
THE ASTROPHYSICAL JOURNAL, 524 :623È633, 1999 October 20
1999. The American Astronomical Society. All rights reserved. Printed in U.S.A.(

CONSTRAINED VIOLENT RELAXATION TO A SPHERICAL HALO

A. MANGALAM,1 R. NITYANANDA,2 AND S. SRIDHAR3
Inter-University Centre for Astronomy and Astrophysics, Postbag 4, Ganeshkhind, Pune 411 007, India

Received 1998 December 9 ; accepted 1999 June 5

ABSTRACT
Violent relaxation during the collapse of a galaxy halo is known to be incomplete in realistic cases

such as cosmological infall or mergers. We adopt a physical picture of strong but short-lived interactions
between potential Ñuctuations and particle orbits, using the broad framework outlined earlier for incorp-
orating incompleteness of the relaxation. We are guided by results from plasma physics, viz., the quasi-
linear theory of Landau damping, but allow for signiÐcant di†erences in our case. Crucially, wave
particle scattering does not drive the system to an equilibrium distribution function of the exponential
type, even in regions of phase space allowed by the constraints. The physical process is mixing without
friction in ““ action ÏÏ space, for which the simplest possible model is a constant phase space density modu-
lated by the constraints. Our distribution function does not use the exponential functions of the energy
prevalent in other work, which we regard as inappropriate to collisionless systems. The dynamical con-
straint of a Ðnite short period of the relaxation process is argued to lead to a factor in the distribu-1/T

rtion function, where is the radial period. The notion of strong potential Ñuctuations in a core is builtT
rin as a cuto† in pericenter (which we Ðnd preferable to one angular momentum, the other alternative we

explored). The halo of the self-consistent, parameter-free solutions show an r~4 behavior in density at
large r, an r1@4 surface brightness proÐle in the region and a radially anisotropic velocity dis-0.1r

e
È8r

e
,

persion proÐle outside an isotropic core. The energy distribution seen in simulations N(E) singles out the
pericenter cuto† model as the most realistic among the variants we have explored. The results are robust
to modiÐcations of the period dependence keeping the same asymptotic behavior or to the use of
binding energy raised to the power of 3/2 in place of 1/T

r
.

Subject headings : galaxies : formation È galaxies : halos È galaxies : interactions È
galaxies : kinematics and dynamics È galaxies : structure

1. A MODEL OF QUASI-VIOLENT RELAXATION

Elliptical galaxies are expected to have undergone violent
relaxation (Lynden-Bell 1967), which is a collisionless
process whereby the energies and angular momenta of stars
and dark matter particles get redistributed by strong poten-
tial Ñuctuations in such a way that the outcome depends
mainly on the macroscopic features of the initial conditions.
This concept is supported by N-body experiments where for
a range of initial conditions the Ðnal state has more or less a
universal proÐle.

One of the insights gained from cold collapse simulations
is that a compact region or a core develops, the system
partially reexpands, and then in a few crossing times settles
into a centrally peaked conÐguration with most of the mass
inside a radius within a fraction of the initial size (van
Albada 1982). The potential Ñuctuations are initially of
large amplitude, but they damp out in a few crossing times.
Clumpy and cold initial conditions with small values of
2T /W ^ 0.1, where T and W are total kinetic and potential
energies, are preferred over hot or homogeneous conditions
in order to produce Ðnal conÐgurations that Ðt the de Vau-
coleurs exp[r1@4 surface density proÐle better.

The general violent relaxation problem is difficult
because the Ñuctuations have large amplitudes and damp in
a few crossing times. Thus there is no small parameter and
just a single timescale. The physical process belongs to the
broad category of interactions between waves (potential
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Ñuctuations) and particles (stars or dark matter), wherein
the amplitude of the wave is self-consistently determined by
the positions of the particles. We start with the limiting case
of small amplitudes, and long-lived waves, where we might
expect the problem to submit to perturbative methods.
However, it is difficult to determine even the linear modes of
self-gravitating, collisionless systems ; this is because gal-
axies are spatially inhomogeneous objects. Quasi-neutral
plasmas are not subject to this problem, so let us examine
the quasi-linear theory of Landau damping of electrostatic
waves in collisionless plasmas (cf. ° 49 of Lifshitz & Pitaevs-
kii 1981). The focus of the theory is on the slow evolution of
the coarse-grained distribution function (DF) of electrons,
f (p, t), where p is momentum. A key result is that f (p, t)
obeys a di†usion equation in p-space :

Lf
Lt

\ L
Lpa

A
Dab

Lf
Lpb

B
, (1)

where the di†usion coefficient, is nonzero only in aDab,range of p corresponding to electrons that are resonant with
the perturbations. This di†usion causes smoothing and
creates a plateau in f (p). Furthermore, is proportionalDabto the energy in the Ñuctuations ; as this energy is absorbed
by the resonant electrons, the di†usion itself weakens and
f (p) reaches a steady state. The point we wish to make here
is that this evidently non-Maxwellian steady state has been
reached by a self-regulating di†usive process.

There is of course a basic di†erence between slow
damping of plasma waves and the damping of the oscil-
lations of a violently relaxing galaxy. In the former, the
energy in the waves is absorbed by resonant electrons,
whereas the very concept of resonance is dubious in the
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latter case, because the oscillations are short lived. In a
relaxing galaxy, the orbits of particles are expected to be
scattered by an oscillating core (Tremaine 1987 ; Spergel &
Hernquist 1992, hereafter SH). In realistic situations, the
deÑections are individually large but small in number. Let
us, nevertheless, for orientation, initially consider the limit
in which each star, or dark matter particle, undergoes many
small kicks. Because of this particles move under the com-
bined actions of integrable forces and small kicks that lead
to global stochasticity. In stochastic regions of phase space
far from islands, the di†usion of actions is well described by
a Fokker-Planck (FP) equation. A feature of the FP equa-
tion for Hamiltonian kicks is the complete absence of
dynamical friction, a result as old as Landau (1937 ; cf. ° 5.4
of Lichtenberg & Lieberman 1983). The FP equation
resembles equation (1), where p are the actions. Once again,

is proportional to the square of the perturbation. TheDababsence of friction implies that a Maxwellian distribution is
not the Ðnal steady state. In fact, the process being purely
di†usive, it is evident that the DF would approach one that
is independent of the actions, given a Ðnite volume of phase
space and enough time.

We learn from the above examples that in the limit of
long-lived, small-amplitude Ñuctuations, the relaxation of a
galaxy is likely to be primarily di†usive in phase space. This
relaxation process is very di†erent from collisional relax-
ation in neutral gases, which is a reÑection of the long-range
nature of gravitational forces in contrast to the short range
of interatomic forces. The distinction is made clearer by
using the H-functions introduced by Tremaine, Henon, &
Lynden-Bell (1986). They are actually functionals of the
coarse-grained DF, deÐned as

H[ f ]\ [C( f )d3x d3v , (2)

where C( f ) is a convex function. Any mixing process con-
serving Ðne-grained phase density, such as collisionless
relaxation, will increase H[f]. This result needs the assump-
tion that the initial state had the Ðne- and coarse-grained
distribution equal to each other, which applies to the cold
collapse simulations with which we are concerned. It does
not imply that H increases monotonically (Dejonghe 1987 ;
Sridhar 1987). On the other hand, binary collisional pro-
cesses, such as those relevant to thermal relaxation in
neutral gases, do not conserve phase density and single out
a unique H-function, namely, the Boltzmann entropy given
by C( f )\ f ln f.

We now extrapolate to the case of the large-amplitude,
short-lived Ñuctuations appropriate to violent relaxation.
When the ““ actions ÏÏ change by large amounts, the mixing
process is no longer correctly described by a di†usion equa-
tion. However, the relaxation is probably well described by
a process of mixing without friction, and an initial DF will
spread as far as it can in phase space ; the extent and nature
of the spreading being determined by dynamical constraints
discussed in the following section. We write the DF \A(E)
times a factor expressing constraints, where E is the single-
particle binding energy (bound particles have positive E). In
the short duration before freezeout, A spreads out nearly
evenly and beyond E\ 0 (some particles escape). But in
constructing distribution functions of the galaxy we do not
include unbound particles. The parallel to di†usion without
friction suggests a Ðnal state for which A(E)\ constant .

Note that this hypothesis is the simplest choice consistent
with the physics of violent relaxation. A similar concept was

proposed by Yankov (1994) to explain turbulent transport
in plasmas of tokamaks with a uniform distribution of par-
ticles in a region speciÐed by certain constraints of the
problem.

2. A PRESCRIPTION FOR f (E, J2)

The relevant dynamical constraints will clearly depend
on the context ; for instance, the merger of two galaxies is
very likely to be di†erent from the formation of dark halos
by cosmological infall over extended periods of time. We
now seek the dynamical constraints appropriate to situ-
ations such as the cold collapses familiar from numerical
simulations (cf. van Albada 1982) which might also carry
over to the case of head-on mergers between galaxies. For
simplicity, we assume that the relaxed system is spherical
and its DF is a function of the energy, E, and the angular
momentum, J. Tremaine (1987) has suggested the following
two plausible physical requirements (see also Merritt,
Tremaine, & Johnstone 1989, hereafter MTJ; Stiavelli &
Bertin 1987) :

1. The potential Ñuctuations last for only a limited time,
which is of order a few crossing times. Hence orbits withT

e
,

radial periods, exceeding will be underpopulated by aT
r
, T

efactor In terms of a plausible physical require-D(T
e
/T

r
).

ment, this is viewed as a uniform Ðlling of those orbital
phases which allowed the particle to visit the core in the
time and zero elsewhere. Finally, of course, all phases areT

eequally populated in the coarse-grained function, which
means a Ðlling proportional to T

e
/T

r
.

2. The Ñuctuations are largely conÐned to a central
region or a core of radius Hence only orbits whose peri-r

c
.

centers are smaller than would have visited the regionDr
cof large potential Ñuctuations and have had a chance to

relax violently. The validity of this will depend strongly on
the initial conditions ; the collapse of a cold, nearly non-
rotating initial conÐguration is more relevant to this study.

With this motivation, we assume the following form for
f (E, J2)
f (E, J2) \ (function proportional to 1/T

r
for large T

r
)

] (cuto† in pericenter or J2)] A (3)

The Ðrst two factors in the distribution function are the
dynamical constraints given by requirements 1 and 2,
respectively, and the third factor, A, is taken to be a con-
stant as discussed earlier. The Ðrst factor ensures the1/T

rcontinuity of the DF at E\ 0, i.e., f (E, J2) \ 0 for E¹ 0.
Ja†e (1987) remarked that one asymptotic property of viol-
ently relaxed systems is that N(E) should be Ðnite and
nonzero at E\ 0 because the number of particles ejected
from the core should be smooth across E\ 0. We show in
° 4 that for small E, the restricted density of states due to
the second factor in equation (3) is DE~3@2, while fD 1/T

r
DE3@2 (for Ðnite-mass systems), and therefore N(E)DE0.
We deÐne

f (E, J2) 4 f0(E, J2)CA , (4)

where and C represent the Ðrst and second factors inf0equation (3). In this work, we studied the following closely
related models based on equation (3) :

1. A model with was Ðrst obtained and usedf0(E) \E3@2
as an input to generate the counterpart discussed1/T

r
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below. Details of this model are presented in Appendix A.
The dependence of the distribution function on E and J is
explicit, and hence the analytic work can be carried further.

is presented in ° 5. Here the depen-2. f0(E, J2)\ 1/T
rdence of the radial period on E and J has to be derived

iteratively from the potential. The models above form a
good starting point for successive numerical iterations
which we refer to as and models. There is a variant ofr

c
J
mthese models with with an extraf0(E, J2)\ 1/(T

r
] T0),parameter introduced to assess the sensitivity of theT0results to the functional form of the period cuto†.

All the above models have the asymptotic properties
o D r~4, N(E)DE0 (described above), and surface densities
approximating the r1@4 law. The form of energy distribu-
tions, N(E), at distances larger than the core radius or ther

c
,

scale radius are derived for the pericenter model in ° 4. Inr
j
,

° 5.1 we describe the form of N(E) for the models. This isT
rhelpful in picking out the pericenter cuto† models as a

better Ðt to results of simulations. In ° 3 we describe the
boundaries in the (E-J2)-plane required in doing the inte-
grals in the allowed velocity space. The properties of the
solutions and comparison to simulations are described in °
6, and we present a discussion in ° 7 and conclusions in ° 8.
The reader interested in Ðrst examining the results is urged
to go to °° 6È8 and then return to °° 3È5 for some details of
the construction.

3. PERICENTER AND ANGULAR MOMENTUM

CONSTRAINTS IN THE (E-J2)-PLANE

For a spherical model, with a distribution function,
f (E, J2) including a sharp pericenter cuto†\Af0(E, J2)C,
at or in angular momentum, PoissonÏs equation canr

c
J
m
,

be written as

1
r2

d
dr
A
r2 d'

dr
B

\ A
r2
P

dE dJ2
C
2([E[ ')[ J2

r2
D~1@2

] f0(E, J2)C(g) , (5)

where A is a constant that is determined by normalization.
The cuto† function, C, is given by

C(g)\ 4
5
6
0
0
1 , g ¹ 1
0 , g [ 1 ,

(6)

where g equals either where is the pericenter,r
p
/r

c
, r

p
(E, J2)

and is the cuto† radius or where is the maximumr
c

J/J
m
, J

mangular momentum. We explore both these constraints here
and construct a method to solve the self-consistent models
with equation (5), coupled withf0(E, J2)\ 1/T

r
:

T
r
(E, J2)\ 2

P
rp

ra
dr[2([E[ ')[ J2/r2]~1@2 , (7)

where and are the turning points. We have solved ther
p

r
acoupled equations by a semianalytical method whose

details are presented in ° 5.
Now we introduce a variable, which is the radiusr0(J2),

of a circular orbit for a given angular momentum, J2\
This is useful in determining the region of integrationr03'0@ .in the (E-J2)-plane. Note that from PoissonÏsJ2\M(r0)r0equation, where M(r) is the mass inside r, and hence it is a

monotonically increasing function of Figure 1 shows ar0.

FIG. 1.ÈTwo possible locations of and are indi-r
c
, r

c1 \ r0, r
c2[ r0cated in the Ðgure where is the circular orbit radius. The allowed orbitsr0are those for which as indicated in the Ðgure, and E¹E¹E

f
(r
c
, r0),the energy of the circular orbit, respectively.E

f
(r0, r0),

plot of the absolute value of the e†ective potential,
for a given J2[E

f
(r, r0) 4 '] J2/(2r2) \' ] '0@ r03/(2r2),

and a typical '. We now consider the region of integration
allowed by C(g).

3.1. T he Case of g \ r
p
/r

c
The region of integration in the (E-J2)-plane is bounded

by following curves which are shown in Figure 2 :

1. The upper bound of the region of interest is given by
the minimum of the e†ective potential of a circular([E

f
)

orbit for a given '(r) and i.e.,r0, E\E
f
(r0, r0)\['0for The orbits with[ '0@ r0/2 r

p
¹ r0¹ r

c
. r

p
¹ r

c
¹ r0obey the bound as indi-E\E

f
(r
c
, r0) \['

c
[ '0@ r03/(2r

c
2)

cated in Figure 1.
2. At a given radius r for the system, the e†ective poten-

tial is bounded by E¹ B(r, J2)4E
f
(r, r0) \['[ J2/(2r2)

or, equivalently, v
r
2(r) º 0.

For the pericenter constraint is satisÐed and ther \ r
c
,

operative bound is just Hence, the boundingE\E
f
(r, r0).line given by constraint 2 lies inside and isE\E

f
(r
c
, r0)tangent to the curve given by constraint 1 ; the point of

contact represents a circular orbit for a given r0.Now consider the case The point of intersectionr [ r
c
.

between the bounding line of bound constraint 2,(E
*
, J

*
2 )

FIG. 2.ÈApplicable bound for is the circular orbit energy,r \ r
cand for it is given by as explained in Fig. 1.E

f
(r0, r0), r [ r

c
, E\E

f
(r

c
, r0)Lines of turning points are drawn for andr [ r

c
, r \ r

c
, r \ r

c
.
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and given by bound constraintE\E
f
(r, r0), E\E

f
(r
c
, r0),1, represents an orbit whose turning points are r and (seer

cFig. 2). The point of intersection works out to be

E
*

\ ('
c
r
c
2[ 'r2)/(r2 [ r

c
2) , (8)

J
*
2 \ 2('[ '

c
)r2r

c
2/(r2[ r

c
2) . (9)

E†ectively, for the bound given by constraint 2,r [ r
c
,

applies up to beyond which theE\E
f
(r, r0), J

c
2\ r

c
3'

c
@ ,

bound, given by constraint 1, is oper-E\ ['
c
[ J2/(2r

c
2),

ative and forms a wedge-shaped region. For ther \ r
c
,

region of integration is given by the bound E\E
f
(r, r0)and is a triangular-shaped region. The regions of integra-

tion are shown in Figure 3 and are summarized by

A14E\ ['[ J2/(2r2) , r ¹ r
c
, (10)

A24
GE\ ['[ J2/(2r2) ,
E\ ['

c
[ J2/(2r

c
2) ,

r [ r
c

and J2\ J
*
2

r [ r
c

and J2[ J
*
2 . (11)

Now that the regions of integration have been determined,
we can write the integral on the right-hand side of equation
(5), without the normalization constant A, as

I(r ; f0)\
GI0(r ; f0) ,
I0(r ; f0)[I~(r ; f0)]I

`
(r ; f0) ,

r¹r
c

r[r
c

, (12)

where is the intercept on the J2-axis andJ
e
2(r)\ [2'r2

I0(r ; f0)\
1
r2
P
0

Je2
dJ2
P
0

B(r,J2)
dE

]
C
2([E[ ')[ J2

r2
D~1@2

f0(E, J2) , (13)

I~(r ; f0)\
1
r2
P
J*2

Je2
dJ2
P
0

B(r,J2)
dE

]
C
2([E[ ')[ J2

r2
D~1@2

f0(E, J2) , (14)

I
`

(r ; f0)\
1
r2
P
0

E*
dE
P
J*2

~(E`'c)2rc2
dJ2

]
C
2([E[ ')[ J2

r2
D~1@2

f0(E, J2) . (15)

FIG. 3.ÈAreas of integration enclosed by the bold lines. The triangle-
shaped for and the wedge-shaped for are indicatedA1, r \ r

c
, A2, r [ r

c
,

in the Ðgure. The limits used in evaluating the I integrals, andE
*
, J

*
2 , J

mare also indicated. The E intercept is [ '(r), and the foot of isA2[2'
c
r
c
2.

3.2. T he Case of g \ J/J
m

Constraint 2 applies here, and the maximum allowed
angular momentum is There are no circular orbitsJ

m
.

allowed outside the radius t given by J
m
2 4[2'

j
r
j
2\

Also, for only constraint 2 applies, and fort3'@(t). r \ r
jthe orbits with are excluded. Hence ther [ r

j
, J2[ J

m
2

region of integration, B is given by

B14E\ ['[ J2/(2r2) r \ r
j
,

B24E\ ['[ J2/(2r2) and J2\ J
m
2 r [ r

j
.

(16)

For the integral on the right-hand side of equa-g \J/J
m
,

tion (5), without the normalization constant A, will reduce
to

K(r ; f0) \
4
5
6
0
0
I0(r ; f0) , r ¹ r

j
,

I0(r ; f0) [K~(r ; f0) , r [ r
j
,

(17)

where

K~(r ; f0) \
1
r2
P
Jm2

Je2
dJ2
P
0

B(r,J2)

] dE
C
2([E[ ') [ J2

r2
D~1@2

f0(E, J2) . (18)

4. RESTRICTED DENSITY OF STATES FOR A PERICENTER

CUTOFF

Here we calculate the density of states for a model that
has a sharp pericenter cuto†. The restricted density of states
is given by

g(E) \
P

d3rC r
p

r
c

d3v
dE

\ 8n2
P
A

dr
P
0

Jm2ax
dJ2/J2([E[ ') [ J2/r2

\ 16n2J2
P
A

r dr

]
C
J([E[ ')r2[

S
([E[ ')r2[ Jmax2

2
D

, (19)

where is determined by constraints. Hereafter we workJmax2
with units where GM\ 1. There is no contribution to g(E)
from E[ [' and therefore for a given energy E, only the
region is accessible where Consultr \ r

E
'(r

E
) \ [E.

Figure 3 for the allowed range of integration, A. For r \ r
c
,

the pericenter constraint 1 is satisÐed and therefore Jmax2 \
as given by constraint 2. Now take theJ

e
2\ 2([E[ ')r2,

case when and shown in Figure 4, whereE[E
c

r [ r
c
,

the energy of the circular orbit ofE
c
4['

c
[ '

c
@ r

c
/2,

radius Earlier, the point of intersection of ['[ J2/r
c
.

(2r2) and was deÐned to be Here[ '
c
[ J2/(2r

c
2) E

*
, J

*
2 .

and hence the pericenters lie inside andE[E
c
[E

*
, r

cas given by constraint 2. Now consider the caseJmax2 \ J
eand as illustrated in Figure 5 for whichE\E

c
r [ r

c
J
c
2\

It is clear that and[2(E[ '
c
)r
c
2\ J

*
2 . Jmax2 \ min (J

c
2, J

e
2),

if the particle has a because any higherJ
c
2\ J

e
2, Jmax2 \J

c
2

angular momentum will include orbits whose pericenters lie
outside This happens only for wherer

c
. r

c
\ r \ r

I
, r

I
(E, r

c
)
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for the case and is at the point ofFIG. 4.ÈJmax2 (E, r) E[E
c

r [ r
cintersection. In this case, since This implies thatE[E

*
, E

c
[E

*
. Jmax2 \

When the pericenter constraint is satisÐed andJ
e
2\[2(E] ')r2. r \ r

c
,

hence Jmax2 \ J
e
2.

is the apocenter of an orbit for a given energy
[E and pericenter It is given byr

c
.

E\ '
I
r
I
2[ '

c
r
c
2

r
I
2[ r

c
2 , (20)

which has two roots ; we seek the one for which Tor
I
[ r

c
.

summarize

Jmax2 (E, r)\ min (J
c
2, J

e
2)

([E[ ')r2 , ['[E[E
c
, r \ r

E
,

\ 2g([E[ '
c
)r
c
2 , E

c
[E

*
[E, r

c
\ r \ r

I
\ r

E
,

([E[ ')r2 , E
c
[E[E

*
, r

c
\ r

I
\ r \ r

E
.

(21)

We may then write

g(E)\ 16n2J2
C
[g

c
(E)]

P
0

rE
r2J [E[ ' dr

D
, (22)

where

g
c
(E)\g

P
rc

rI
dr r2JE

*
[E(1[ r

c
2/r2)1@2

E
c
[E

*
[E r

c
\ r \ r

I
\ r

E
0 otherwise

. (23)

for and are shown in theFIG. 5.ÈJmax2 (E[E
c
, r) E

*
[E E

*
\E

Ðgure. for a radius andE
c
[E[E

p2 r \ x2[ r
c

Jmax2 \[2(E] ')r2,
given by the point of intersection at the energy Similarly, E\E[E

c
.

for and AlsoE
p1 \E

c
r \ x1[ r

c
Jmax2 \ [2(E] '

c
)r
c
2. r

c
\ x1\ r

I
\

where given by is the apocenter of an orbitx2, r
I
, (E[ '

I
)r
I
2\ (E[ '

c
)r

c
2,

with energy [E and pericenter r
c
.

We can now use the equation above to calculate the density
of states and the energy distribution for a Keplerian poten-
tial, the asymptotics of which are applicable more generally
for Ðnite-mass systems. After some algebra, the restricted
Keplerian density of states (in units where GM\ 1) is given
by

g
k
(E) \ n3J2

4
5
6
0
0
E~5@2 , EºE

c[4E~3@2'
c
r
c
2(1[E'

c
r
c
2) , E\E

c
,
(24)

where it is continuous at The energy distribu-E
c
\ 1/(2r

c
).

tion for will then go asf0(E) \ A@E3@2

N
k
(E) \ A@n3J2

4
5
6
0
0
E~1 , EºE

c
4'

c
r
c
2(1[E'

c
r
c
2) , E\E

c
.

(25)

Note that for any Ðnite-mass potential, the above equa-
tions are valid for a large radius and only approx-(r ? r

c
)

imate in the inner region where the realistic potential
deviates from 1/r. Clearly, as and one recov-r

c
] O, E

c
] 0,

ers the Keplerian form of g(E) PE~5@2, and if is zero thenr
cg(E) vanishes as expected. Near small E, the velocities

become more radial and the unconstrained Keplerian
density of states, E~5@2, is reduced by a factor In ourv

t
2PE.

model the assumption of a sharp pericenter cuto† at leadsr
cto g(E) PE~3@2 near E\ 0 and the choice of f (E)\ 1/T

r
D

E3@2, at small E, based on the dynamical arguments made
earlier, is consistent with the required property of the
““ break of N(E\ 0),ÏÏ or the Ðnite and nonzero value of
N(E\ 0). Ja†e (1987) made the interesting point that the
demand of a break in N(E) \ f (E)g(E) at E\ 0 for an
(unrestricted) Keplerian density of states, leads to
f (E) DE5@2 near E\ 0, and as a result, the density behaves
as '4P r~4. The self-consistent models and ther

c
J
mmodels (° 5) presented here are inÐnite-radius and Ðnite-

mass models with an r~4 density proÐle. We have checked
that the Ðnite and nonzero N(E\ 0) property also holds for
the angular momentum restricted density of states.

5. THE MODELf
0
\ 1/T

r

The numerical solution of PoissonÏs equation for f0 \
follows closely the analytics in ° 3. The areas of integra-1/T

rtion in (E, J2) space are determined by equations (12) and
(18). Starting with the initial guess of the potential given in
Appendix A or the corresponding one for angular momen-
tum cuto†, the radial period is calculated by a rootT

r
(E, r0)solving and integration routine within the bound given by

for and for inE\E
f
(r0, r0) r0\ r

c
E\E

f
(r
c
, r0) r0[ r

ccase of the model. Similarly, the bound E\r
c was used in the case of the modelE

f
(r0, r0) ; r0\ rmax(E) J

mwhere is the radius of the largest allowed circularrmax(E)
orbit. A lookup (interpolation) table for was pre-T

r
(E, r0)pared. For a given radius, r, the regions of integration are

determined by A or B, and then the distribution function
is integrated to calculate the density proÐle using1/T

r

1

r2
d
dr
A
r2

d'
dr
B

\ K
4
5
6
0
0
I(r ; T

r
~1) r

c
model

K(r ; T
r
~1) J

m
model Ï (26)

T
r
(E, J2) \ 2

P
rp

ra
dr[2([E[ ') [ J2/r2]~1@2 , (27)
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where and are the turning points and the value of K isr
p

r
achosen so that the total mass is 1 and G\ 1. The next

iterate of the potential is then trivially obtained from

'(m)\ [
P
m

=m~2M(m)dm , (28)

where M(m) is the mass fraction inside m that is calculated
from the density, the right-hand side of equation (26). Here,
'(O) is taken to be zero to be consistent with the initial
guess of E~3@2 for the radial period.

The numerical code was used to verify the E3@2 solution
(the initial guess) and vice versa. A high-precision routine
was used to calculate the radial period for an arbitrary
potential, and this was tested against the well-known forms
for isochrone and Kepler potentials and found to be precise
to within a millionth of the correct value. The veriÐcation of
the analytics established the robustness of the numerics
used. The numerical scheme converges rapidly to a solution
in a few iterations. This indicates that the properties of these
models are close to those of the E3@2 models. Figure 6 illus-
trates that the model is nearly isochronic. For manyr

cpurposes, one could have been satisÐed with the E3@2
models, which are much easier to implement than the 1/T

rmodels, for exploratory work. But this is strictly with the
hindsight provided by our constructing the models in the
Ðrst place.

5.1. T he Energy Distribution
Let us now look at the energy distribution, N(E). For a

spherical system with the distribution, f (E, J2), one can
write the di†erential energy distribution (see Binney & Tre-
maine, eq. [4P-11]) as

N(E)\ 4n2
P

f (E, J2)T
r
(E, J2)dJ2 . (29)

In the case of f\ A we obtainC(g)/T
r
,

N(E)\ 4n2A
P
C(g)dJ2\ 4n2AJg2(E) , (30)

where is the constraint boundary in the (E-J2)-plane.Jg2(E)
In the case of the model, the shape of the constraint inr

cthis plane (cf. constraint 1, ° 3.1) determines the energy dis-
tribution which is given by

N
c
(E)\ 4n2A

4
5
6

0
0
t3'@(t) , where ['(t)[ t'@(t)/2 \E ,

E[E
c[2(E] '

c
)r
c
2 , E\E

c
,

(31)

where is the energy of a circular orbit at as deÐned inE
c

r
c

° 4, and similarly for model (cf. ° 3.2), we obtainJ
m

N
j
(E)\4n2A

4
5
6

0
0
t3'@(t) , where ['(t)[ t'@(t)/2 \E ,

E[E
m

J
m
2 , E\E

m
,

(32)

where the energy of the largest allowed circular orbit isE
mgiven by

E
m

\ [ '(t)[ t2'@(t)/2 , t3'@(t)\ J
m
2 . (33)

FIG. 6.ÈTop : Contour plot of the variation of in the allowedT
r
E3@2

(E-J2)-plane. The Ñat contours indicate that is very nearly isochronicT
rand close to E~3@2. Bottom : The deviation is depicted which shows a

section taken at where is the angular momentum of aJ2/Jcir2 \ 0.5, Jcir2 (E)
circular orbit at a given energy, E.

The Keplerian limit of equations (31) and (32) agrees exactly
with the Keplerian limits of E3@2 counterparts, when one
takes into account the fact that for a Kepler potential, T

r
\

Therefore in units wherenGME~3@2/J2. A/A@\ n/J2
GM\ 1. It is clear that, near small E, the form of N(E) is
linear for the model and the slope is [positiver

c
[ 8n2Ar

c
2

in N(E)] while the N(E) is Ñat for the model. From theJ
mdynamical arguments in ° 2 we expect orbits with small T

rto be more populated than the ones with larger radial
periods. However, we have no reason to adhere to the strict

form for small It is worth checking how sensitive1/T
r

T
r
.

our results are to a modiÐcation in which is Ñatter atf0small while retaining the asymptotic behavior. WeT
r

1/T
rthus try

f0(E, J2) \ 1
T
r
] T0

, (34)

where is a parameter which is chosen to be of the orderT0of the radial period of the harmonic oscillator, near theT
h
,
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bottom of the well and given by

T
h
\ n

J'@@(0)
. (35)

Again, the maximum deviation from the initial guess up to
the second iterate in the density was found to be less than
1% for This indicates that the distribu-T0\ 0.5T

h
, 1T

h
, 2T

h
.

tion function is probably stable and insensitive to small
changes in but sensitive to the choice of the constraint,f0
C(g). This and the similarity of the E3@2 models to the 1/T

rcounterparts can be explained by the fact that is domi-f0nated by E3@2 (see the contour plot of Fig. 6).T
r
E3@2,

6. PROPERTIES OF THE SOLUTIONS AND COMPARISON

WITH SIMULATIONS

We discuss the analytic results in the preceding sections
and the properties of the and solutions and compare itr

c
J
mwith relevant simulations and the r1@4 law. As mentioned in

° 1, the simulations of direct relevance are cold collapse
simulations, in particular the C runs of van Albada (1982),
who has presented the density, N(E), velocity dispersion,
and anisotropy proÐles of the Ðnal conÐgurations. In our
Figures 1, 2, 3, 4, and 5 a Henon isochrone potential was
used to illustrate the allowed region in phase space.

Scaled quantities and their physical units.ÈThe models
have two free parameters, the total mass M and either the
cuto† radius or a maximum value of angular momentumr

cBelow, we compare the models with the models.J
m
. r

c
J
mThe scale radius, is the scale radius of the model andr

s
, J

mequals the core radius, in the model. If the total massr
c
, r

cand scale radius are set to unity, the model has no free
parameters.

The potential in the solution is scaled according tor
c

'\GM
ar

c
h \ 0.265

GM
r
c

h , (36)

and similarly the scale for potential in the model isJ
mThe density scales as0.462GM/r

s
. (1/4na)M/r

c
3\ 0.021M/r

c
3

for the model whereas it scales as for ther
c

0.0368M/r
s
3 J

mmodel. The radial orbit period can be written as

T
r
\ 2r

c
Ja

P
m1

m2 dm
J[E[ '(m)[ J2/2m2

, (37)

and hence we deÐne a unit, T
c
4 2r

c
/Ja \ 2JaJr

c
3/GM.

For the model, a \ 3.38 and a \ 2.16r
c

(T
c
\ 3.68) (T

c
\

2.94).
T he density proÐle.ÈFor large r, the densities, o(r), for

both the models scale as r~4 ; this has been derived analyti-
cally in Appendix A and is also apparent from Figure 7. The
density has a sharp break at for the models. Ther \ r

c
r
cfraction of mass in the core is about 5% for both models.

The density continues to decrease gently with r up to about
beyond which the slope changes rather abruptly to a5r

c
,

much steeper value and rapidly converges to the asymptotic
r~4 proÐle (see the log-log plot in the lower panel of Fig. 7).
The radius at which the break occurs is a few (see eq.r

s[A14]) for both models. This is seen in the C runs of van
Albada (1982, see Fig. 6 in the paper). A similar break is
also seen in the cosmological simulations of Tormen,
Bouchet, & White (1997) and Moore et al. (1998) where the

FIG. 7.ÈTop : Density as a function where for the modelsr/r
s
, r

s
\ r

c
r
cand is the scale radius of the models. The former shows a sharp dropr

s
J
mat due to the pericenter constraint, whereas the latter has a smoothr

cproÐle. Bottom : The log-log plot shows a break near and an asymptotic5r
cform of r~4 from to for both models. The density is shown in10r

c
100r

cunits of for the model and for the model.0.021M/r
c
3 r

c
0.0368M/r

s
3 J

m

power law is roughly r~1 for the inner region and between
r~3 and r~4 for the halo.

T he di†erential energy distribution.ÈHere we use
E\ [E in order to compare our results with simulations.
The di†erential energy distribution, N(E), is a useful indica-
tor of the phase space structure. The di†erences in the
analytic forms of N(E) for the di†erent constraints are indi-
cated by equations (25), (31), and (32) which corroborate
each other in the Keplerian limit [this is a reÑection of the
shape of the C(g) in the (E-J2)-plane]. Whereas the real
space structure (especially at large r) for the two models is
similar, the plots in Figure 8 demonstrate how di†erent the
models are at high energies ; N(E) for the model risesJ

msharply, reaches a maximum at some E, and thereafter is
independent of E. For the model, N(E) is smooth, risingr

cgradually, and becomes a strictly linear function of E (see
Fig. 7 of van Albada 1982, runs C2 and C3 for a linear plot).
The linear region in our model begins at energies 0.7 of the
well depth (cf. Appendix A), i.e., it is dominantly linear and
is consistent with C2 and C3. The log plot of Figure 8 is also
consistent with Figure 4-20 in Binney & Tremaine of run
C3 and the simulations of Spergel & Hernquist (1992, their
Fig. 2). Also it is clear from equation (30) that the nonzero
intercept of the constraint, C(g), which is has theJg2(E\ 0),
desirable e†ect of implementing Ja†eÏs (1987) insight that
the di†erential energy distribution N(E) tends to a nonzero
value as E] 0 from below, since the probability of ejection
from the core is not expected to be sensitive to small
changes in the Ðnal energy.
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FIG. 8.ÈN(E) for the model rises abruptly and then is Ñat, whereasJ
mthe N(E) for the model increases gradually. The well depth in both casesr

cwas taken to be 1.

De V aucoleursÏ r1@4 law.ÈIn both cases, the surface den-
sities provide reasonably good Ðts to the de VaucoleursÏ r1@4
law in the range as indicated in Figure 9, assuming0.1r

e
È8r

ea constant mass-to-light ratio. This includes the range in

FIG. 9.ÈSurface density, &, is an excellent Ðt to the r1@4 law for 0.1\
for the models (lower curve), and for ther/r

e
\ 8 ; r

e
\ 6.65r

c
r
c

r
e
\ 4.03r

smodels (upper curve).J
m

FIG. 10.ÈPlot of the anisotropy parameter, forb(r)4 1 [ v
t
2/(2v

r
2),

both models. The core is nearly isotropic and becomes nearly radially
anisotropic at The model (upper curve) is slightly more anisotropic10r

s
. r

cthan the model (lower curve).J
m

FIG. 11.ÈPlot of the normalized radial velocity dispersion, p
r
2(r) \

for both models. The model (lower curve) is slightly morev
r
2(r)/v

r
2(0), r

cradially anisotropic than the model (upper curve).J
m

radii over which the r1@4 law provides excellent(0.1r
e
È2r

e
)

Ðts to the brightness proÐles of ellipticals (Burkert 1993).
The slope in the Ðgure is close to [8 (the standard slope is
È7.67), where & was normalized to its value at the center
unlike the usual normalization by the extrapolated peak
value.

T he anisotropy proÐle.ÈThe DF, equation (3), naturally
gives radially anisotropic models where most of the mass is
outside the core radius. The anisotropy proÐle and velocity
dispersions of the E3@2 models are very similar to that of the

models. Figure 10 shows a plot of the run of the anisot-T
rropy parameter, b, with radius. Both the and modelsr

c
J
mare very nearly isotropic within the core and rapidly

become anisotropic. Figure 11 shows the radial velocity
dispersions which indicate that the model is slightly morer

canisotropic than the model. The dispersion and anisot-J
mropy proÐles are very similar to Figure 8 of van Albada

(1982).

7. DISCUSSION

In ° 1 we made an assumption, based on a plausible
picture of di†usion in action space, that A(E) \ constant ; as
discussed in ° 6, the agreement with simulations is encour-
aging. However, the physical picture of mixing without fric-
tion leads to a constant A only if the constraints are hard
and the mixing lasts enough time, two things we cannot lay
down a priori. So the success of the simplest such model
does teach us that this picture is a good Ðrst approximation,
possibly improvable.

We now compare and contrast our approach with two
earlier papers which can be regarded as Ðtting into the same
broad framework of constrained violent relaxation. MTJ
explored DFs with Gaussian and Lorentzian cuto†s in J,
multiplied by an exponential function of E ; thus their
models have one more parameter, a temperature 1/b (cf.
Stiavelli & Bertin 1987). The inÐnite temperature limits of
their models, in common with our sharply cuto† model,J

mhave an asymptotically Ñat N(E) near E\ 0. In order to
obtain an increasing N(E) with the MTJ models, one
requires a negative b. As discussed earlier, our modelr

cgives an increasing N(E) without the need for an exponen-
tial factor. We therefore Ðnd that the model is preferabler

cto the model. We note that even if the cuto† functionJ
m
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C(g) is not as abrupt as given in equation (6), N(E) is
expected to behave in a similar fashion.

SH proposed a kinetic model of the wave-particle inter-
action process, with an associated variational principle ana-
logous to BoltzmannÏs H-theorem, and made a comparison
with their own extensive simulations. Their description of
energy changes occurring by a sequence of kicks is in fact
close to the picture here. We used this to motivate a con-
stant phase space density modulated by a pericenter or
angular momentum cuto† and TremaineÏs incompleteness
factor In contrast, SH assume that the kinetics drives(T

e
/T

r
).

the system to the maximum of its entropy functional.
However, their Boltzmann-like factor contains a negative
temperature (as in the MTJ models), but this equilibrium is
meaningful only in systems for which the density of acces-
sible states decreases rapidly with energy (cf. ° 73 of Landau
& Lifshitz 1980). We suggest that the SH kinetic picture,
with which we are in broad agreement, would not actually
lead to a negative temperature distribution. The more
appropriate physical picture is one of mixing in phase space.

8. CONCLUSIONS AND CAVEATS

We have presented a semianalytic model of violent relax-
ation that includes a new picture of di†usion in phase space
with a novel implementation of the pericenter constraint

and the incompleteness factor. Notions of even a1/T
rpartial thermal equilibrium with Boltzmann-like exponen-

tial factors play no roleÈa property we regard as a virtue in
describing a collisionless system. The rise in the energy dis-
tribution function which such factors (with negative tem-
peratures !) mimicked in earlier work now arises naturally
from the pericenter cuto† in our calculation. The resulting
properties of density, surface brightness, energy distribu-
tion, and anisotropy proÐles are in good agreement with
simulations. The fact that the properties of the models are
parameter free (M and are merely used to normalize) mayr

sbe a considered a virtue, as they demonstrate that the con-
straints explored here seem to capture the essential details
in the case of cold nonrotating collapse. More realistic
systems can be obtained if one deviated from the simplifying
assumptions and comprehensively explored associated
models such as in ° 5, albeit with more param-1/(T

r
] T0)eters. Even though sophisticated numerical codes now exist

to perform N-body experiments, semianalytic models help
in understanding their output. They also have the advan-
tage of Ðtting simulations and observed galaxies reasonably
well. Possible directions of future work include a more
detailed comparison of our models with numerical simula-
tions, investigations of stability, and extension to axisym-
metric systems.

APPENDIX A

THE E3@2 MODEL WITH PERICENTER CUTOFF

We have carried out a detailed study of models with the Ðrst factor in equation (3), chosen to be E3@2, with both kinds off0,cuto†, viz., pericenter and angular momentum. Existing work by MTJ uses a Gaussian rather than sharp cuto† in angular
momentum. The pericenter cuto† has not been implemented previously, and ° 3 gives some details to enable the interested
reader to see how the sharply cuto† models are constructed, and other details of its properties along with comparisons to
simulations can be found elsewhere (Mangalam & Sellwood 1999). As a Ðrst approximation and the simplest model, we
consider the distribution function with a sharp pericenter cuto† at Then the integral in ° 3.1 can be written asf0\E3@2, r

c
.

I0(r ; E3@2)\ 1

J2r2
P
0

Je2
dJ2
P
0

B(r,J2)
dEE3@2([E] B)~1@2

\ n
J8

([')3 . (A1)

Similarly, the integral

I~(r ; E3@2) \ n
J8

E
*
3 , (A2)

but where is the lower limit to J2 andJ
*
2

K~(r ; E3@2) \ n
J8

A
['[ J

m
2

2r2
B3

, (A3)

where is the lower limit to J2. Now the ““ ] ÏÏ integral works out to beJ
m
2

I
`
(r ; E3@2)\ 1

r2
P
0

E*
dEE3@2{J(['[E)2r2[ J2|

Jp2
~(E`'c)r2c

\ n
J8

E
*
3
A
1 [

Sr2[ r
c
2

r2
B

. (A4)
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FIG. 12.ÈSolution for the potential in the model is shown in the Ðgure in units of 0.265 where is the unit of radiusE3@2[ r
c

GM/r
c
, r

c

Gathering all the integrals in I, deÐned above and equation (12), and absorbing the numerical factor into a positive constant
K, PoissonÏs equation can be written as

1

r2
d
dr

('@r2)\ K
4
5
6
0
0

['3 , r ¹ r
c

[(r2[ r
c
2)~5@2/r]('r2[ '

c
r
c
2)3[ '3 , r [ r

c
.

(A5)

This model is a polytrope of index 3 for and we recover the standard results for a distribution function of the form E3@2r \ r
c
,

without the pericenter cuto† (see Binney & Tremaine 1987, eq. [4-108c]). For the contribution to the density isr [ r
c
,

dominated more by orbits with largely radial velocities and the Ðrst of the terms limits the orbits to those which have angular
momenta less than the bound speciÐed by In the limit of the right-hand side of equation (A5) for vanishes asA2. r

c
\ 0, r [ r

cexpected. We now scale the radius by j \ r/m and the potential by a \ '/h, similar to scalings employed for the polytrope
problem (with the di†erence that we have the normalization constant K) and obtain the following relations

Ka2j2\ 1 , (A6)

GM/(ja)\ a 4 [
P
0

mcm2h3dm [
P
mc

=m[[(m2[ m
c
2)~5@2(hm2[ h

c
m
c
2)3] mh3]dm , (A7)

where a is a geometric factor that depends on the solution. Here we pick [so that and K \j/r
c
\ m

c
\ 1 a \ GM/ar

c(a/GM)2] such that the cuto† radius in these units is unity and it simpliÐes the task of Ðnding the solution. This model has two
parameters, the total mass M and the cuto† radius and a unique solution can be found from the resulting equation, wherer

c
,

h
c
\ h(1)4 h1

1

m2
d
dm

(h@m2)\ 4
5
6
0
0
[h3 , m ¹ 1
M[(m2[ 1)~5@2]/mN(hm2[ h1)3[ h3 , m [ 1 ,

(A8)

with the boundary conditions

h@(0)\ 0 , h(O) \ 0 . (A9)

The former is a consequence of an implicit assumption of a nonexistence of a central point mass, and the latter boundary
condition is enforced to be consistent with the distribution vanishing at E\ 0. It is interesting to study thef0\E3@2 D 1/T

rasymptotics of this model by changing to a convenient variable u \ 1/m. For u \ 1, we obtain

u4h@@(u)\ (h [ h1 u2)3(1[ u2)~5@2 [ h3 . (A10)

As r ] O or near u \ 0, we can expand in powers of u to obtain

u4h@@(u)/h12 \ [3u2h2] 3hu4] (5/2)h3u2 [ u6] O(u7) , (A11)

where which leads to the following solution of h(u) near u \ 0 :h \ h/h1,

h(u)\ c1 u [ (3/2)c12 h12 u2] O(u3) , (A12)

where since or h ] [au. As a result the density, o, in units of asymptotically behaves asc1\ a/h1 '][GM/r
c
u M/r

c
3

o \ u4h@@(u)\ h13M[3c12 u4] [3c1[ 9c12 h12] (5/2)c13]u5N] O(u6) . (A13)
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Hence, as r ] O, o P r~4. Now the radius beyond which the leading term dominates, which we call the break radius, is
deÐned as

r
b
^ r

c

K 1
c1

] 5
6

c1[ 3h12
K

. (A14)

Next we solve equations (A8) and (A9). It is convenient to use Lane-Emden solutions in the region (0¹ m ¹ 1) and use
equation (A10) in the region 1[ u º 0, with the boundary condition h(u \ 0)\ 0. A sufficiently accurate solution for the
region 0¹ m ¹ 1 can be obtained by power series expansions. The solution up to order 12 given in terms of the well depth

can be obtained from power series expansions. Using that solution for a trial well depth, h(u \ 1), andh(0)\ h0 h0,h@(u \ 1)\ [h@(m \ 1) are calculated and equation (A10) is numerically integrated to h(u \ 0). A value of for which theh0,boundary condition h(u \ 0)\ 0 is satisÐed, is determined iteratively. This occurs for

h0\ [0.821, h@(u \ 1)\ [0.15264, h(u \ 1)\ [0.737234 (A15)

and the corresponding h(m) is shown in Figure 12. Note that for this solution, a \ 3.38.
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