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Observations of the inspiral of massive binary black holes (BBH) in the Laser Interferometer Space
Antenna (LISA) and stellar mass binary black holes in the European Gravitational Wave Observatory
(EGO) offer an unique opportunity to test the nonlinear structure of general relativity. For a binary
composed of two nonspinning black holes, the nonlinear general relativistic effects depend only on the
masses of the constituents. In a recent paper, we explored the possibility of a test to determine all the post-
Newtonian coefficients in the gravitational wave phasing. However, mutual covariances dilute the
effectiveness of such a test. In this paper, we propose a more powerful test in which the various post-
Newtonian coefficients in the gravitational wave phasing are systematically measured by treating three of
them as independent parameters and demanding their mutual consistency. LISA (EGO) will observe BBH
inspirals with a signal-to-noise ratio of more than 1000 (100) and thereby test the self-consistency of each
of the nine post-Newtonian coefficients that have so-far been computed, by measuring the lower order
coefficients to a relative accuracy of �10�5 (respectively, �10�4) and the higher order coefficients to a
relative accuracy in the range 10�4 � 0:1 (respectively, 10�3 � 1).
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Binary pulsar observations provide one of the most
stringent methods to test the strong field regime of gravity
in general relativity (GR) and its alternatives [1]. The test is
possible since the orbital dynamics of the binary is rela-
tivistic enough to allow the measurement of effects due to
gravitational radiation damping at the post-Newtonian or-
der �v=c�5. Binary pulsar measurements are performed by
fitting the pulse arrival times to a relativistic ‘‘timing’’
model [1,2], which is a function of the Keplerian parame-
ters (orbital period, eccentricity and the projected semi-
major axis of the pulsar orbit) and post-Keplerian (PK)
parameters (the periastron advance, time-dilation, and
secular change of the orbital period). Two more PK pa-
rameters, related to the Shapiro-delay caused by the gravi-
tational field of the companion, can be measured if the
orbit is seen nearly edge-on. Different theories of gravity
have different predictions for the values of the PK parame-
ters as functions of the individual masses of the binary
constituents m1 and m2. Thus, a measurement of three or
more PK parameters facilitates a test by requiring consis-
tency, within the observational errors, in the estimation of
the masses of the two bodies as determined by the various
parameters. The most rigorous test possible so far is with
the most relativistic binary pulsar PSR J0737-3039 [3].
Observed almost edge-on, it permitted the measurement
of five PK parameters, which together with an additional
constraint from the measurement of mass-ratio, determine
and check the consistency of the masses of the two pulsars
in the m1–m2 plane [3].

Although radio binary pulsars are capable of testing
certain lower post-Newtonian (PN) order general relativis-
tic effects, such as the advance of the periastron and the

quadrupole approximation to the generation of gravita-
tional waves, they will, unfortunately, not be able to probe
the strong field nonlinear effects, such as the tails of
gravitational waves [4]. This is because the PN expansion
parameter is of order v� 10�3 —far too small for the
effects that first appear at higher post-Newtonian orders
to play a significant role in radio observations of binary
neutron stars. Space- and ground-based gravitational wave
detectors, such as the Laser Interferometer Space Antenna
(LISA), Laser Interferometer Gravitational Wave
Observatory (LIGO), VIRGO and European Gravitational
Wave Observatory (EGO), will observe compact binary
neutron stars and binary black holes (BBH) in the last
stages of their nonlinear evolution, during which the pa-
rameter v is 2 orders of magnitude larger (v� 0:2–0:4)
than it is for current radio observations of such systems.
For some of the rare (about once per year) inspiral events
observed by LISA (EGO) the amplitude signal-to-noise
ratio could be as large as 3000 (100). Such high SNR
events will allow us to measure the parameters of the signal
and the source quite accurately, thereby allowing tests that
were not feasible earlier. Different tests of GR have been
proposed by various authors using GW observations of the
inspiralling compact binaries [5–7] and contrasted with the
binary pulsar observations [8]. These tests would necessi-
tate an accurate parameter extraction [9] scheme using the
highest PN order waveform available.

The GW ‘‘phasing formula’’ is very close in spirit to the
‘‘timing formula’’ used in the binary pulsar observations.
The timing formula, �PSR

n � FT�tn; pi�, connects the rota-
tional phase �n of a spinning pulsar to the time-of-arrival
tn of the radio signal and a set of Keplerian and PK
parameters pi � fpK; pPKg. Similarly, a precise model for
GWs from a compact binary will need accurate informa-*On leave of absence from Sana’a University, Yemen
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tion about the continuous evolution of the GW phase.
Schematically, the phasing formula reads �GW �
FP�t; qi� where, in Einstein’s theory, qi carry the informa-
tion of the source via functions of the individual masses
and spins. The phasing formula consists of different PN
parameters qi, similar to the PK parameters of the timing
formula, and is currently available up to relative 3.5PN
order i.e., O�v7� [10,11]. In the present paper we propose
and explore an interesting possibility of testing general
relativity with the high-SNR GW observations of BBH
inspirals by LISA and EGO. The proposed test is similar
in essence to the binary pulsar test, but in a stronger and
dynamic regime of gravity. Using the two lowest order PN
coefficients qi as basic variables to parametrize the wave-
form and choosing the other PN coefficients as ‘‘test’’
parameters, one at a time, it is possible to perform many
consistency checks of the PN coefficients in the m1–m2

plane. In the rest of the paper we investigate this possibility
in greater detail.

Binary black holes in close orbit around each other are
highly relativistic and mandate the inclusion of higher PN
order terms in their description. Gravitational waves emit-
ted during the inspiral phase comprise a variety of terms
arising from the nonlinear multipole interactions as the
radiation propagates from the source to the far-zone [12].
These nonlinear interactions lead to the phenomenon of
tails at orders 1.5PN and 2.5PN (propagation not only on
but inside the light cone as well) and tails-of-tails at 3PN.
For spinning binaries, there also exist effects of spin-orbit
and spin-spin couplings at 1.5PN and 2PN, respectively.
These effects are imprinted in the emitted gravitational
radiation and can be extracted by matching the detector
data with an expected gravitational waveform, often called
an optimal filter or a template. The template itself can only
be computed using post-Newtonian theory in which the
various physical quantities relevant to the emission of
gravitational waves are expanded in an asymptotic series
in the small parameter v—the characteristic velocity in the
system [13]. An important feature of the PN expansion is
the presence of log-terms vm�lnv�n, where m and n are
integers. General relativity is incompatible with a simple
Taylor expansion in only powers of v. For instance, cur-
rently, the expansions of the specific binding energy E and
gravitational wave flux F are known to order v7 (i.e. 3.5PN
order) and given by

 E � �
1

2
�v2

X3

k�0

Ekv2k; (1)

 F �
32

5
�2v10

X7

k�0

F kvk �
1712

105
ln�v�v6; (2)

where � � m1m2=M2 is the symmetric mass ratio in terms
of the total mass M � m1 �m2 and where the coefficients

Ek and F k can be found in Ref. [14]. Note the presence of
the log-term at order v6 in the expression for the flux.

To understand how we might test the nonlinear structure
of general relativity let us begin with the Fourier domain
representation H�f� of the signal from a binary at a lumi-
nosity distanceDL [15] consisting of black holes of masses
m1 and m2:

 H�f� �
CM5=6

DL�2=3

������
5

24

s
f�7=6ei��f��i�=4; (3)

where M � �3=5M is the chirp mass and 0 	 C 	 1 is a
constant that depends on the relative orientation of the
detector and source with a root-mean-square value of 2=5
when averaged over all sky locations and source orienta-
tions. The phase ��f� is given by

 ��f� � 2�ftc ��c �
X7

k�0

� k �  kl lnf�f�k�5�=3: (4)

Here tc and �c are the epoch of merger and the signal’s
phase at that epoch, respectively. The nonzero coefficients
in the PN expansion of the Fourier phase can simply be
read off from �ns in Eq. (3.4) of Ref. [9]. The nonvanishing
coefficients of the log-terms up to 3.5PN are  5l �

� 65�
384 �

38 645�
32 256� and  6l � �

107
42� ��M�

1=3. For complete-

ness,  6 �
3�6

128� ��M�
1=3 �  6l logf. We have a total of

nine post-Newtonian parameters, seven of these are the
coefficients of vn terms for n � 0, 2, 3, 4, 5, 6, 7 and two
are coefficients of vn ln�v� terms [16] for n � 5, 6 but each
of these parameters depends only on the masses of the two
black holes for the nonspinning case in GR.

Before proceeding with the description of our work, let
us summarize the assumptions implicit in the analysis, the
justification for doing so and their possible implications.
As in most works on this subject, to demonstrate the
‘‘principle’’ of the proposed method we neglect the effects
of spins and eccentricity. What will change on including
these additional parameters is the accuracy of the test. The
spin effects are relevant only when one of the black holes is
much smaller than the other and/or when the black holes
have their dimensionless spin angular momentum close to
unity. It is not clear that astrophysical black holes, espe-
cially the supermassive ones, will be extreme Kerr. Except
in cases where both BHs are extreme Kerr (or close to it)
spin effects are less important for the proposed tests since
we have considered black holes of comparable masses in
our study. The issue of eccentricity, especially for certain
LISA sources, is a complex issue depending on the astro-
physical scenario related to formation mechanisms of the
binary. Our neglect of eccentricity in these cases is a
simplifying assumption at present. Finally let us comment
on the use of the so-called restricted PN waveform in this
work. Not merely in connection with tests that have been
proposed but more seriously in most works related to the
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detection problem in GW data analysis, the late inspiral
and merger part is ignored in the first instance. One begins
by using state-of-the-art restricted PN inspiral templates.
Restricted PN waveforms will only bring new variety
(higher harmonics) without increasing the number of pa-
rameters; a full test should definitely use the full waveform.
Including PN amplitude corrections could improve the
tests and this is what we are doing as a follow-up of the
present analysis. By the time LISA and EGO operate there
could be reliable merger waveforms that can be included in
the phasing and this would make this test more robust.

Given a high SNR binary black hole event one can, in
principle, make a model-independent measurement of the
above PN coefficients by accepting those values that best
fit the data as our estimates. A procedure in which all the
parameters � 
 �tc;�c;  k;  kl�, k � 0; 2; . . . ; 7; are inde-
pendently varied to obtain the best possible fit of the signal
to the data subjects general relativity to the most stringent
test possible. In a recent paper, we explored the power of
such a test to determine all the known coefficients to a
relative accuracy of 100% or better [17]. However, this is
by no means the most powerful test. This is because the
covariances between the various parameters enhance the
errors in their estimation, thereby diluting the effectiveness
of the test.

In the present paper we have studied the accuracy with
which we can measure the PN coefficients by treating at a
time only three of the nine  k coefficients to be indepen-
dent and taking the rest as functions of two of the three
parameters. Thus, once a high SNR event is identified, we
suggest to fit the data to a template wherein three terms in
the PN expansion, rather than just two as in detection
problem, (or all the PN terms as proposed in Ref. [17]),
are treated as independent parameters. More precisely, in
Einstein’s GR, the tests consist in treating the parameters
 0 and  2 as the fundamental ones from which we can
measure the masses of the two black holes by inverting the
relationships  0 �  0�m1; m2� and  2 �  2�m1; m2�, and
asking if the measurement of a third parameter, say  6l �
 6l�m1; m2�, is consistent with the other two. Instead of the
pair � 0;  2� one can, in principle, equally well take any
other pair to be the fundamental set. The parameters  0 and
 2, being lower order coefficients, are best determined as
compared to the others and constitute our favored pair [18].

We shall consider the estimation of parameters in the
ground-based EGO and space-based LISA, using covari-
ance matrix, for which we assume the noise PSDs as given
in Refs. [19,20], respectively. We shall take the fundamen-
tal parameters to be  0 and  2 in addition to the usual
extrinsic parameters tc and �c. We shall take the test
parameter  T to be in turn  3; . . . ;  7,  5l and  6l. It should
be noted that there is no test corresponding to the term
involving  5 since it has no frequency dependence and
simply redefines of the coalescence phase �c. For ground-
based detectors, Advanced LIGO and EGO, the parameters

include tc, �c and the three  ’s. For LISA, on the other
hand, the results correspond to the case of a single detector
but with amplitude modulation caused by the motion of the
detector relative to the source. In this case our Fourier
domain waveform will have amplitude, phase and fre-
quency modulations due to the orbital motion of LISA
and we use the waveform given in Ref. [21]. Thus for
LISA, in addition to the three  parameters related to our
tests we also have the luminosity distance and the four
angles related to the source’s location and orientation.

The power of the tests depends on the SNR achieved for
the source. In Fig. 1 we have plotted the SNR in LISA,
EGO, and Advanced LIGO [9], for BBH binaries at a
distance of z � 1 for LISA and a distance of DL �
200 Mpc for EGO and Advanced LIGO. In the case of
EGO, we consider stellar mass BBH of equal masses with
the total mass in the range 1M� to 400M�, while in the case
of LISA the mass range is from 104M� to 107M�, but
scaled down by 104 so as to fit all the curves in the same
plot. While the SNR in EGO can reach several 100’s for
sources that it might observe every once in a year, in the
case of LISA the SNR could be several 1000’s for the
supermassive BBH sources that it is expected to observe
about once per year. The SNR’s in both LISA and EGO are
large enough for the tests to be very powerful probes of the
PN coefficients and the nonlinear effects of GR.

The lowest order parameters  0 and  2 are measured
with the smallest errors. In the case of LISA the errors for a
source at z � 1 are of order 10�5 � 10�4 and in the case of
EGO the errors for a source at 200 Mpc are of order
10�4 � 10�3. Figure 2 plots the relative errors � T= T
for various parameters  T as a function of the total massM.
From the plots, it is clear that the proposed tests can be
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FIG. 1 (color online). The signal-to-noise ratio for stellar mass
binary black holes (BBH) in Advanced LIGO and EGO and
supermassive BBH in LISA for equal mass binaries at a distance
of 200 Mpc (for EGO and Advanced LIGO) and z � 1 (LISA).
In the case of LISA we assume that the signal is integrated for a
year (last year before coalescence) and in the case of EGO we
assume that the signal is integrated over a bandwidth from 10 Hz
until the binary reaches its innermost circular orbit. The masses
of supermassive BBH in the case of LISA have been scaled down
by a factor of 104.
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performed effectively with all  k’s, especially in the case
of LISA. This is another reason why LISA is such an
important mission. All the test parameters, including the
log-terms at 2.5PN and 3PN order, can be estimated with
fractional accuracies better than 10�2 in the case of LISA
for massive BBH binaries with the total mass in the range
104–107 M�, and with fractional accuracies better than
100% in the case of EGO for stellar mass BBH binaries
with the total mass range 2–10M�. This demonstrates the
exciting possibility of testing the nonlinear structure of
general relativity using the GW observations by EGO and
LISA. A similar analysis in the case of Advanced LIGO for
sources with the total mass �10M�, shows that all the
parameters, except  4 and  6l, can be measured to a
relative accuracy of 100%. Thus, though the 3PN log-
term cannot be probed with Advanced LIGO, the 2.5PN
log-term can be tested leading to an interesting possibility
in the more immediate future.

With reference to Fig. 2, one may wonder why the error
in  4 is the largest relative to the other, higher order,  ’s.
We believe that there are several reasons for this odd
behavior: recall that the PN terms in the Fourier phase
are given by  kf�k�5�=3. When k � 5, there is no depen-
dence on frequency and when k � 4 the term varies very
slowly as f�1=3. Therefore, terms close to k � 5 are likely
to suffer from large variances since the frequency depen-
dence of the corresponding term is weak. Although one
might expect  6 also to suffer from large relative errors, the
fact that in this case the term increases with frequency as
f1=3 contributes to making it a more important term than
 4. We also observe that  4 has significantly larger cova-
riances with  0 and  2 which adds to its poor
determination.

In Fig. 3, we have depicted the power of the proposed
test in the m1–m2 plane. We present the uncertainty con-
tours, with 1-� error bars, associated with the different test
parameters in them1–m2 plane, when  0 and  2 are used to
parametrize the waveform and in the case of LISA. The
parameter  6l is much better determined by LISA than
EGO, as one would expect. This figure is an explicit
demonstration of the efficacy of the proposed test and the

accuracy with which the future GW observations of BH
binaries by EGO and LISA can test GR in its strong field
regime.

As mentioned earlier, the spin and angular parameters
add a lot of structure to the waveform which contain addi-
tional information that can be extracted and more tests
conducted. Covariance between the old and new parame-
ters is likely to increase the error boxes but the tests
become more demanding as a result of seeking consistency
amongst a greater number of parameters. Future studies
should look into the more general case incorporating the
effects of spin and systematic effects of orbital eccentricity
that could affect the tests, and more interestingly, go be-
yond the restricted waveform approximation by incorpo-
rating the amplitude corrections [22] to the GW phasing.

We conclude by discussing the extent to which we can
extend the current proposal to discriminate between differ-
ent theories of gravity such as massive graviton theories
and scalar-tensor theories [6,23]. The limitations of GW
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FIG. 3 (color online). Plot showing the regions in the m1–m2

plane that correspond to 1-� uncertainties in the test parameters
 T �  3,  4,  5l,  6,  6l,  7 for a �106; 106�M� supermassive
black hole binary at a redshift of z � 1 as observed for a year by
LISA. (Note that the 1-� uncertainty in  3 is smaller than the
thickness of the line.)
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FIG. 2 (color online). Plot showing the relative errors � T= T , in the test parameters  T �  3,  4,  5l,  6,  6l,  7 as a function of
the total massM of a supermassive BBH at a redshift of z � 1 observed by LISA (right panel) and of a stellar mass compact binary at a
distance of DL � 200 Mpc observed by EGO (left panel). The rest of the details as in Fig. 1.
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phasing to quantitatively discriminate between alternate
theories of gravity has been critically discussed in [8]
and should be kept in mind. For the massive graviton
theories the 1PN phasing term  2 is different and also
involves the Compton wavelength of the graviton �g.
Using  0 and  3 as basic variables and  2 as a test [24],
we find that bounds can be set on the value of �g, modulo
the neglect of uncomputed higher PN order corrections in
the theory. Using EGO, which will observe stellar mass BH
coalescences, we can set a bound on �g to be 1:3�
1013 km whereas with LISA the bounds are as high as
7:12� 1016 km. Scalar-tensor theories like Brans-Dicke
theory, which predicts dipolar GW emission, have leading
additional terms in the phasing formula at a PN order lower

than in GR. But the dipole GW emission is more important
for asymmetric binaries than it is for equal mass systems.
However, for such systems spin effects are also expected to
play a crucial role. The present paper deals with only
nonspinning binaries and we postpone the questions relat-
ing to dipolar radiation including spin effects to a future
work. Once again, these tests will be limited by the un-
computed higher order PN contributions in the Brans-
Dicke theory.
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