the values of F(x) and f(x) only within
the range of x given by (9) it is sufficient to specify the Fourier
transform of each of these functions at discrete intervals and thus
we may write

F(x)= jf 0. €Xp (27imx) 11

Va

Fig. 2. Representation of the three unit vectors defined in Sect. II

+ o
fx)= Y g,exp (2nimx). (12)
Taking account of Egs. (10), (11), and (12) and the convolution
theorem, it then follows that

+ oo
Qm= z gkg;:—m' (13)

k=—o

A set of numbers g,,, in general complex, given by a relation of the
form (13) is said to be an autocorrelation sequence. The right
hand side of (13) may be regarded as the scalar product of two
(complex) vectors. Let us normalize the g, so that go=1. Then, if
the set of n+1 complex numbers gy, . . .o, form part of an auto-
correlation sequence, a set of n+1 unit vectors must exist such
that

en=V;Vitm

for all j and m. Thus the existence of a set of vectors satisfying the
condition (14) is a necessary condition for the g,, to form part of
an autocorrelation sequence.

Let us now construct an arbitrary vector

(14

V= i @V,

k=0

(15)

where the g, are arbitrary complex numbers. Taking the squared
modulus of both sides of Eq. (15)

V=Y Y aatVvy (16)
I1=0 k=0
= Z Z QAo an
1=0 k=0
from (14).
Equations (17) may be written in the equivalent form
A'T(n)A=0 (18)

where 4 is the column vector of which g, is the kth component,
and the Toeplitz matrix T'(n) is defined by

“feo @1 02 ...0

ef e o < On-1
(19)

or OF-1 02 ...Q
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Since the elements of the vector 4 are completely arbitrary, Eq.
(18) implies that T'(n) must be non-negative definite.

But according to Bochner’s Theorem (see for example Papou-
lis, 1965) inequality (18) is not only a necessary but also a sufficient
condition for g,, ¢;, . . .0, to be members of an autocorrelation
sequence and thus part of the Fourier transform of a non-negative
function. It follows that the existence of a set of unit vectors
satisfying Eq. (14) for all j and m is a sufficient as well as a neces-
sary condition.

b) Extending the Autocorrelation Sequence

The question now arises — if we know the values go=1, ¢;, - - -0,
of the first n+1 terms of a uniformly sampled autocorrelation
sequence, what constraints does this allow us to place on the
terms of higher order?

The starting point is Eq. (14). In geometric terms, knowing
00> 015 - - -0, 18 €quivalent to knowing the (complex) scalar pro-
ducts among any n+1 consecutive members of the infinite se-
quence of vectors V;. This completely determines their “internal
geometry”. Therefore one can express a given unit vector V;
uniquely as a linear combination of the n vectors V;_;, V;_,,

.., ¥;_, and a vector orthogonal to these. Thus

V.=

J
k

(20)

™M=

ak,n V:i—k + Bnej

1

where B, (clearly of modulus<1) and the a;, are constants
independent of j and the unit vector ¢; is such that

gV, =0; O<p=n. (1)
Taking the scalar product of (20) with V;* ,
ViVit =2 e ViaViE+Bae Vi, 22)
k=1
and, in view of (14) and (21), this may be written as
Qp = Z ak,ngp—k 5 0 <p§n (23)
k=1
From (20) it also follows that
<Vj_ Z g, V}'*) (V;'*— Z af,n J*—I> =ﬁ: (24)
k=1 =1
and taking account of (14) and (23), we have
Q0= 2. %nlf =0~ ). ot.0f=h7. (25)
k=1 k=1
Equations (23) and (25) may be written
0 ef o ...of 1 B:
0, 0 of c0n-1 0| _ 0 (26)

@ Qn-1Qn-2 ---Qo " O, 0

Knowing the values of g,, 0, - - .0,, we may solve these (n+1)
equations for the n+1 unknowns B? and «,,. In fact, the full
matrix inversion is mot required. An economic procedure for
evaluating B2 and the o, , is described in Appendix I. The values
of these constants are independent of j and thus we may write
equations analogous to (20) and (21) for the set of vectors
I/}+1a V) e I/}+1—n

I/}+1= Z ak,an+1—-k+ﬁn8;'+1 27N

k=1

(28)

We note that the scalar product of ¥, with V;_, is @,.+, which
is not known. This implies from (27) that the scalar product of
the unit vector ¢}, with ¥;_, is not fixed by the available infor-
mation. We will now determine the freedom which &}, has and
thus obtain bounds for ¢,.,. We decompose &j,; into two
mutually orthogonal parts

g Vihi-,=0; O<p=n

(29)
(30)

5;‘+1 =)~1'7+/113j+1
4P+ 14, P =1

where the unit vector # is a linear combination of the set V;,
Vi_ys-.- Vj_nand g, is a unit vector orthogonal to this set.

(31)
Substituting (29) into (28) and using (31) we see that 5 has to be

orthogonalto V;, V;_y, ..., Vitqp-

3j+1V}*+1—p=0; O<p=n+1.

(32)

Equation (32) and the requirement that x be a linear combination
of the set V;, Vi_y,..., ¥,

nVii-4=0; 0<g=n

’;—n Show us that the role of # is similar

to that of ¢; in (20) and (21). In fact we can write

I/j—n= Z al?,n V}—n+k+ﬂn’1‘ (33)
k=1
The only difference between (33) and (20) is that the complex
conjugates of o, , appear. This is easily verified by constructing
the equation corresponding to (26) for the coefficients in (33).
Having determined 5 from (33) we can substitute Eq. (29) for
&j4, into Eq. (27) for V., to obtain

Vier= Z W Vis1 -4 (V:i—n_ Z “;f,an—Hk) + 41 Bgj41 (34)
k=1 k=1

Taking the scalar product with V;* , we obtain, from (14), (25),

(31), and (34),

On+1= Z U nln+1 -kt A B? (35
k=1

where A, is an unknown constant, the only condition which it
must satisfy being [from (30)]

PAESE (36)

Thus, given the values of g,=1, ¢4, .. ., ¢,, we can localize ¢,,
to a circle in the complex plane. The radius of the circle is B2
and its centre is at the point represented by the complex number
Rn= Z ak,ngn+l —k- (37)
k=1
All “acceptable” values of g, lie within this circle. If we assign
to g,+; a value lying outside this circle, there is no non-negative
function whose Fourier transform passes through the points

QO’ Ql’ M Qm Qn+1°
An argument essentially identical with that given above yields

Oni2= Y, %nlusz—xth (Ql - a{,ngk+l> +,(1—14 ) B (38)
k=1

k=1

where |4,|<1. Thus, acceptable values of g,,, depend on the
value of g,,, which in turn depends on 4,. Any combination of
A, and 1, such that |4,| <1 and |4,| <1 yields an acceptable value
of g,+,- All such acceptable values of g, , lie within an area in
the complex plane which in general is not circular and which is
always larger than the circle within which g, , , lies. Any particular
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choice of 4;, and thus of g,,, imposes a further constraint on
0n+2, that is, further restricts the area within which g, ,, must lie.
This area is a circle of radius (1—|4,[*)82. The area of the circle
is a maximum when A, =0, in which case the radius becomes 2.

In general, the values of g, 9;,...,0, constrain all g,
(where m > 0) to successively larger areas in the complex plane. If
we assign ‘“‘acceptable” values t0 @, 1, Gns2s - - > Cutm—1, these
impose additional constraints on g, , ,, which must then lie within
a circle, the radius of which cannot exceed 2.

Appendix II shows that the region in which higher members
of the autocorrelation sequence are allowed to lie is convex.

IV. Transition to the Maximum Entropy Spectral Estimate

On what basis can we select a combination of the higher order ¢’s
from all the acceptable combinations? A priori we cannot exclude
any combination; but the following argument suggests a procedure
for making a selection. As we shall see, this procedure leads to
the maximum entropy spectral estimate.

Let us first consider the effect of setting g,,; to one of its
extreme values [see Eq. (35)]. That is, we set |4,|=1 and also fix
its phase, so that A, =e*” where ¢ is some definite real number.
In that case, as Eq. (38) shows, we no longer have any freedom
in our choice of g, ,. It is constrained to one particular value.
It is also easily shown that each g of higher order is constrained
to a particular value. If we had some independent method of
determining the value of g, . o (say) we have no reason to suppose
that this value would agree with the one derived from the fully
constrained extrapolation procedure. Furthermore, as shown in
Sect. V below, the function for which we have now determined
the Fourier transform is a set of (n+1) delta functions. Thus in
all respects, this procedure is arbitrary, and it also implies infinite
resolution on the basis of a finite number of measurements.

Consider on the other hand the effect of setting 4, =0, so that
0,41 lies at the centre of its permitted range (Eq. 35). This mini-
mizes the greatest possible difference between the unknown true
value of g,,; and our estimate of it. Further, the radius of the
circle to which g,,, becomes confined by our choice of g,
attains its largest value, viz., B2 (Eq. 38). The procedure of setting
each successive term in the sequence to the centre of its permitted
range minimally constrains all higher order terms in the sequence.
As shown in Sect. V, this procedure leads to an autocorrelation
sequence g, .,, Which decreases exponentially to zero as m— co,
and thus does not imply infinite resolution. It is equivalent to the
iterative algorithm

Om— Z ak,an—k=0; m>0

k=1
=B2; m=0. (39)
It is also equivalent to setting
8j+ma;!= =(§m,0 (40)
where ;. , is given by
I/j+m= Z ‘xk,nl/j+m—k+18n8j+m (41)
k=1
or
Z Yij+m—k=ﬂn£j+m (42)
k=0
where
'y0=1, Y= = ns 0<k§n. (43)

273
Thus from Egs. (40) and (42)
(£ wem-d) (710 =20
k=0 I=0
z Vi Z ‘Y?‘Qm+l—k=ﬁ:6m,0 (44)
k=0 1=0

from Eq. (14).
Taking Fourier transforms we obtain

+ o0

Z exp (2mimx) Z Yk Z V¥ Cm+1-x=B7
1=0

m=—c k=0

+ oo
Y. Opoexp 2nimx)

m= —

Rearranging the right hand side and setting M=m+I1—k

+ © n n
Y omexp QuiMx) Y. y. exp Ruikx) Y, y¥ exp (—2milx)
M=-x k=0 1=0

=p2.

Thus, if the autocorrelation sequence g,, has its first n+1
members equal to the known autocorrelation terms g, . . ., and
if the values of g, for M >n are derived by the extrapolation
procedure described previously, then the Fourier transform,
S (x) of g, is given by

S(x)= EO O €Xp (2miMXx)

M=-o

,32
=— = . (45)
Y yeexp Qmikx) Y. y¥ exp (—2milx)
k=0 1=0

The function S(x) is identical to the “maximum entropy” spectral
estimate, where the definition of the entropy H of a function
F(x)is

H={In F(x)dx. (46)
(See Burg, 1967; Ables, 1974; Newman, 1977).

From Eq. (26) we can easily solve for B2 to obtain
B2 =det (T(n+1))/det (T(n)). 47
From this equation we obtain
det T(n+m)= B2 Bim_y - - - B2y det (T (n)). (48)

Now Eq. (38) shows that the largest possible value of 82 at each
stage is B2 and is only attained if we choose A=0 at every stage,
as in (39) and (40). Thus, our procedure of giving B its largest
value at each stage is equivalent to maximizing det (T(n+m))
with respect to all the unknown correlations which occur in it.

Van den Bos (1971), has noted that each new choice of an
unknown autocorrelation according to the maximum entropy
scheme maximizes the determinant at that stage, but asserts that
this is not equivalent to giving det (T (n+m)) its absolute maxi-
mum value with respect to all unknown autocorrelations in it.
The above argument shows that the procedure does indeed yield
the absolute maximum value of det (T'(n+m)).

We see directly that the above procedure maximizes the
entropy when we note that as m— oo, In B2 tends to a value
proportional to the entropy as defined in (46). An elegant proof
of this result can be found in the review by Smylie et al. (1973,
Eq. 17).
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V. Properties of the Maximum Entropy Autocorrelation
and Spectrum

a) Decay of the Autocorrelation Coefficients

Here we examine the form of the autocorrelation and the cor-
responding spectrum resulting from the extrapolation procedure
described in Sect. IV. We show that, provided the matrix T'(n)
is non-singular and, therefore, from (48) 2 > 0, the autocorrela-
tion g, decreases exponentially for very large values of m, and
thus the spectrum contains no d-functions. In fact the spectrum
consists of n asymmetric “‘peaks” each of finite width. It is shown
that an approximate lower limit can be set on the width of any
peak, this lower limit being proportional to p2. For f2=0, the
spectrum consists of n §-functions.

We first define a linear operation S (for shift) which takes any
vector in the sequence into the next one, i.e.

SV,=V,,, (49)
Also
(SV) SV =V,s Vi 1=0;=V; Vi, (50)

Equation (50) tells us that the scalar product of any two vectors
in the sequence is preserved if we apply the shift operation to
both of them. This is true for linear combinations of the vectors
V; also. Thus S is a unitary operation.

Now we define a space N, consisting of the n vectors V;_; to
V;_, and their linear combinations. The basic recurrence relation
between the vectors, Eq. (20), reads

Z akn k+ﬁn

with ¢; orthogonal to all vectors in N by Eq. (21). The first term
on the right hand side of (20) lies in the space N. Applying the
shift S to both sides of (20) we find S¢;=¢;,,, and in general,

N (Vj_ Z ak,n Vj—k) = ﬂnsm8j= ﬂn8j+m

k=1
or
Vj+m - Z ak,an+m—k =ﬁn8j+m'

k=1

The argument in Sect. IV has shown that this recurrence relation
by itself does not uniquely determine the ¢;,,, or the V;,,. We
therefore add to our definition of S the requirement that the
&j.+m as given by Eq. (51) be such that

VX ,=0;

(20)

(51

€ m=0. (52)

j+m 1§P§n’

14

Thus the shift operator so defined keeps a vector orthogonal to
the space N if it is so to start with.

We consider two projection operators, P and Q, which acting
on any vector, pick out the component of it in the space N and the
component orthogonal to N respectively. Clearly, these two
components together make up the original vector, as expressed
by the following equation

PV4+QV=V or P+Q=I
where I denotes the identity operation. Further
=P and Q"=Q (33)

for all m> 0, since projection does not alter a vector which has
already been projected. In what follows we can ignore the scalar
product of any vector in N with any vector of the form QV since
the two are orthogonal.

We are interested in the behaviour of g, expressed as a scalar
product (Eq. 14)

Ql= I/;'—n+lng.-g-n—_-(P'*'Q) Vj—n+lV;'*—n

=PV, iVt
But
PV;_pu1=PS'V,_,
=(PS)V;-, (54)
in view of (53), and thus
=(PSYV;_, V¥, (5%

The advantage of Eq. (55) is that it refers only to vectors in the
finite dimensional space N. It can be analysed by introducing the
n eigenvectors e, and corresponding eigenvalues A, of the operator
PS. Expanding the vector ¥;_, in terms of these eigenvectors we

find

- [(PS)’ kil a,‘e,J [ il a;:;e:,] =X G (56)
where
Co= 3 aat(eer). 57

m=1

The required expression for the autocorrelation is given by (56).

The Egs. (20) and (54) indicate that the operation (PS)"
strictly decreases the length of any vector in the space N. This is
because any vector acquires a component along ¥} in at most n
operations of shifting, and will then decrease under the last pro-
jection. This implies that

1] <1
where 4, is any of the n eigenvalues of (PS). Thus from (56) the
autocorrelation g, decreases exponentially as /—oco. Burg (1975)

has used a different approach to show that g, corresponding to
the maximum entropy spectral estimate, decays to zero as /— 0.

b) Nature of the Peaks in the MEM Spectrum

Equation (56) gives the autocorrelation g, for /0. For /<0 we
write

Q= Z CI?)‘I?I
k=1

and

0@ =2 G=Y C¥=Y (C+CH)2 (58)
k=1 k=1 k=1

Letting z=exp (27ix), the spectrum S(x) corresponding to the
autocorrelation g, may be written

) {Ck/2+ S carrcn § e

1=1

=3 {ck/2+ Gz | cxpa - G A /2} (59)

K=1 — Az — A%/
Thus the spectrum S(x) may be represented as the sum of n
terms S;(x) given by

C Az
—hz

CrAtlz

Su(0)= G2+ vy
k

+ G2+ A
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Fig. 3.aThe model spectrum S(x)=0.02+ 0.8 exp (—(0.102 — x)?/
25)+exp (—(0.133 —x)*/9)+0.05 exp (—(0.352 — x)%/36)

b Reconstructed spectrum using only the first twenty Fourier
coefficients viz. g;—0,5 € MEM spectrum calculated using g4—0,9
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Denoting 4, by r, exp (—27ix;), C, by C;+iC,’, and remember-
ing that z=exp (2#ix), we find

C{(1—r2)—2C/r, sin 21 (x—x,)

S =
k() 1+7r2—2r,cos 2m(x—x,)

(60)

As expected this function is periodic in x with period 1. We can
visualize it better by assuming that r, is close to 1 and x is close
to x,. We recover the approximate form

a+b(x—x,)

S = ey

With b=0, we have the familiar Lorentzian peak. However, the
b term makes the peak asymmetric since it changes sign when
(x —x;) changes sign. While many authors, guided no doubt by
the exponential form of the autocorrelation function generated
by MEM, have stated that it corresponds to a sum of Lorentzian
peaks, the point about the asymmetry seems to be new and gives
us insight into the MEM as a model fitting procedure as dis-
cussed in the next section. It must be remembered that while
Eq. (60) is valid in general, it is useful to interpret the spectrum
as the sum of many peaks only when they do not overlap severely.
This will certainly be true for small f2, since as shown in Sect. Vc,
we start from J-functions at f2=0.

In Appendix III, the “weighting factor”, C, of the kth peak
is evaluated; it is given by

Ce=Ba/(1 =24 TT (1 =A/A) (1 —2F4). (61)
itk

It is also shown there that an approximate lower bound can be

set on the width at half maximum a of the kth peak. It is

az /2% 1x. (62)

¢) The Special Case

A zero value for 2 implies that the Toeplitz matrix (Eq. 48) is
singular. For that case, in place of Eq. (20), we write

V'+m_zak,n I/}+m—k=0

J

for all m>0. Any unit vector in the sequence can now be ex-
pressed as a linear sum of vectors in the space N. Furthermore
any vector in the sequence can be transformed into the next
member of the sequence by a unitary operator S. Since the
operator is unitary it preserves the lengths of all vectors and its
eigenvalues are of modulus unity. The equation analogous to
(56) is now

0=, e, exp (ilp,,) (63)

where ¢,, is real. Equation (63) implies that we have n terms in
0, the mth of which is the Fourier transform of a 5-function located
at ¢,/2n. The strength of this term is obtained from Eq. (57)
using the orthogonality of the eigenvector of a unitary matrix

— *
C,=a,ak.

As expected, the C,, are positive in this case. When we put /=0
we have the relation, true in general

Z Cm=90=1

m=1

Burg (1975), using a different method, has shown that when the
Toeplitz matrix is singular, the spectrum is a set of J-functions.
Bhandari (1978) has noted the appearance of sharp spikes in the
MEM spectrum when the data are close to violating positivity
(i.e. B close to zero).
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Fig. 4a and b. same as in Figs. 3a and c except that the baseline
of 0.02 is omitted

VI. Discussion of the Maximum Entropy Approach
a) Typical Good Results with the MEM

Figure 3 presents a model calculation which illustrates the tre-
mendous improvement that is possible with MEM in favourable
cases. The model spectrum® (Fig. 3a) consists of two strong
closely spaced Gaussian peaks and a much weaker Gaussian
peak some distance away, all on a baseline. We assume that only
the first twenty Fourier coefficients (g,—g,,) of this spectrum are
available. If the rest of the coefficients are put equal to zero, one
reconstructs the spectrum shown in Fig. 3b where we notice that
the two strong peaks are not resolved at all while the weak peak
is almost unidentifiable among the termination ripples. Figure 3c
shows the spectrum obtained with the MEM. We notice that the

1 In all the simulations presented in this paper, the spectra are
taken to be symmetric with only the positive half displayed.
Consequently, the autocorrelations are all real

MEM introduces two improvements: (i) it greatly improves the
resolution; (ii) it suppresses the termination ripples almost com-
pletely.

Other examples highlighting the marked improvement obtain-
able with the MEM have been presented in the literature (e.g.,
Ables, 1974; Komesaroff and Lerche, 1979).

In view of results such as Fig. 3c, it is important to understand
the strengths and weaknesses of the MEM.

b) MEM as a Form of Model Fitting

The MEM, as its name suggests, was originally introduced (Burg,
1967, 1975) as a scheme to maximize the entropy of the spectrum
(as defined in 46) subject to the constraints imposed by the
measured data. Ables (1974) later reinterpreted the approach as
being maximally noncommital with respect to the unmeasured
autocorrelations. The MEM has also been described as an auto-
regressive method by Parzen (1968) and as an all-pole model by
van den Bos (1971). According to the approach of Komesaroff
and Lerche (1978) described in Sect. IV, each successive auto-
correlation term is chosen so as to maximize the area in the
complex plane available to the next term in the sequence.

The many distinct interpretations mentioned above do not
directly answer the basic question as to what sort of spectrum
the MEM generates. Following van den Bos, we regard the MEM
as a kind of model fitting. We have shown in Sect. V that given
(n+1) autocorrelations viz., g, . - -@,, the spectrum consists of
n asymmetric quasi-Lorentzian peaks. Now each peak is described
by two complex numbers viz., the eigenvalue A; and its weight C;.
These two complex numbers (or four real numbers) describe four
characteristics of the peak, viz., (i) Position, (ii) Width, (iii)
Strength, and (iv) Asymmetry.

The important point to be noted is that the data consists of
only n complex autocorrelations (¢,=1) while the spectrum is
described by 2n complex numbers (the 4, and C,). It is therefore
clear that not all the characteristics of the spectrum are indepen-
dently adjustable. For instance, suppose the nA,s are given which
means we specify the positions and widths of the n peaks. Then
the C/s, which describe the strengths and asymmetries of the
peaks, are automatically determined (see Eq. 61). This is a rather
remarkable feature in the MEM. Equation (61) relates the weights
of the peaks to the eigenvalues 4,. In general, we can state the
following:

a) The term (1 — 4, A¥) in the denominator suggests that sharper
peaks are stronger than wider ones.

b) The remaining terms in the denominator of (61) indicate
that individual peaks are stronger if they occur in clusters than
if they are isolated.

c) Smaller values of B2 imply sharper peaks, a point that is
further elaborated in the next section and in Appendix IIIL

The preceding discussion shows that one should be careful in
interpreting the details shown by a MEM spectrum. The authors’
experience is that the positions of peaks are usually correct. The
improvement in resolution is also often remarkable (though, on
occasion, the spectrum can be ‘“over-resolved” to the point of
being useless as shown in the next section). However, the weights
and widths of the peaks are less reliable. When there is a large
amount of data and a number of quasi-Lorentzians go into
building up each peak in the spectrum, than the weights and widths
too can be reasonably well reproduced. But, in less favourable
cases, the results cannot be relied on. In brief, the MEM is very
good at resolving and identifying peaks but less efficient at find-
ing the shapes of the peaks.
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Fig. 5. Spectra obtained by extrapolating the autocorrelations of
Fig. 3 to various finite ranges using the MEM formula a Extra-
polation up to g3 b up to g3; ¢ up to g,

c) Some Dangers of the MEM

We discuss here a few unfavourable cases where the MEM gives
startling results.

The spectrum in Fig. 4 is identical to that in Fig. 3 except for
the absence of the raised baseline. The MEM spectrum however
is an apparently meaningless collection of sharp spikes. To under-
stand the reason for this, one notes that the value of 2 in this
case is 0.0024 whereas it is 0.22 for the case shown in Fig. 3. We
have shown in Sect. V that f2=0 is the fully constrained case
resulting in a spectrum of »n §-functions. It is therefore not sur-
prising that when 2 is close to zero, the spectrum has many sharp
peaks. To understand the effect in detail, we note that a small
value of p? implies that the unknown autocorrelations are
restricted to small areas in the complex plane. This implies that
the true spectrum is very close to violating the positivity constraint
i.e., over a large range it has values close to zero. Consequently,
the expression for the “entropy” H in (46) is dominated by the
large negative values of In F(x). In order to maximize H, the
MEM algorithm will push up the baseline. This, to be consistent
with the measured autocorrelations, appears to result in peak
sharpening and splitting.

Thus, when B2 is very small, the MEM spectrum is unreliable
since it involves a very large extrapolation of the autocorrelation
sequence beyond the measured values. In such a case, it might
appear to be far more sensible to limit the resolution by some
means. A possible suggestion is to use the MEM extrapolation
formula (39) only upto a finite lag instead of up to infinity. The
results of such a procedure on the spectrum of Fig. 4 are shown
in Fig. 5. We note that for extrapolations up to say Q3n2» there is
improved resolution without the introduction of any spurious
peaks, whereas for extrapolation up to g,, or beyond, the spec-
trum is beginning to resemble the MEM spectrum of Fig. 4. We
also note that all finite extrapolation spectra have fairly strong
termination ripples.

Figure 6 shows another example where the non-linear nature
of the logarithm in the MEM leads to poor results. The true
spectrum has a step falling smoothly to a raised baseline. The
normal spectrum obtained by the truncated transform is com-
pared with the MEM spectrum. The notable feature is that the
ripples in the baseline of the MEM spectrum have greatly reduced
while the ripples in the step have actually increased. The reason
for this is that the logarithm in H is sensitive only to ripples in
the regions where S(x) is small. Thus, the MEM effectively sup-
presses termination ripples only in peaky spectra with large
regions near zero while, if there are extensive steps or plateaus,
it is quite insensitive to ripples in these regions and may, in some
cases, actually enhance them.

Figure 7 shows another danger in the MEM, where a single
Gaussian peak is reconstructed as two peaks. The value of B?
here is 0.30 and so this is different from the earlier discussion for
small B2. We believe that the effect here is a result of the form of
model fitting employed by the MEM. Since the first few auto-
correlations of a Gaussian peak are sought to be fitted by those
of quasi-Lorentzians, it appears that the best fit is often obtained
with two peaks separated from each other. Simulations show that
the splitting of Gaussian peaks occurs over a wide range of n and
B2. It is a rather disturbing feature in the MEM since Gaussians
do occur in nature.

We note that the defects of MEM discussed here so far do not
result from random errors in either the data or the computations.
This is contrary to the suggestion of Gull and Daniell (1979).
However, we show below that noise does tend to aggravate the
undesirable features in MEM.
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Fig. 6. a Model spectrum S(x)=S(—x)=1.3,0<x<0.273; =0.3
+exp (—(0.273—x)?/100), x>0.273 b Reconstructed spectrum
using go—010 only ¢ MEM reconstruction using go—0i¢
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Fig. 7. a Model spectrum S(x)=S(—x)=0.03+exp (—(0.25
—x)?/25), x=0 b MEM reconstruction using 94010
1.5
c
d) MEM with Noisy Data
In this section we show that the presence of random noise in the
or data tends to reduce the value of B2 i.e., drives the spectrum
closer to the fully constrained limit. We use the following recur-
rence relations discussed in Appendix I.
)'m+1 =(Qm+_1 _Rm)/ﬁ: > Rm = Z OkmQm+1 -k
oS k=1
Bri+l=ﬁ3|(1_|lm+1|2); m=1329”~)n' (64)
These equations can be pictorially represented in the complex
plane as in Fig. 8. The autocorrelations gy, @; - - -@m I€STICt 04y
to a circle with centre at R, and radius B2. Then, |4, | is the ratio
00 555 <'s of the distance of g,,,; from R,, to B2, and B2, is proportional

to both f2 and (1 — |4, 4./

Let us assume that the effect of noise is to randomly and iso-
tropically shift the ¢’s from their precise positions in the complex
plane. It is clear from Fig. 8 that the most probable effect on g,, 4,
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Fig. 8. Positivity requires p,, ; ; to be within a circle in the complex
plane with centre at R, and radius 2

is to increase its distance from R,,. This effect is more pronounced
since R,, will itself undergo a random displacement because of
the errors in g, . . .0,,- Thus, |4, ,| tends to increase and B2,
to decrease. Clearly, the effect increases rapidly with both the
noise amplitude and the number of autocorrelations.

Figure 9 shows some numerical results on the model of Fig. 3.
Random, normally distributed errors of various amplitudes were
added to the Fourier transform of this model and the MEM
spectrum was calculated in each case. By the time the errors were
of amplitude 1.65% of g,, B> was practically zero. The variation
of B2 in this case as a function of the rms magnitude of the errors
is plotted in Fig. 9d. The catastrophic effect of error on 2 is well
illustrated.

Figure 9 brings out the fact that when there are random errors
in the measured correlations, there is a real danger of the data
being not an autocorrelation sequence. The MEM cannot be
directly used in such a case because there is evidently no positive
spectrum fitting the data.

In the present paper, we have mainly dealt with the properties
of the MEM and its strengths and weaknesses. We have pointed
out a number of problem areas where the MEM gives wrong or
even absurd results. It is not the purpose of this paper to discuss
schemes for improving the MEM. However, we are currently
considering the following possibilities to increase the reliability
of the method:

a) Extrapolating the autocorrelation data to only a finite
range determined either as a function of the measured range or
in terms of the noise in the data.

b) Artificially increasing g, with respect to the other autocor-
relations by an amount sufficient to avoid the bad effects of the
MEM (Bhandari, 1978, has discussed this in general terms.)

c) Extrapolating the ¢'s by chcosing the higher A's to be a
smooth continuation of the first nA’s instead of taking them to
be zero as the MEM does (Note that any choice of A's such that
all |4| <1 will lead to a positive spectrum).

Appendix I

We briefly present an economical way of calculating a, , and S2,
based on the algorithm of Trench (1974) for the inversion of
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Toeplitz matrices. Replacing n by any m(<n), we write (27) and
(28) as

Vier= Z “k,mVj+1—k+ﬂm8}+1,m (65)
k=1
SrimVfirp=0; 0<pSm. (66)
Similarly, we rewrite (34) and (32) as
Vier— > Wen Vit 1 -1 = Am (Vj—m_ > az,mllj—m-i—k)
k=1 k=1
67
A= 12 By 1 D
£j+1,m Vriﬁ-l—q=0; 0<‘I§m+1 (68)

Taking the scalar product of (67) with V;*,, we obtain a result
similar to (35) which can be re-arranged to read

A’m= (Qm+1 - Z am,kem+l~k)/ﬂz'
k=1

Also, rearranging (67) into the form (65) for m—m+1, one can
make the following identifications.

(69)

Oom+1=Wom— IOt —km; O0<k=m (70)
Ut 141 = A (71)
Bavi=0—1A,) Bz (72)
Thus, starting from the initial values

Bi=1, a1=01/80 (73)

Egs. (69)—(72) can be recursively used to calculate «, , and BZ.

Incidentally, when the given ¢’s do not form an autocorrelation
sequence, at least one of the intermediate A, will have modulus
greater than unity.

Appendix IT

Given a positive function of many variables S(x,y, .. .), let some
values of its Fourier series coefficients ¢(n, ,n,,. . .) be measured.
For brevity, denote a known autocorrelation value by ¢(n) and
an unknown one by g(m). Let ¢, and g, be two possible extra-
polations of the measured data, both consistent with positivity.
Agreement with the measured data means g, (n) =g,(n). However,
the two solutions will in general make different predictions for
an unknown autocorrelation value, g(m). Consider the sum
wo; +(1—w)g,, 0<w=1. Evaluated at a known point » where
01=0,, it agrees with the known value. Its transform, being the
sum with positive weights of two positive functions, is itself
positive and so wg, + (1 —w)g, is an admissible solution. At some
point m, the complex number wg,(m)+ (1 —w)g,(m) lies on the
straight line segment joining g,(m) and g,(m). Thus every point
on this line is an allowed value in an extrapolation consistent
with positivity and the measured data. The region of allowed
values for g (m) thus has to be convex.

Appendix III
a) The Weighting Factors C,

The maximum entropy spectrum, S(x), is given by Eq. (45) which
may be written

n

SeI=p $ nt ¥ oz

k=0

(74)
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Fig. 9. MEM reconstructions of the spectrum of Fig. 3 with
Gaussian noise of increasing amplitude added to gy—0;0(a) the
rms value of the noise is 0.5% of g, (b) 1% (c) 1.5% (d) plot of
B* as a function of the rms noise. For more than 1.65% noise
the data cease to be an autocorrelation sequence

where z=exp (2mix).
From Egs. (23), (43), and (54) we may write

(57§ awaosy | voviea= § cesy =, ve,=0
k=1 k=0

and thus the characteristic equation of the matrix (PS) is

Y pez" k=0

k=0

the roots of this equation being the eigenvalues 4, . . .4, of (PS).
Hence (since y,=1),

5 ykz""‘=11j11 (=4

k=0

and provided z=0,

e =TT (1=A2)
k=1

~ =
I}
A= 1p=

yrz~t=T1 U -2}/2).
Substituting in (74)
S@=28 [T 4 —42) TT @~ 4) (1)
i=1 j=1

This expression for S(x) may be expanded in partial fractions

1

H=F

We evaluate g, by the customary procedure of multiplying by
(1 —A4z) and setting z=1/4,, yielding
a,= B2 /(1 = 2AF) TT (A= A/A) (1= 2F4) . an
ik
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An analogous procedure yields

b,=Afa}. (78)
Now, taking account of the relation,
2C=2ZCr=2(C,+CH/2
We may write Eq. (59) in the form

n * vk
S(x)=k§1[£zz-+j"_—cé.] (79)
Comparing all the Egs. (75)-(79) we find

(61)

Ci=a,=p/(1-4A%) l;[ (1 =4/A) (1= 2F2).
itk

b) The Minimum Width of any Peak :

The argument in Sects. V and VI indicates that for small 2 we
expect the MEM spectrum to consist of 7 distinct “peaks”. From
Eq. (60), the width at half maximum of the kth peak is given
approximately by

o =20=1hD_20-r)
k 2n 2n

(80)
From the discussion in Sect. V we know that
0=1=Y CG=Y) B/A-44) TTA-A/4) A1-44) (81
k=1 k=1 itk

Now, let the i'® peak be very much narrower than all the others.
Then because (1—r2)<2(1—r,) occurs in the denominator, the
i*® term in Eq. (81) dominates all the rest and so
12 B22(1-r) TTU—4fk) (1~ 214)

i¥i
The value of |4;|<1, and thus the largest value that |1 —4;/4;] or
|1 —A¥4;]| can take is 2, since all the eigenvalues 4; lie within the
unit circle. Putting in this extreme condition and referring to (80)

we find

az=p322" g (62)

which gives a strict lower bound on the width of any peak.
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