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The Wigner transform of the master equation describing the reduced dynamics of the system, of a harmonic
oscillator coupled to an oscillator bath, was obtained by Karrlein and Grabert �Phys. Rev. E 55, 153 �1997��.
It was shown that for some special correlated initial conditions the master equation reduces, in the classical
limit, to the corresponding classical Fokker-Planck equation obtained by Adelman �J. Chem Phys. 64, 124
�1976��. However, for separable initial conditions the Adelman equations were not recovered. We resolve this
problem by showing that, for separable initial conditions, the classical Langevin equations are somewhat
different from the one considered by Adelman. We obtain the corresponding Fokker-Planck equation and show
that they exactly match the classical limit of the evolution of the Wigner function obtained from the master
equation for separable initial conditions. We also discuss why thermal initial conditions correspond to Adel-
man’s solution.
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The concept of “open” quantum systems is a ubiquitous
one in that any system can be thought of as being not iso-
lated but being surrounded by a larger system constituting its
environment which should effect its dynamics. The theory of
open quantum systems provides a natural route for the rec-
onciliation of damping with the process of quantization.
Ford, Kac, and Mazur �1� suggested the first microscopic
model describing dissipative effects in which the system was
assumed to be coupled to an infinite number of harmonic
oscillators. Interest in quantum dissipation was intensified by
the work of Caldeira and Leggett �2� who used the influence
functional approach, developed by Feynman and Vernon �3�,
to discuss quantum Brownian motion. They considered the
case where the system and its environment were initially
uncorrelated, the so called separable initial condition. This
was generalized to the situation where initial correlations ex-
ist between the system and its environment by Hakim and
Ambegaokar �4�, Smith and Caldeira �5�, Grabert, Schramm,
and Ingold �6�, Chen, Lebowitz, and Liverani �7�, and Ban-
erjee and Ghosh �8� among others. The master equation for
the quantum Brownian motion of a harmonic oscillator in a
bosonic bath of harmonic oscillators was obtained by Haake
and Reibold �9� and later by Hu, Paz, and Zhang �10� who
used path integral methods in their derivation. A derivation
of the Wigner transform of this equation was also given by
Halliwell and Yu �11� and a solution of this Fokker-Planck
equation with time dependent coefficients was given by Ford
and O’Connell �12�. The reduced density matrix of a damped
parametric oscillator was obtained by Zerbe and Hanggi
�13�, for the case of separable initial conditions, from which
they obtained the master equation and its corresponding
Wigner function.

In a very interesting paper, Karrlein and Grabert �14�
studied the master equation for the reduced density matrix of
the system for generalized correlated initial conditions. They

showed that in general it is not possible to obtain a Liouvil-
lean operator for the master equation of the reduced dynam-
ics of the system under the influence of its environment.
However, for some specialized correlated initial conditions
like the one discussed by Hakim and Ambegaokar �4�, called
the thermal initial condition, and for the case of the time
evolution of equilibrium correlation functions �6�, it is pos-
sible to obtain the Liouvillean to describe the reduced system
dynamics. In both these cases Karrlein and Grabert �14� ob-
tained the Fokker-Planck equation from the Wigner trans-
form of the master equation. They found that in the classical
limit, these equations reduced exactly to the corresponding
equation obtained by Adelman �15� for the dissipative dy-
namics of the classical harmonic oscillator driven by a
Gaussian non-Markovian noise. They then considered the
case of separable initial conditions and found that in the
classical limit the corresponding Fokker-Planck equation
does not reduce to the Adelman equation. It was suggested
that this indicated a problem with separable initial conditions
and that this could affect the long time behavior of the sys-
tem. We find this a very intriguing as well as an interesting
point and in this Brief Report we look at it more closely.

We first point out that the Langevin equation for the sys-
tem consisting of a harmonic oscillator coupled to a bath of
harmonic oscillators with which it is initially uncorrelated,
differs from the one used by Adelman �15� by an additional
term. This additional term leads to a different Fokker-Planck
equation and is the crux that enables us to resolve the issue.
We show that the Fokker-Planck equation obtained from the
Langevin equation with this additional term is the exact clas-
sical limit of the corresponding equation in the quantum re-
gime obtained by Karrlein and Grabert �14�. We also give a
brief discussion on why the Langevin equation used by Adel-
man is the correct classical equation describing a correlated
initial state.

We consider a single harmonic oscillator described by the
phase space variables �x , p� and with a natural frequency �0.
The oscillator is coupled to a heat bath modeled by N inde-
pendent oscillators described by �X� , P�� and which have
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frequencies ����. We will eventually take the limit N→�.
The full Hamiltonian is taken to be �16,17�
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Using the equations of motion for the system and bath vari-
ables, the bath variables can be eliminated to yield the fol-
lowing Langevin equation describing the reduced dynamics
of the system:

ẍ = − �2x − ��t�x�0� − 

0

t

dt���t − t��ẋ�t�� + ��t� , �2�

where � is a shifted frequency given by �2=�0
2−��c�

2 /��
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and ��t�=���c�
2 /�a

2�cos���t�. The treatment is valid both
classically and quantum mechanically. In the quantum case
the variables correspond to operators in the Heisenberg rep-
resentation. Separable initial conditions imply that at t=0 the
reservoir is isolated and in equilibrium. We then find that the
noise correlations are given by
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Here we have used the notation in Refs. �6,14�. In the clas-
sical limit the noise correlation reduces to the usual
fluctuation-dissipation relation ���t���t���=kBT��t− t��.

The Langevin equation considered by Adelman �15� is
similar to Eq. �2�. The difference is in the initial condition
dependent term −��t�x�0�, the so called initial slip term
�18,19� which, as we will see, is crucial in getting the correct
Fokker-Planck equation. In order to obtain the Fokker-
Planck equation from the above Langevin equation we fol-
low the method used by Adelman �15�. This method relies on
a simplification achieved by using the following transforma-
tion, from the variables �x , p= ẋ� to the new variables �q1 ,q2�

x�t�
p�t�

� = H�t� G�t�

Ḣ�t� Ġ�t�
�q1�t�

q2�t�
� . �5�

Here H�t� and G�t� are solutions of the homogeneous part of

Eq. �2� for the initial conditions H�0�=1, Ḣ�0�=0 and G�0�
=0, Ġ�0�=1, respectively. The steps required to construct the
Fokker-Planck equation using this method are somewhat
nontrivial, but for the sake of brevity and compactness we
omit them here and refer the interested reader to Ref. �20� for
the details. As a result of the analysis we obtain the follow-
ing Fokker-Planck equation:
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= − p
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where
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Ȧ11 + �pA22,

with

A11 = − kBTG2 +
F2 − 1

�2 � ,

A22 = − kBT��2G2 + Ġ2 − 1� ,

and

F�t� = 1 − �2

0

t

dt�G�t�� .

In the classical limit �K��t�→kBT��t�, which implies that the
classical limits of the functions Kq�t� and Kp�t� in Ref. �14�
are

�Kq�t� → A11, � Kp�t� → A22. �7�

With this we immediately see that the coefficients of the
equation for the Wigner function, given by Eq. �89� in Ref.
�14�, reduces in the classical limit, to those in the Fokker-
Planck equation given by Eq. �6�.

We now briefly comment on the precise reason for the
observed correspondence between the Adelman results and
the quantum Fokker-Planck equation for the correlated initial
conditions considered in Ref. �14�. The Langevin equation
used by Adelman also follows from the same microscopic
model if, instead of choosing a separable initial condition,
we take a correlated initial state which is prepared by mak-
ing measurements on an equilibrium state of the coupled
system and bath. Classically if we want to describe a similar
situation, corresponding to the quantum cases studied in
Refs. �14,17�, then the corresponding Langevin equation
should describe the time evolution of the system’s phase
space variables �x , p� given that an initial measurement, in
the initial equilibrium state of the coupled system and bath,
gave the values �x�0� , p�0��. Starting from the same model of
reservoir with the full Hamiltonian given by Eq. �1� we again
get an equation in the form of Eq. �2� but the noise correla-
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tions are now different since at t=0 the bath and system
variables are correlated. A simplification occurs if we rede-
fine the noise �17,21� and write ��t�=��t�−��t�x�0�. Averag-
ing the bath variables over its distribution, which in this case
is given by the conditional probability of �X��0� , P��0��
given that an initial measurement in the initial equilibrium
state on the system gave the values �x�0� , p�0��, we find that
��t� is again a Gaussian stationary process with exactly the
same correlations as obtained for ��t� for separable initial
conditions �17,20,21�. The corresponding Langevin equation
is now exactly the equation of Adelman �15�. This shows that
the Langevin equation of Adelman is the correct classical
equation describing a correlated initial state.

In the literature various initial conditions have been dis-
cussed �2,4,6�. These correspond to different and valid physi-
cal situations. However, there is some confusion in the lit-
erature regarding the importance of initial conditions. The
equivalence of the separable and correlated initial conditions
was suggested in Ref. �7�. On the other hand, it was noted in
Ref. �14� that for separable initial conditions there was no

correspondence between the quantum and classical Fokker-
Planck equations and hence it was suggested that there could
be a problem with separable initial conditions. Our work
clarifies this point and shows that a correspondence exists
even for factorizing initial conditions. We show that one
needs to start with a different Langevin equation �Eq. �2��
than that used by Adelman. Our work highlights the impor-
tance of initial conditions in the modeling of physical situa-
tions. Depending on the situation to be studied, there is a
different process describing the dynamics, the basic point
being that correlated and uncorrelated initial conditions lead
to different classical Langevin equations and hence to differ-
ent Fokker-Planck equations.

In conclusion we have shown that for the case of a single
harmonic oscillator coupled to a bath of oscillators there is
an exact correspondence between the classical Fokker-
Planck equation and the quantum equations for the Wigner
function both for some special correlated as well as uncorre-
lated initial conditions.
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