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Abstract. Characterizing the shape and evolution of pulsar ra-
dio emission beams is important for understanding the observed
emission. The various attempts by earlier workers investigating
beam shapes have resulted in widely different conclusions. Us-
ing a carefully selected subset of the recently published multi-
frequency polarimetry observations of 300 radio pulsars (Gould
& Lyne, 1998), we attempt to model the shape of pulsar beams.
Assuming that the beam shape is elliptical, in general, and that
it may depend on the angle between the rotation and the mag-
netic axes, we seek a consistent model where we also solve for
the dependence of the beam size on frequency. From the six-
frequency data on conal triple and multiple component profiles,
we show that a) the pulsar emission beams follow anested cone
structure with at leastthree distinct cones, although only one
or more of the cones may be active in a given pulsar; b) each
emission cone is illuminated in the form of an annular ring of
width typically about 20% of the cone radius.

Although some slight preference is evident for a model
where the beam is circular for an aligned rotator & latitudinally
compressed for an orthogonal rotator, the possibility that the
beam shape is circular at all inclinations is found to be equally
consistent with the data. While the overall size scales asP−0.5

(whereP is the pulsar period) as expected from the notion of
dipolar open field lines, we see no evidence in support of the
beam shape evolution with pulsar period.
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1. Introduction

Most widely accepted emission models assume that pulsar radi-
ation is emitted over a (hollow) cone centered around the mag-
netic dipole axis. The observed emission is generally highly lin-
early polarized with a systematic rotation of the position angle
across the pulse profile. This behaviour, following Radhakrish-
nan & Cooke (1969), is interpreted in terms of the radiation
being along the cone of the dipolar open field-lines emerging
from the polar cap, and the plane of the linear polarization is that
containing the field line associated with the emission received
at a given instant. During each rotation of the star, the emission
beam crosses the observers line-of-sight resulting in a pulse of
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emission. The observed pulse profile thus corresponds to athin
cut across the beam at a fixed rotational latitude. The information
on the beam shape as a function of latitude, although generally
not measurable directly, may be forthcoming from observations
at widely separated frequencies, as emission at different fre-
quencies is believed to originate at different heights from the
star leading to changes in beam size. For this, the dependence
of the radiation frequency on the height, the so calledradius-
to-frequency mapping, should be known a priori. Alternatively,
it is possible to use the data on an ensemble of pulsars sampling
a range of impact parameters. However, it is important that all
the pulsars in the sample form a homogeneous set in terms of
the profile types etc. Several attempts to model the pulsar beam
have used the latter approach. Based on their study, Narayan
and Vivekanand (1983) concluded that the beam is elongated in
the latitude. Lyne & Manchester (1988), on the other hand, have
argued that the beam is essentially circular (see also Gil & Han
1996, Arendt & Eilek 1999). Based on the dipole geometry of
the cone of open field-lines, Biggs (1990) found that the beam
shape is a function of the angle (α) between the rotation and
the magnetic axes. The reasons that all these analyses predict
different results could be manifold. For example, Narayan &
Vivekanand used a data set consisting of only 16 pulsars and
assessed the beam axial ratio on the basis of the total change
in the position angle of the linear polarization across the pulse
profile. Apart from poor statistics, their analysis suffered from
the large uncertainties in the polarization measurements avail-
able then. Lyne & Manchester (1988) used a much larger data
set in comparison and examined the distribution of normalized
impact parameterβn ≡ β90/ρ90, whereβ90 & ρ90 are the im-
pact angle and the beam radius computed forα = 90◦. Based
on their observation that the distribution ofβn is ‘essentially
uniform’, they concluded that the beams are circular in shape.
The apparent deficit at largeβn is attributed to a luminosity bias.
It is worth noting that the deficit is seen despite the fact thatβn

overestimates thetrueβ/ρ (given that they disregarded the sign
of β), this is particularly so at largeβ values.

Biggs (1990) used the same data set as well as theβn distri-
bution as used by Lyne and Manchester (1988), but drew atten-
tion to a ‘peak’ in the distribution at lowβn. The shapes of the
polar cap defined by the region of open field lines, as derived
by Biggs, show that the beam is circular for an aligned rotator,
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but undergoes compression along the latitudinal direction with
increasing inclinationα.

In this paper, we address this question within the basic
framework advanced by Rankin (1993a) which, at the least, is
qualitatively different from that of Lyne & Manchester (1988).
The classification scheme (Rankin, 1983a), based on the phe-
nomenology of pulse profiles, polarization and other fluctuation
properties etc., provides a sound basis for explicit distinction
between the core and the conal components, with each of them
following a predictable geometry (see also Oster & Sieber 1976;
Gil & Krawczyk 1996 forconal beams). Lyne & Manchester
(1988), on the other hand, prefer to interpret the observed va-
riety in pulse shape and other properties as a result of patchy
illumination, rather than any particular pattern within the radi-
ation cone. The observed differences in the properties of pulse
components are then to be understood as gradual changes as
a function of the distance from the center of the basic emis-
sion cone. Their analysis thus naturally disregards the possible
existance of conal features.

Assuming the possibly confined ‘conal-component’ geome-
try and by accounting for all the relevant geometrical effects, we
re-examine the shape of pulsar beams and their frequency de-
pendence. Recently published multifrequency polarization data,
at six frequencies in the range between 234–1642 MHz (Gould
& Lyne, 1998), has made this investigation possible.

2. Data set

For the present investigation requiring reliable estimates ofα
& β, we use the data set comprised of only those pulsars whose
pulse profiles are identified as ‘triple’ (T) or ‘multiple’ (M), as
classified by Rankin (1993a, 1993b). The reason for the choice
is that theT andM pulsars show a core component in addi-
tion to the conal components, so that a reliable estimation of the
angle (α) between the rotation axis and the magnetic axis is pos-
sible, using Rankin’s (1990) method. In this method, the ratio
of the observed core-width to the limiting width (2.45◦P−0.5)
is interpreted as the geometric factor1/ sin(α), providing by
far the most reliable estimates ofα. For the conal doubles and
conal singles, devoid of any core component, the estimates ofα
are less reliable. The core singles are naturally excluded from
this analysis of the conal emission geometry. For each pulsar in
our selected sample, we define the conal width as the separa-
tion between the peaks of the outermost conal components. It is
important to note that the nominally ‘central’ core component,
which is argued to originate closer to the stellar surface, may not
necessarily be along the cone axis. Such a possibility is clearly
reflected in many pulse profiles where the core component is
displaced from the ‘center’ definable from the conal compo-
nents. Hence, the location of the core component is disregarded
in our estimation of the conal separation. Columns 1 and 2 of
Table 1 list the name and profile type of these pulsars. Columns
3 to 8 list the calculated widths of the pulsars at frequencies
234, 408, 610, 925, 1400, and 1642 MHz respectively. Column
9 gives the pulsar period in seconds. Columns 10 and 11 list the
α andβ values of the pulsars taken from Rankin (1993b).

Fig. 1. Schematic representation showing the geometry of the pulsar
emission region.

Rankin (1990) has estimated the inclination angleα us-
ing the relation,sin(α) = 2.45◦P−0.5/Wcore, whereWcore
is the half-power width of the core component (at a reference
frequency 1 GHz) and the periodP is in seconds. The im-
pact angleβ has been estimated based on the rotating vector
model of Radhakrishnan & Cooke (1969), using the relation
sin(β) = (dχ/dφ)max/ sin(α), where(dχ/dφ)max is the max-
imum rate of change of the polarization angleχ with respect to
the longitudeφ.

In the following analysis, we treat the different frequency
measurements on a given pulsar as ‘independent’ inputs much
the same way as the data on different pulsars, since the pul-
sar beam size is expected to evolve with frequency. Thus, at
different frequencies one obtains independent cuts (at different
β/ρ) across the beam, thoughβ remains constant for a given
pulsar. This increases the number of independent constraints by
a usefully large factor. In fact, we would like to contrast this
approach with the one where, for each pulsar, one obtains a best
fit frequency dependence of the observed widths and then uses
the data to obtain the width at a chosen reference frequency. The
latter approach fails to take into account the dependence of the
observed widths onβ/ρ that is inherent for any non-rectangular
shape of the beam.

3. A direct test for the shape of beams

The Fig 1 is a schematic diagram illustrating the geometry of
pulsar emission cone. The emission cone, with half-opening an-
gleρν , sweeps across the observers line-of-sight with an impact
parameter (distance of closest approach to the magnetic axis)
β. The spherical triangle PQS (refer to Fig. 1) relates the angles
α, β and the profile half-widthφν to the beam radiusρν by the
following relation (Gil, Gronkowski & Rudnicki 1984),

sin2(ρν/2) = sin2(φν/2) sin(α) sin(α + β) + sin2(β/2) (1)
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Fig. 2.Schematic representation of an elliptic pulsar beam of axial ratio
R with the longitudinal and the latitudinal axis asb andRb respectively.
δr is the width of the emission beam cone. See text for discussion on
the connection between the ‘gap-angle’θg andδr/r.

Fig. 3.The above curves illustrate the normalized variation of r withθ
(refer to Fig. 2) with three different values ofR.

The subscriptν inρν andφν denotes that these quantities depend
on frequencyν. This equation assumes that the cone is circular,
in which caseρν becomes independent ofβ.

In reality, the beam may not be circular, but rather elliptical
with, say,R the axial ratio and b the longitudinal semi-axis of
the ellipse as shown in Fig. 2. It is easy to see that the length
of the radius vector r depends on the angleθ (with the longi-
tudinal axis) whenR is not equal to 1. The variation of r as a
function ofθ for three differentR values (namely 1, 1.5 and 0.5)
are shown as examples in Fig. 3. Theρν , determined assuming
that the cone shape is circular (as in Rankin 1993b) is indeed a
measure of the radius vector r, once the period and frequency
dependences are corrected for. Such data on (r,θ) spanning a
wide enough range inθ can therefore be examined to seek a
consistent value of the axial-ratioR. However, ifR is a func-
tion of α, as suggested by Biggs (1990), then the (r,θ) samples
would show a spread bounded by the curves corresponding to
the maximum and minimum values ofR.

Such an examination of the present data suggests a spread
below the line forR = 1, indicating that the beam deviates

from circularity and that the spread could be due to theα de-
pendence ofR. However, this deviation from circularity is not
very significant. We discuss this in detail later in Sect. 5.

We have also examined theρν values obtained by Rankin
(1993b) through such a test. However, no significant deviation
from circular beams was evident. We became aware of a
similar study by C.-I. Bj̈ornsson (1998), also with a similar
conclusion. We note that the only difference between our
estimates ofρν and those of Rankin is in the definition of the
conal widths. Rankin defines the width as the distance between
the outer half-power points (rather than the peaks) of the two
conal outriders, and the widths were then ‘interpolated’ to a
reference frequency of 1 GHz. Such estimates are prone to
errors due to mode changes, differing component shapes etc.,
and to the effects of dispersion & scattering (some of which
she attempted to accommodate). We measure the widths as the
peak-to-peak separations of the outer conal components, which
are less sensitive to the sources of error mentioned above.
We have also confirmed (in the PSRs 0301+19, 0525+21,
0751+32, 1133+16, 1737+13, 2122+13 and 2210+29 using
the data from Blaskiewicz et al. 1991) that the ‘peaks’ of the
conal components are symmetrically placed with respect to the
“zero-longitude” (associated with the maximum rate of change
of the position angle), which is not always true for the outer
half-power points.

4. The model of the pulsar beam

We model the pulsar beam shape as elliptical in general and
express it analytically as,

sin2(φν/2) sin(α) sin(α + β)
sin2(ρν/2)

+
sin2(β/2)

sin2(Rρν/2)
= 1 (2)

While α, β andφν can be estimated, directly or indirectly, from
observations,R andρν are the two parameters which in turn
define the beam shape and size— and the available data set ofT
andM-profiles is expected to sample most of the| β/ρν | range
(0–1) with reasonable uniformity. The implicit assumption in
this statistical approach is that a common description forR
& ρν is valid for all pulsars. The common description should,
however, account for relevant dependences on quantities, such
as frequency, period,α, etc. properly.

4.1. Frequency dependence ofρν

The radio emission at different frequencies is expected to orig-
inate at different altitudes above the stellar surface, with the
higher frequency radiation associated with regions of lower alti-
tude. This phenomenon known asradius-to-frequency mapping,
finds overwhelming support from observations. Thorsett (1991)
has suggested an empirical relation for the observed pulse width
as a function of frequency, which seems to provide adequate de-
scription of the observed behaviour. We adopt a similar relation
for the frequency evolution of the beam radiusρν as follows

ρν = ρ̂(1 + Kν−ζ), (3)
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Table 1. The table lists the pulsar name and the widths measured at 6 different frequencies from the observations of Gould & Lyne (1998). In
several cases the widths could not be estimated due either to poor quality profiles or to absence of data. Theα, β values are taken from Rankin
(1990, 1993b).LM indicates that theβ value (for PSR 0656+14 and 1914+09) is taken from Lyne & Manchester (1988).

Pulsar Profile Width in deg Period α β

Bname Class W234 W408 W610 W925 W1400 W1642 (sec) (deg) (deg)

0329+54 T 25.4 23.3 21.8 21.8 21.2 20.7 0.714518 30 2.1
0450-18 T 16.6 14.5 13.5 12.9 12.4 11.9 0.548937 24 4
0450+55 T 27.3 20.7 20.7 24.6 22.0 22.0 0.340729 32 3.3
0656+14 T 27.9 21.7 17.8 25.5 20.1 17.8 0.384885 30 8.2 (LM)
0919+06 T 18.1 16.5 14.6 11.5 10 8.4 0.430619 48 4.8

1508+55 T - 12.0 8.57 11.6 10.9 10.5 0.739681 45 -2.7
1541+09 T 126.5 107.8 105.4 96.0 91.4 84.3 0.748448 5 0.0
1738-08 T - 14.6 13.7 13.6 12.6 12.1 2.043082 26 1.7
1818-04 T - 10.7 8.2 9.20 8.8 8.5 0.598072 65 3.5
1821+05 T 36.2 32.1 29.4 29.4 26.6 26.6 0.752906 32 1.7

1911+13 T - 12.3 10.7 12.0 11.6 11.0 0.521472 52 1.9
1914+09 T - 10.9 12.6 8.9 8.5 8.1 0.270254 52 7.3 (LM)
1917+00 T - 8.3 8.1 8.0 7.2 6.7 1.272255 81 1.3
1918+19 T - 49.1 42.7 41.3 41.3 38.7 0.821034 12 -4.6
1919+14 T - 22.3 20.7 18.7 19.7 17.1 0.618179 26 -6.4

1919+21 T - 7.17 6.7 8.2 7.6 7.4 1.337301 45 -3.7
1920+21 T - 15.1 10.1 14.4 14.0 13.2 1.077919 44 1.1
1944+17 T - 25.2 23.3 33.0 33.0 31.0 0.440618 19 6.1
2045-16 T - 12.9 12.3 11.6 11.0 10.7 1.961566 36 -1.1
2111+46 T 69.8 63.3 59.4 55.6 53.0 49.1 1.014684 9 1.4

2224+65 T 39.9 35.0 31.1 31.1 31.1 31.1 0.682537 16 3.4
2319+60 T 21.8 18.7 17.1 15.0 13.5 13.5 2.256487 18 2.2
1804-08 M/T - 28.5 12.9 16.2 15.5 14.2 0.163727 63 5.1
1910+20 M/T - 12.8 11.5 11.2 10.8 - 2.232963 29 1.5
1952+29 M/T - 22.7 21.6 22.2 21.0 19.2 0.426676 30 -7.2

2020+28 M/T 12.9 10.9 10.1 10.1 9.74 9.3 0.343401 72 3.6
0138+59 M 25.8 20 23.2 20.6 18.7 17.4 1.222948 20 2.2
0402+61 M 14.2 14.6 10.7 10.3 10 9.6 0.594573 83 2.2
0523+11 M - 12.4 10.8 12.0 11.6 10.8 0.354437 78 5.9
0621-04 M 18.5 21.2 18.4 18.0 17.5 - 1.039076 32 0.0

1039-19 M 15.4 - 11.5 10.7 10 9.6 1.386368 31 1.7
1237+25 M 10.0 10.3 10.0 9.3 9.0 10.0 1.382449 53 0.0
1737+13 M - 17.4 17.0 16.1 15.2 13.8 0.803049 41 1.9
1831-04 M 95.3 97.6 95.3 96.2 93.0 93.0 0.290106 10 2.0
1857-26 M - 32.5 29.4 26.3 25.5 24.8 0.612209 25 2.2

1905+39 M - 15.1 13.7 13.1 12.6 11.7 1.235757 33 2.1
2003-08 M 55.6 40.0 38.7 33.6 32.3 31.0 0.580871 13 3.3

whereρ̂ is the value ofρν at infinite frequency,ζ the spectral
index, andK a constant. Note that bothζ & K are expected
to have positive values, so that the minimum value ofρν is ρ̂,
which should correspond to the angular size of the polar cap.

4.2. Period dependence onρν

Rankin (1993a) has demonstrated (see also Gil, Kijak &
Seiradakis 1993; Kramer et al. 1994) that the beam radiusρ̂
varies asP−0.5 (whereP is the period of the pulsar), a result

which is in excellent agreement with that expected from a dipole
geometry (Gil 1981). Eq. 3 thus takes the form

ρν = ρ◦(1 + Kν−ζ)P−0.5, (4)

whereρ◦ is the minimum beam radius forP = 1 sec.

4.3. Functional dependence ofR onα

Biggs (1990) has suggested thatR should be a function ofα,
such that the beam shape is circular forα = 0 and is increasingly
compressed in the latitudinal direction asα increases to90◦.
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ONE QUADRANT OF THE BEAM

X

Fig. 4.Distribution of the (x,y) locations of the conal components on a
common scale. The three solid lines indicate the three emission cones
in the quadrant shown.The circles with crosses refers to pulsars with
α values less than45◦ and the filled circles withα greater than45◦.

We therefore model the functional dependence ofR on α as
R = R◦τ , whereR◦ is the axial ratio of the beam atα = 0, and
τ is a function ofα. According to Biggs (1990),R◦ = 1 andτ
is given by

τ(α) = 1 − K1 × 10−4α − K2 × 10−5α2, (5)

whereK1, K2 are constants andα is in degrees. Biggs finds
thatK1 andK2 are 3.3 and 4.4, respectively. We, however, treat
K1,2 as free parameters in our model.

4.4. The number of hollow cones

Based on the study of conal components, Rankin (1993a) has
argued for two nested hollow cones of emission– namely, the
outer and the inner cone. Assuming the beams to be circular
in shape, opening half angles of the two cones at 1 GHz were
found to be4.3◦ and5.7◦, respectively.

During our preliminary examination of the present sample,
we noticed a need to allow for three cones of emission. To
incorporate this feature in our model, we introduce two ratios,
r1 < 1 and r2 > 1, to define the size scaling of the inner-
most and the outer-most cone, respectively, with reference to a
‘middle’ cone, for which the detailed shape is defined.

Using the model here defined, we need to solve forR◦, ζ,
K, ρ◦, K1, K2, r1 andr2 in this three-conal-ring model. The
parameter set thus represents an ‘average’ description of the
beam.

Fig. 5. Histogram of the distribution of effectiveβ
ρ

.

5. Results and discussion

An optimized grid search was performed for suitable ranges
of the parameter values and in fine enough steps. Forζ, the
search range allowed for both +ve and -ve values. By definition,
r1 ≤ 1 andr2 ≥ 1. The best fit was obtained by minimizing the
standard deviationσ◦ defined by

σ◦ =

√∑n
i=1 D2

i

Ndof
× 180◦

π
, (6)

whereDi is the deviation of theith data point from the nearest
conal ring in the model andNdof denotes the degrees of free-
dom. The factor180/π givesσ◦ in units of degrees under the
small-angle approximation. Table 2 lists the parameter values
which correspond to the best fit for the entire sample set. With
these values, the Eq. 4 can now be rewritten as

ρν = 4.8◦(1 + 66 ν−1
MHz)P

−0.5, (7)

whereρν is in degrees. This average description for the ‘middle’
cone applies also to the other two cones whenρν is scaled by
the ratior1 = 0.8 or r2 = 1.3 (for the inner and the outermost,
respectively). Fig 4 shows the data (plotted to a common scale)
for one quadrant of the beam and the three solid curves corre-
sponding to the best fit cones. The points in the figure, though
corresponding to different pulsars and frequencies, are trans-
lated to a common reference scale appropriate forP = 1 sec,
α = 0 andν = ∞.

We have assumed the period dependence ofρν asP−0.5,
whereas Lyne and Manchester (1988) found a dependence of
P− 1

3 . We have examined the latter possibility and found that
the difference in the standard deviation is at the level of 2.5–3σ
and we cannot rule out theP− 1

3 law with confidence. We have
also checked for the dependence ofR onα by using 3 sub-sets,
each of range30◦ in α. The best fit values forR in the different
α segments are1±0.4

0.2, 0.8±0.4
0.2 & 0.5±0.4

0.2 for α ranges0◦−30◦,
30◦ −60◦ & 60◦ −90◦, respectively. This dependence ofR◦ on
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Table 2.The best-fit model parameters for the shape of conal beams. The error bars correspond to a 1σ uncertainty.

Model parameters

R◦ ρ◦ (deg) K ζ r1 r2 K1 (deg−1) K2 (deg−2)

0.91±0.2
0.1 4.8 ± 0.3 66 ± 10 1 ± 0.1 0.8 ± 0.03 1.3 ± 0.03 7.2 ± 0.2 4.4 ± 0.3

α, even if it were significant, is quite consistent with our values
of K1, K2 (Table 2) as well as with the results of Biggs (1990).
However, given the uncertainties in theR estimates for the three
ranges, it is not possible presently to rule out a dependence of
R on α. Indeed, this part of the goodness-of-fit is negligible,
σ◦ (the standard deviation) is0.18◦ whenK1 andK2 /= 0 and
0.2◦ whenK1, K2 = 0. Earlier Narayan & Vivekanand (1983)
had argued thatR is a function of the pulsar period. To assess
this claim, our sample was divided into three period ranges and
the correspondingR estimates compared. However, no period
dependence was evident and it was possible to rule out such a
dependence with high confidence.

The number and thickness of conal rings:As already noted
and can be seen in Fig. 4, we do see evidence for a possible
cone outside the two cones discussed by Rankin (1993a). Also,
presence of a ‘further inner’ cone has been suggested by Rankin
& Rathnasree (1997) in the case of PSR 1929+10. The pulsars
suggestive of this outer cone (refer Fig. 4) are PSRs 0656+14,
1821+05, 1944+17 and 1952+29 (at frequencies 234 MHz and
higher). We have examined the possibility that these cases really
belong to the central-cone, but are well outside of it due to an
error in the assumed values ofα. We rule out the possibility
as the implied error inα turns out to be too high to be likely.
It is important to point out that a noisy sample like the present
one would appear increasingly consistent, judging by the best-
fit criterion, with models that include more cones. The question,
therefore is whether we can constrain the number of cones by
some independent method. In this context, we wish to discuss
the noticeable deficit of points at highβ/ρ◦. Since the deficit
reflects the absence of conal singles and conal doubles in our
data set, the size of the related ‘gap’ at largeθ values, can be
used to estimate the possible thickness of the conal rings. The
absence of points atθ & 60◦ (Fig. 4) suggests that the conal
rings are rather thin, since a radial thicknessδr comparable to
the ring radius would imply a wider gap inθ. To quantify this,
we write the following relation,

δr = 2r
(1 − sin θg)
(1 + sin θg)

, (8)

whereθg is theθ at the start of the gap (as illustrated in Fig. 2).
With θg ∼ 60◦,δr/r would be about 20%. The presence of more
than one distinguishable peak in the distribution of beam radii
(shown in the bottom panel of Fig. 4) clearly indicates that the
conal separation is larger than the cone width. This combined
with our cone-width estimate suggests the number of cones is 3
(for the present range of radii), providing an independent support
for our model. This picture is consistent with the estimates by
Gil & Krawczyk (1997) and Gil & Cheng (1999).

Component separation vs. frequency:It is interesting to note
that for certain pulsars the cone associated with the emission
seems to change with frequency. For example, the conal emis-
sion in PSR 1920+21 appears to have ‘switched’ at 610 MHz to
the innermost cone while being associated with the central cone
at other frequencies. Rankin (1983b), in a comprehensive study
of the dependence of component separation with frequency, in-
vokes deep ‘absorption’ features to explain the apparent anoma-
lous reduction in the component separation in certain frequency
ranges. We suggest that such anomalous reduction in the separa-
tions could be due to switching of the emission to an inner cone
at some frequencies. Observations at finely spaced frequencies
in the relevant ranges would be helpful to study this effect in
detail. The other pulsars which show similar trends are PSRs
1804-08, 2003-08, 1944+17 and 1831-04. It should be noted
that such switching is possibly reflected, also, in mode changes.

The deficit at lowβ/ρ◦: The absence of points nearβ = 0
is clearly noticeable in Fig. 4. Such a ‘gap’ is also apparent in
the distribution ofβ/ρ◦ plotted in Fig. 5. The gap was already
noted by Lyne & Manchester (1988). They argued that it arises
because the rapid position-angle swings (expected at smallβ’s)
are difficult to resolve due to intrinsic or instrumental smear-
ing, leading to underestimation of the sweep-rates. With the
improved quality of data now available, the intrinsic smearing
is likely to be the dominant cause for this circumstance. There
are a number of clear instances among the general population
of pulsars where the polarization angle traverse near the central
core component is distorted. PSR 1237+25 provides an extreme
examples of such distortion, and Ramachandran & Deshpande
(1997) report promising initial efforts to model its polarization-
angle track as distorted by a low-γ core-beam. Another possi-
bility for the low-β/ρ◦ gap is that it could simply be a selection
effect caused by less intense emission in the cone center than
at intermediate traverses. If so, the low frequency turn-overs in
the energy spectra of pulsars may at least be partly due to this,
since at lower radio frequencies theβ/ρ◦ is relatively smaller.

The sources of uncertainties in the present analysis:The stan-
dard deviationσ◦ corresponding to the best-fit model amounts to
about 15% of the conal radius. This fractional deviation (compa-
rable to the thickness of the cone) is too large to allow any more
detailed description of the beam shape (such as dependence on
α, for example). We find it useful to assess and quantify the
sources of error, partly to help possible refinement for future in-
vestigations. The three data inputs to our analysis areα, β and
φν , while the basic observables are the maximum polarization-
angle sweep rate and core width, apart from the conal separation
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measured. It is easy to see that the errors in the core-widths will
affect directly bothα and β estimates. Over the range ofθs
spanned by the present data set the errors inα are likely to
dominate, since the x & y (in Fig. 4) are almost linearly propor-
tional tosin(α). Hence, the fractional deviation may be nearly
equal to (or define the upper limit of) the fractional error in
sin(α) and therefore in the core-width estimates.

Rankin (1990, 1993b) notes that in several cases the appar-
ent core-widths might suffer from ‘absorption’ and the widths
might be underestimated if the effect is not properly accounted
for. Also, in some cases, the widths were extrapolated to a refer-
ence frequency of 1 GHz using aν−0.25 dependence. There have
been several suggestions regarding the ‘appropriate’ frequency
dependence which would give significantly different answers
when used for width extrapolation. For example, if our best-fit
dependence for conal width is used for the core-width extrapo-
lation, the values would differ from Rankin’s estimates (through
extrapolation) by as much as 15%, enough to explain the present
deviation in some cases. Another possible source of error is the
uncertainty in the sign ofβ (important only for thesin(α + β)
term in Eq. 2 and hence for smallα). As Rankin points out, it is
difficult to determine the sign unambiguously in most cases and
hence the information is only available for a handful of pulsars.

Evidence in favour of ‘conal’ emission:The significant
implication of the gap atθ & 60◦ (referred to earlier) deserves
further discussion. If the ‘conal’ components were results of
a merely patchy (random) illumination across the beam area,
(as argued by Lyne & Manchester, 1988), then such a gap
should not exist. If a single thick hollow cone were to be
responsible for the conal components, a gap (corresponding
to the conal-single types) would still be apparent but then it
should be above a cut-off y value (refer Fig. 4) and not in a
angular sector like that observed. On the other hand, if indeed
the conal emission exists in the form of nested cones (as distinct
from the core emission), then the shape of the gap is a natural
consequence of our not including conal-single profiles in this
analysis. This gap, therefore, should be treated as an important
evidence for a pulsar beam form comprised, in general, of
nested cones of emission.

6. Summary

Using the multifrequency pulse profiles of a large number of
conal-triple and multiple pulsars we modelled the pulsar beam
shape in an improved way. Our analysis benefits from the
different frequency measurements being treated as independent

samples, thus increasing the number of independent constrains.
The main results are summarized below.

1) Our profile sample is consistent with a beam shape that is a
function ofα, circular atα = 0 and increasingly compressed in
the latitudinal direction asα increases, as suggested by Biggs
(1990). However, the data is equally consistent with the possi-
bility that the beam is circular for all values ofα.

2) We identify three nested cones of emission based on a nor-
malized distribution of outer components. The observed gap
(θ & 60◦) in the distribution independently suggests three cones
in the form of annular rings whose widths are typically about
20% of the cone radii. We consider this circumstance as an im-
portant evidence for the nested-cone structure.

Any further significant progress in such modelling would
necessarily need refined estimates of the observables, particu-
larly the core-widths.
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