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ABSTRACT
We investigate whether it is possible to study perturbatively the transition in cosmological clustering

from a single-streamed Ñow to a multistreamed Ñow. We do this by considering a system whose
dynamics is governed by the Zeldovich approximation (ZA) and calculating the evolution of the two-
point correlation function using two methods, (1) distribution functions and (2) hydrodynamic equations
without pressure and vorticity. The latter method breaks down once multistreaming occurs whereas the
former does not. We Ðnd that the two methods yield the same results to all orders in a perturbative
expansion of the two-point correlation function. We thus conclude that we cannot study the transition
from a single-streamed Ñow to a multistreamed Ñow in a perturbative expansion. We expect this conclu-
sion to hold even if full gravitational dynamics (GD) is used instead of ZA.

We use ZA to look at the evolution of the two-point correlation function at large spatial separations,
and we Ðnd that, until the onset of multistreaming, the evolution can be described by a di†usion process
in which the linear evolution at large scales is modiÐed by the rearrangement of matter on small scales.
We compare these results with the lowest order nonlinear results from GD. We Ðnd that the di†erence is
only in the numerical value of the di†usion coefficient, and we interpret this physically.

We also use ZA to study the induced three-point correlation function. At the lowest order of nonlin-
earity, we Ðnd that, as in the case of GD, the three-point correlation does not necessarily have the hier-
archical form. We also Ðnd that at large separations the e†ect of the higher order terms for the
three-point correlation function is very similar to that for the two-point correlation, and in this case too
the evolution can be described in terms of a di†usion process.
Subject headings : cosmology : theory È galaxies : clusters : general È large-scale structure of universe È

methods : analytical

1. INTRODUCTION

The inviscid hydrodynamic equations without pressure and vorticity (herafter the HD equations) are often used to describe
the evolution of disturbances in an expanding universe Ðlled with collisionless particles that interact only through Newtonian
gravity. The disturbances that are usually considered are such that, initially, all the particles at any point have the same
velocity, i.e., it is a single-streamed Ñow. Such a situation is correctly described by the HD equations. As the disturbances
evolve, the particle trajectories intersect and there are particles with di†erent velocities at the same point, i.e., the Ñow becomes
multistreamed. When this occurs, the HD equations are no longer valid. This is because the HD equations neglect the local
stress tensor associated with the moments of the velocity about the mean velocity at a point.

The BBGKY hierarchy of equations obeyed by the distribution functions can be used instead of the HD equations. The
distribution functions keep track of the position and velocity of the particles, and these equations are valid even if multi-
streaming occurs. The question we would like to address in this paper is whether we can study the e†ects of multistreaming by
using distribution functions perturbatively to follow the evolution of the disturbances.

We examine the perturbative evolution of the density-density two-point correlation function for Gaussian initial conditions
in a universe with )\ 1. The perturbative expansion of this function using the HD equations has been studied by many
authors In a recent paper hereafter we have(Juszkiewicz 1981 ; Vishniac 1983 ; Fry 1994). (Bharadwaj 1996, Paper II),
calculated the lowest order nonlinear term for the two-point correlation function using the moments of the BBGKY
hierarchy. These equations are based on the distribution functions and are valid even in the multistreamed regime. The two
di†erent methods of calculation (HD and BBGKY) are found to yield the same result at the lowest order of nonlinearity, and
hence, to this order, distribution functions have not been able to capture any e†ect of multistreaming. In this paper, we
investigate whether, by going to higher orders of perturbation theory, we shall be able to study any e†ects of multistreaming
or if it is a limitation of perturbation theory that it cannot follow the transition from a single-streamed Ñow to a multi-
streamed Ñow.

Because of the difficulty in calculating the higher order terms in a perturbative treatment of gravitational dynamics (GD),
we look at a simpler system in which we use the Zeldovich approximation (ZA) to determine the motion of(Zeldovich 1970)
the particles. In this situation too the transition from a single-streamed Ñow to a multistreamed Ñow occurs, and we can
analyze it to see whether, in a perturbative calculation using distribution functions, we can include any e†ects of multi-
streaming that would be missed if the HD equations were used instead.
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In we discuss the evolution equations. In we use distribution functions to calculate the evolution of the two-point° 2, ° 3,
correlation function. In we perform the same calculation using the HD equations and compare the result with that° 4,
obtained in ° 3.

& Couchman have studied the evolution of the two-point correlation function using ZA, and the calculationBond (1988)
presented in is on similar lines. In a more recent paper, & Bartlemann studied the evolution of the power° 3 Schneider (1995)
spectrum in ZA. For a comprehensive article on various aspects of ZA, the reader is referred to the review by &Shandarin
Zeldovich (1989).

In we investigated the lowest order nonlinear correction (using GD) to the two-point correlation for initial powerPaper II,
spectra of the form P(k)P kn at small k and an exponential or Gaussian cuto† at large k. We found that, for 0 \ n ¹ 3, the
numerical results for the nonlinear correction to the two-point correlation function at large x could be Ðtted by a simple
formula. We also interpreted this formula in terms of a simple di†usion process. In of this paper, we investigate the° 5
evolution of the two-point correlation function at large separations using ZA and compare it with the results from GD.

In we look at the evolution of the induced three-point correlation function using ZA. This was Ðrst calculated for GD° 6,
by who concluded that for power-law initial conditions, at large separations, the three-point correlation functionFry (1984),
could be described by the hierarchical form, in which it can be written in terms of products of the two-point correlation
function evaluated at the separations involved. In an earlier paper hereafter we calculated the same(Bharadwaj 1994, Paper I),
quantity and found that these conclusions were not fully correct. We showed that the three-point correlation function at some
length scale depends not only on the two-point correlation at the same length scales but on all smaller scales as well. As a
result we found that the hierarchical form is true for only a class of initial conditions and that there is a class for which it does
not hold. In this paper, we Ðrst calculate the three-point correlation function at the lowest order of nonlinearity for ZA and
compare it to the results from GD. We then go on to study the e†ect of the higher order nonlinear terms at large separations.

The calculations using ZA are valid for any value of but whenever we make comparisons with GD, it is for the speciÐc)0,value )\ 1.
A similar calculation has been performed by & Wise who studied the evolution of skewness of the densityGrinstein (1987),

Ðeld averaged over a Gaussian ball. In addition, & Starobinsky have considered the evolution of the skewnessMunshi (1994)
of the density Ðeld for ZA and various other approximations, and et al. have calculated the evolution of theBernardeau (1994)
skewness of the density Ðeld averaged over top-hat Ðlters. All these calculations have been done at the lowest order of
nonlinearity.

In we present a discussion of the results obtained and the conclusions.° 7,

2. EVOLUTION OF THE DISTRIBUTION FUNCTION

The Zeldovich approximation deÐnes a mapping from the initial position of a particle to its position at any later instant. If
is the comoving coordinate of a particle at any time t, the initial instant being and b(t) the growing mode in the linearxk(t) t0analysis of density perturbations, this mapping is

xk(t) \ xk(t0)] b(t)uk . (1)

The quantity is related to the peculiar velocity at any instant byuk vk(t)

vk(t)\ a(t)
d
dt

xk(t) \ a(t)b5 (t)uk , (2)

where a(t) is the scale factor.
We consider a system of particles whose motion is governed by this mapping. This can be described by a distribution

function f (x, u, t), where f (x, u, t)d3x d3u is the number of particles in the volume d3x around the point x and having a value
of u in an interval d3u around u.

We can see that LiouvilleÏs theorem is true for the mapping deÐned in Using this, we can obtain the equationequation (1).
for the time evolution of the distribution function f,

f (x, u, t)\ f [x [ b(t)u, u, t0] . (3)

We can also use to obtain a di†erential equation for the evolution of the distribution function :equation (1)

L
Lb

f (x, u, b)] uk
L

Lxk
f (x, u, b) \ 0 , (4)

where we use the growing mode b instead of time as the evolution parameter.
We are interested in the evolution of the statistical properties of an ensemble of such systems. Every member of the

ensemble initially has the particles uniformly distributed. Initially each particle can be labeled by its coordinate Thexk.particles are given velocities The velocity Ðeld is the gradient of a function t(x), which for each system is a di†erentuk(x).
realization of a Gaussian random Ðeld. It is assumed that t is statistically homogenous and isotropic. The statistical
properties of the ensemble are initially fully speciÐed by the two-point correlation of t, which is deÐned as /(x) \ St(0)t(x)T,
where the angle brackets denote ensemble averaging.

The statistical quantity whose evolution we shall focus on in this paper is the density two-point correlation function m(x, t).
This is deÐned by the relation

SoT2[1] m(x)]\ So(0)o(x)T , (5)
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where o(x) is the mass density. This is just the number density of particles multiplied by the mass of each particle, which is
assumed to be the same for all the particles.

3. THE TWO-POINT CORRELATION USING DISTRIBUTION FUNCTIONS

In this section, we look at the evolution of the ensemble-averaged two-point distribution function This is deÐned aso2.
o2(x1, x2, u1, u2, t) \ S f (x1, u1, t) f (x2, u2, t)T . (6)

From homogeneity and isotropy, we can also say that

o2(x1, x2, u1, u2, t) \ o(x, u1, u2, t) , (7)

where

xk \ xk2[ xk1 . (8)

The density two-point correlation function is related to the zeroth moment of the two-point distribution function with respect
to u :

SoT2[1] m(x, t)]\
P

o2(x, u1, u2, t)d3u1 d3u2 . (9)

In this paper, we normalize SoT \ 1.
The initial two-point distribution is a Gaussian in the velocities and hence speciÐed by the covariance matrix

T klab(x) \ Suka ulbT(x) \
P

uka ulb o2(x, u1, u2, t0)d3u1 d3u2 , (10)

where a, b take values 1, 2. The initial two-point distribution function then is the Gaussian distribution

o2(x, u1, u2, t0) \
1

(2n)3J*T (x)
exp

C
[ 1

2
uka uka(T ~1)klab(x)

D
, (11)

where *T (x) is the determinant of the covariance matrix. In terms of the potential /, we have

Suk1 ul2T \ [Lk Lk/(x) , Suk1 ul1T \ [13+2/(0)dkl . (12)

We use to obtain the time evolution ofequation (3) o2,
o2(x, u1, u2, t) \ o2[x [ (u2[ u1)b(t), u1, u2, t0] . (13)

This may also be written

o(x, u1, u2, t) \
P

d3Mx@ [ [x [ (u2[ u1)b(t)]No2(x@, u1, u2, t0)d3x@ . (14)

Using the Fourier expansion of the Dirac delta function and we haveequation (11),

o(x, u1, u2, t) \
P A 1

2n
B3

exp [ikk(xk@ [ xk)] exp [ikk(uk2[ uk1)b(t)]
1

(2n)3J*T (x@)
exp

C
[ 1

2
uka uka(T ~1)klab(x@)

D
d3k d3x@ . (15)

Using this in and evaluating the u-integrals, we obtainequation (9)

1 ] m(x, t) \
A 1
2n
B3P

exp [ikk(xk@ [ xk)] exp
C
[ b2(t)

2
kk klFkl(x@)

D
d3x@ d3k , (16)

where

F(x)kl \ [23+2/(0)dkl] 2Lk Lk/(x) . (17)

Computing the k-integral, we obtain the two-point correlation as

1 ] m(x, t) \ 1
(2n)3@2b3(t)

P 1

J*F(x@)
exp

C
[ 1

2b2(t) (xk@ [ xk)(xl@ [ xl)Fkl~1(x@)
D
d3x@ . (18)

Instead of integrating if we do a Taylor expansion ofequation (16),

exp [[12b2(t)kk kl Fkl(x@)]
and then evaluate the k- and the x@-integrals, we obtain

1 ] m(x, t)\ ;
n/0

= b2n
n !

Lk1Ll1 . . . Lkn Lkn
GC

Lk1Ll1/(x) [ dk1l1
+2/(0)

3
D

É É É
C
Lkn Lln /(x) [ dknln

+2/(0)
3
DH

. (19)
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Nowhere above has any assumption been made about the number of streams in the Ñow. obviously has theEquation (18)
e†ects of multistreaming built into it. is what one would obtain if one did a perturbative expansion of theEquation (19)
distribution function and calculated the two-point correlation function. Whether by performing the perturbative analysis in
this way (i.e., using distribution functions) we are able to include the e†ects of multistreaming is what has to be checked.

4. THE TWO-POINT CORRELATION USING THE HYDRODYNAMIC EQUATIONS

In this section, we shall work in the single-stream approximation. We consider any one member of the ensemble described
previously. Its evolution is described by If we take the zeroth moment of this equation with respect to u, using theequation (4).
deÐnitions

o(x, b) \ m
P

f (x, u, b)d3u , o(x, b)vk(x, b)\ m
P

uk f (x, u, b)d3u , (20)

we have the continuity equation

L
Lb

o(x, b) ] Lk[o(x, b)vk(x, b)]\ 0 . (21)

Next, taking the Ðrst moment of and using we haveequation (4) equation (21),

o(x, b)
C L
Lb

vk(x, b) ] vl(x, b)Ll vk(x, b)
D

] m
P

[vl(x, b)[ ul][vk(x, b) [ uk] f (x, u, b)d3u \ 0 . (22)

In the single-stream approximation the last term in the above equation is dropped, and we have

L
Lb

vk(x, b)] vl(x, b)Ll vk(x, b) \ 0 . (23)

We shall use equations and to perturbatively evolve the density and velocity Ðelds of the system. We then take(21) (23)
ensemble averages and use these equations to calculate the two-point correlation function.

Using we can obtain an equation for the Ðrst derivative of the two-point correlation function :equation (21),

L
Lb

MSoT2[1] m(x, b)]N\ [SLk1[o(x1)vk(x1)]o(x2)T [ So(x1)Lk2[o(x2)vk(x2)]T . (24)

Using the normalization SoT \ 1, the above equation may be written

L
Lb

m(x, b)\ [Lk1a1So(1)vk1a1 o(2)T . (25)

We can use equations and to obtain equations for the higher derivatives of the two-point correlation,(21) (23)

Ln

Lbn
m(x, b) \ ([1)nLk1a1 Lk2a2 . . . LknanSo(1)vk1a1 vk2a2 . . . vknan o(2)T . (26)

Next we write the two-point correlation function as a Taylor series in powers of the growing mode b :

m(x, b)\ ;
n/1

= bn

n !
Ln

Lbn
m(x, b)

b/0 . (27)

It should be noted that this allows us to express the two-point correlation function at any instant in terms of the derivatives of
the two-point correlation function at the initial instant. Next, using we obtainequation (26),

m(x, b) \ ;
n/1

= bn([1)n
n !

Lk1a1 Lk2a2 . . . LknanSo(1)vk1a1 vk2a2 . . . vknan o(2)T
b/0 . (28)

Then, using the fact that the initial density is uniform, we can write the two-point correlation function at an arbitrary time in
terms of the initial velocities only, i.e.,

m(x, b) \ ;
n/1

= bn

n !
([1)nLk1a1 Lk2a2 . . . LknanSvk1a1 vk2a2 . . . vknanTb/0 . (29)

In addition, the initial velocity Ðeld is Gaussian, and hence all the odd terms in are zero. We can then write thisequation (29)
equation as

m(x, b) \ ;
n/1

= b2n
(2n) !

Lk1a1Ll1b1 . . . Lknan LlnbnSvk1a1 vl1b1 . . . vknan vlnbnTb/0 . (30)
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For the Gaussian initial velocity Ðeld, we have

Svk1a1 vl1b1 vk2a2 vl2b2 . . . vknan vlnbnT \ ;
P

Svk1a1 vl1b1TSvk2a2 vl2b2T É É É Svknan vlnbnT , (31)

where the sum is over all possible ways of pairing the uÏs.
Using this and the fact that the derivatives are symmetric in all the indices involved, we have for the initial velocity Ðeld

Lk1a1 Ll1b1 . . . Lknan LlnbnSvk1a1 vl1b1 . . . vknan vlnbnT \ (2n) !
n ! 2n

Lk1a1 Ll1b1 . . . Lknan Llnbn(Svk1a1 vl1b1T É É É Svknan vlnbnT) . (32)

This, when used in yieldsequation (30),

m(x, b) \ ;
n/1

= b2n
n ! 2n

Lk1a1 Ll1b1 Lk2a2 Ll2b2 . . . Lknan Llnbn(Svk1a1 vl1b1TSvk2a2 vl2b2T É É É Svknan vlnbnT)
b/0 . (33)

Summing the superscripts . . . over the values 1 and 2 and using the fact that, for the initial velocity Ðeld,a1, b1, , a
n
, b

n

Svka vlbT \
G[13+2/(0)dkl ,
Lka Llb/(x) ,

if a \ b ,
if a D b ,

(34)

we have

1 ] m(x, t)\ ;
n/0

= b2n
n !

Lk1Ll1 . . . Lkn Lkn
GC

Lk1Ll1/(x)[ dk1l1
+2/(0)

3
D

É É É
C
Lkn Lln/(x) [ dknln

+2/(0)
3
DH

. (35)

This is the same as which was obtained by using distribution functions. Thus we see that the perturbativeequation (19),
calculation of the two-point correlation function by use of distribution functions includes no e†ects of multistreaming, and
hence we reach the conclusion that it is not possible to perturbatively follow the transition from a single-streamed Ñow to a
multistreamed Ñow.

5. THE TWO-POINT CORRELATION AT LARGE SEPARATIONS

In this section, we investigate the evolution of the two-point correlation function in the regime in which it can be studied
perturbatively, and we examine the behavior at large separations. The initial conditions for the evolution of the cosmological
correlations may be expressed in terms of the potential /(x) or, equivalently, in terms of the matter two-point correlation in
the linear epoch, m(1)(x, t). The two are related by the equation

m(1)(x, t) \ b2(t)+4/(x) . (36)

Usually, the initial conditions are given in terms of the matter two-point correlation m(1)(x, t) or its Fourier transform
which is the power spectrum. One then has to invert to obtain the potential /(x) and its derivatives. Inb2(t)P1(k), equation (36)

doing so, one has freedom in choosing boundary conditions, and the e†ect of changing the boundary condition is

+2/(x) ] +2/(x) ] C1 , /(x)] /(x) ] 16C1 x2] C2 . (37)

for the two-point correlation function is invariant under these transformations, and we are free to choose anyEquation (19)
boundary condition. For initial conditions under which the integral [or is Ðnite, we can choose/0= m(1)(x, t)x dx /0= P1(k)dk]
the boundary condition We then havelim

x?= +2/(x) \ 0.

Su2T \ [+2/(0)\
P
0

=m(1)(x)x dx . (38)

In addition, if at large x the function is monotonically decreasing and we can then neglectLkLl/(x) LkLl/(x) > (dkl/3)+2/(0),
all but one of the terms that appear in For initial conditions in which the power spectrum has the formLkLl/(x) equation (19).
P(k) P kn at small k and a cuto† at large k, the conditions discussed above are satisÐed for n [ [1. For these cases, we obtain,
for the two-point correlation function at large x,

m(x, t) \ ;
n/0

= b2(n`1)
n !

C[+2/(0)
3

Dn
(+2)n+4/(x) . (39)

Using this, we obtain the lowest order nonlinear correction to the two-point correlation function at large x,

m(2)(x, t) \ 13b2Su2T+2m(1)(x, t) . (40)

In we calculated the same quantity using GD, and we found that, for 0 \ n ¹ 3, at large x the results can be Ðtted byPaper II,
the formula

m(2)(x, t) \ 0.194b2Su2T+2m(1)(x, t) . (41)

We Ðnd that the two equations are very similar, di†ering only in the numerical coefficient. In we also interpretedPaper II
in terms of a simple heuristic model based on a di†usion process. We consider a particular member of theequation (41)



6 BHARADWAJ Vol. 472

ensemble and look at the evolution of the density in volume elements located at separation x from each other. We assume that
the density in each volume element grows according to linear theory and that the volume elements are rearranged randomly
on small scales because of their peculiar velocities. Based on this model, we obtained an equation identical to equation (40).
Thus we see that this model yields an exact description of what happens in ZA at large scales in the regime in which the
perturbative treatment is valid. In ZA, as in our heuristic model, the velocity of the particles is Ðxed whereas, in GD, the
particle velocity changes as evolution proceeds. We believe that this is responsible for the smaller di†usion coefficient for GD
as compared to ZA.

Going back to and writing it in Fourier space, we obtain for the power spectrumequation (39)

P(k, t) \
C

;
n/0

= 1
n !
A[b2k2Su2T

3
BnD

b2P1(k) . (42)

Summing the terms in square brackets, we have

P(k, t) \ exp
A[b2k2Su2T

3
B
b2P1(k) , (43)

which in real space gives us

m(x, t) \ 1

[Jn2L (t)]3
P

0

=
exp

G
[ (x [ x@)2

[4L (t)]2
H
m1(x@, t)d3x@ , (44)

where

L 2(t) \ 13b2(t)Su2T . (45)

The length scale L (t) is the rms deviation of the particles from their Lagrangian (or initial) positions at any time t. We see that
the nonlinear evolution of the two-point correlation function at large x corresponds to a convolution of the linear two-point
correlation with a Gaussian whose width is proportional to L (t). This is consistent with our interpretation of the evolution in
terms of a di†usion process.

For the case in which the initial power spectrum has the form

P1(k) \ Ae~a2k2kn , (46)

using at small k, we have, for the nonlinear power spectrum at small k,equation (39)

P1(k) \ Ae~*a2`L2(t)+k2kn . (47)

Using equations and and the fact that(46) (47)

P
eikxe~b2a2k2P1(k)d3k \ 1

b3`n

P
~=

=
eikx@be~a2k2P1(k)d3k , (48)

we obtain, for the nonlinear two-point correlation function at large x,

m1(x, t) \ M1 ] [L (t)/a]2N~(3`n)@2m2(1)Mx/J1 ] [L (t)/a]2, tN . (49)

This formula relates the nonlinear two-point correlation at some separation x at time t to the linear two-point correlation
at a smaller separation at the same time. Thus, at large x, for small values of the two-point correlation, we have information
being transferred out from the smaller scales to the larger scales.

We next numerically investigate the evolution of the two-point correlation function at large separations for the initial
power spectrum shows the function m(1)(x) versus x. This function, multiplied by the square of theP1(k) \ 0.5e~k2k. Figure 1
scale factor, yields the linear two-point correlation m(1)(x, t). At large x, the function m(1)(x) has a negative sign and a power-law
behavior as x~4. We investigate the evolution of the two-point correlation function at the large separation x \ 10. We do this
using four di†erent approximations :

1. Linear perturbation theory ;
2. Linear theory plus the lowest order nonlinear correction using GD (Paper II) ;
3. The result obtained from summing the whole perturbation series for the ZA with the extra assumptions about the

evolution at large separations made in this section, i.e., equation (49) ;
4. The nonperturbative two-point correlation calculated using ZA (eq. [18]).

This exercise allows us to investigate two di†erent issues. The Ðrst thing that we can check is how well ZA approximates
GD. This can be done by comparing (2) with (3) and (4). In this section, we have made some assumptions about the large-x
behavior of the two-point correlation function and arrived at the di†usion picture for the evolution. We can put these
assumptions to the test by comparing (3) with (4). The results are shown in We Ðnd that all four approximationsFigure 2.
match in the early stages of the evolution. The two-point correlation at this separation is initially negative, and this value
evolves according to linear theory, where it gets multiplied by b2. The di†erent approximations start to di†er as the evolution
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FIG. 1.ÈInitial two-point correlation as a function of separation for the power spectrum P(k) \ 0.5e~k2k

proceeds. The Ðrst thing to note is that they begin to di†er much before m(x, t) D 1, where one would naively expect the
perturbation series to break down. This is a consequence of the nonlocal nature of the nonlinear terms for the two-point
correlation. As discussed in this can be understood fromPaper II, equation (38),

Su2T \
P
0

=m(1)(x)x dx ,

which shows that the nonlinear correction depends on the linear two-point correlation condition at all scales, and the major
contribution to this integral comes from the small scales. The small scales become strongly nonlinear very early in the
evolution, and it is because of this that the nonlinear term starts contributing at large x even when m(x, t) > 1. In all the
approximations (i.e., [2], [3], and [4]), the e†ect of the initial deviation from the linear theory is to make the growth rate faster
than b2(t). In the initial stages, approximations 2, 3, and 4 exhibit qualitatively similar behavior, but as the evolution proceeds
we Ðnd that (4) starts showing a behavior completely di†erent from (2) and (3). We Ðnd that the rapidly decreasing function (4)
slows its decrease and then starts to increase. This is quite di†erent from the behavior of (2) and (3), which continue to
decrease. This di†erence is because of the e†ects of multistreaming. In ZA, the correlations are washed out after multi-
streaming occurs. Until the onset of multistreaming, the di†usion picture (3) matches quite well with the full ZA, i.e., (4). A
comparison of (2), (3), and (4) shows that ZA qualitatively predicts the same behavior as GD, and the quantitative di†erence
may be attributed to the di†erence in the di†usion coefficients. In the case of the actual gravitational dynamics
(nonperturbative), we expect that the results may be di†erent because there the particles will get ““ stuck ÏÏ in bound objects
once multistreaming occurs (e.g., the adhesion model ; Saichev, & Shandarin As a result of this, the meanGurbatov, 1989).



0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

x 10
−4

b(t)

ξ

a

b

c

d

8 BHARADWAJ Vol. 472

FIG. 2.ÈTwo-point correlation at a Ðxed separation x \ 10 as a function of the growing mode b(t) for linear theory (a), linear theory plus lowest order
nonlinear correction using GD (b), nonlinear evolution using ZA and the assumptions made in about the large-x behavior (c), and nonperturbative ZA (d).° 5

square displacement of the particles will be much less than in ZA or in perturbative GD. Although we expect this di†usion
picture to hold for the actual evolution of the two-point correlation function at large x, the perturbative treatment of GD and
also calculations using ZA may overestimate what would be obtained in N-body simulations. Incidentally, the regime treated
here would be difficult to study by use of such simulations since it involves the low-amplitude tail of the two-point correlation
function, which would be limited by the size of the box, and it would require a large dynamical range.

6. THE THREE-POINT CORRELATION FUNCTION

We use ZA to follow the evolution of the N-point correlation function. It is possible to do this nonperturbatively by
following a line of reasoning very similar to that in However, since ZA is a good substitute for gravitational dynamics only° 3.
in the weakly nonlinear regime, we prefer to carry out the investigation perturbatively.

We Ðrst consider the evolution of the ensemble-averaged N-point distribution function This is a generalizationo
N
(xa, ua, t).

of the ensemble-averaged two-point distribution function introduced in and the superscript a refers to the various points,° 3,
i.e., 1, 2, . . . , N, in phase space that are arguments of this function. Using we obtain for the time evolution of thisequation (3),
function

o
N
(xa, ua, t)\ o

N
[xa [ b(t)ua, ua, t0] . (50)
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Expanding this in a perturbative series and using . . . , for n indices that independently take values between 1 and N,a1, a2, a
nand using for n corresponding Cartesian components, we havek1, k2, . . . , k

n

o
N
(xa, ua, t) \ ;

n/0

= ([b)n
n !

uk1a1 uk2a2 . . . uknan Lk1a1 Lk2a2 . . . Lknan oN
(xa, ua, t0) . (51)

For both kinds of indices, the Einstein summation convention holds : all the ai have to be summed over the range 1 to N
whenever they appear twice, and the have to be summed over the three Cartesian components whenever the indices arek

irepeated.
To calculate the N-point correlation function, we take velocity moments of the N-point distribution function :

P
0

=
o
N
(xa, ua, t)d3Nu \ ;

n/0

= ([b)n
n !

Lk1a1 Lk2a2 . . . LknanSuk1a1 uk2a2 . . . uknanT . (52)

All the terms where n is odd are zero, and only the terms with even n contribute. We also have

Suk1a1 uk2a2 . . . uknan ul1b1 ul2b2 . . . ulnbnT \ Suk1a1 ul1b1T É É É Suknan ulnbnT ] permutations . (53)

Using the fact that . . . is symmetric in all the indices, we can add all the permutations to obtain, for the terms withLk1a1 Lk2a2 Lk2na2n
even n,

Lk1a1 Ll1b1 . . . Lknan Llnbn Suk1a1 ul1b1 . . . uknan ulnbnT \ (2n) !
2nn !

Lk1a1 Ll1b1 . . . Lknan Llnbn(T k1l1a1b1 . . . T knlnanbn) . (54)

where is the covariance matrix introduced in generalized for the N-point distribution function.T klab \Suka ulbT ° 3,
Using this in we haveequation (51),

P
0

=
o
N
(xa, ua, t)d3Nu \ ;

n/0

= (b2)n
2nn !

Lk1a1 Ll1b1 . . . Lknan Llnbn(T k1l1a1b1 . . . T knlnanbn) . (55)

In the above equation, for a Ðxed value of n, there will be a term with n pairs where each index is(a1 b1), (a1 b2), . . . , (a
n
b
n
),

independently summed over values 1 to N. Thus, for a Ðxed value of n, the total contribution is a sum of N2n terms, each
corresponding to a di†erent set of values for the position indices. In any one of these N2n terms, there can be two kinds of
pairs :

A. If then is a constant.a
i
\ b

i
, T kiliaibi \ [13dkili+2/(0)

B. If then is a function of the separation between these two points.a
i
D b

i
, T kiliaibi \ Lkiai Lliai /(a

i
, b

i
)

Any of the terms can be represented by a directed graph with N vertices and n edges. The pairs of kind A correspond to an
edge connecting a vertex to itself, and a pair of kind B corresponds to an edge connecting two di†erent vertices The(Fig. 3).
integral then corresponds to a sum of graphs with N vertices and the number of edges going from 0 to/0= o

N
(xa, ua, t)d3Nu

inÐnity.
The quantity d3x1 d3x2 . . . d3xN is the mean number of particles we expect to Ðnd in the volume d3x1 at/0= o

N
(xa, ua, t)d3Nu

x1, in d3x2 at x2, . . . , and in d3xN around xN. This has contribution from the lower (i.e., N [ 1, . . . , 1 point) correla-
tion functions also. The residue when the contributions from the lower correlation functions have been removed is called the
reduced N-point correlation function. Hereafter we shall refer to this as the N-point correlation function. The graphs that do
not connect all N points correspond to functions that do not refer to all N points, and these are the contributions from the

FIG. 3.ÈThe two possible kinds of edges. Type A (left) connects a vertex to itself, and type B (right) connects two di†erent vertices.
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lower correlations. The reduced N-point correlation can be calculated by considering only the connected graphs with N
vertices. The lowest order contribution to the N-point correlation corresponds to the connected graphs with the least number
of edges. These graphs are the tree graphs, and they have N [ 1 edges. The other terms that contribute to the N-point
correlation can be generated by adding more edges to the tree graphs.

We use to calculate the three-point correlation function. The lowest order at which the three-point correlationequation (55)
develops is n \ 2, and this can be written

f(1)(1, 2, 3, t) \ 12b4Lk1a{11Lk2a{12Lk3a{12Lk4a{13(T k1k2a{11a{12T k3k4a{12a{13) , (56)

where and are to be summed over all possible permutations of 1, 2, and 3. corresponds to the onlya11@ , a12@ , a13@ Equation (56)
possible tree graph with three vertices and and two edges anda11@ , a12@ , a13@ (a11@ , a12@ ) (a12@ , a13@ ) (Fig. 4).

Using

Lk+2/(x) \ xk
x3
P
0

=
m(1)(y)y2 dy \ 1

3
xkm(1)(x) , (57)

we have

f(1)(1, 2, 3, t) \ b4
2
C
(1 ] cos2 h

xy
)m(1)(x, t)m(1)(y, t) ] cos h

xy
2
3

d
dx

m(1)(x, t)ym(1)(y, t)

] 2
3

(1 [ 3 cos2 h
xy

)m(1)(x, t)m(1)(y, t) [ 1
3

(1 [ 3 cos2 h
xy

)m(1)(x, t)m(1)(y, t)
D

, (58)

where

x \ xa{12 [ xa{13 , y \ xa{12 [ xa{13 , h
xy

\ xk yk/xy . (59)

This explicitly exhibits the dependence of the lowest order induced three-point correlation function on the initial two-point
correlation function. We see that the three-point correlation depends on both m(1)(x, t) and Thus we see that the smallm(1)(x, t).
scales can inÑuence the three-point correlation at large scales through the quantity The lowest order inducedm(1)(x, t).
three-point correlation function calculated using ZA is very similar to that calculated by studying gravitational dynamics
perturbatively at the lowest order beyond the linear theory the di†erence being only in the numerical factors.(Paper I),

We next calculate the higher order terms that contribute to the three-point correlation function. These are generated by
adding more edges to the tree graphs. Figures and illustrate the simplest cases, where we add only one edge to the tree5 6
graph. Next consider any of the graphs with n [ 2 edges. In these graphs, the tree graph can be embedded in ways. Using(2n )

FIG. 4.ÈTree graph corresponding to the lowest order induced three-point correlation function
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FIG. 5.ÈSome of the graphs corresponding to the contribution to the three-point correlation function at one order beyond the lowest. These graphs are
all obtained by adding edges to the tree graph. This Ðgure shows those cases in which the extra edge connects a vertex to itself.

this in we haveequation (55),

f(1, 2, 3, t)\ ;
n/0

= b2(n`2)
2n`1n !

Lk1a1 Ll1b1 . . . Lknan Llnbn La1a{1La2a{2 La3a{2 La4a{4(T k1l1a1b1 . . . T knlnanbn T a1a2a{1a{2 T a3a4a{2a{3) . (60)

As discussed in the previous section, at large x the contributions from the terms with will dominate, i.e., at the lowesta
i
\ b

iorder, graphs of the kind shown in Thus, at large x, the three-point correlation function may be writtenFigure 5.

f(1, 2, 3, t) \ ;
n/0

= b2n
2nn !

C
[ 1

3
+2/(0)

Dn
(+a1)2(+a1)2 . . . (+an)2m3(1)(1, 2, 3, t) , (61)

where the index indicates at which point the Laplacian acts, and it is to be summed over the values 1, 2, and 3. In Fouriera
ispace, we have

F3(k1, k2, k3, t) \ ;
n/0

= b2n
2nn !

C1
3

+2/(0)
Dn

[(ka1)2] (ka2)2] É É É ] (kan)2]F3(1)(k1, k2, k3, t) , (62)

where is the Fourier transform of the three-point correlation and is the Fourier transform of the lowest orderF3 F3(1)three-point correlation. The terms can be summed to obtain

F3(k1, k2, k3, t) \ exp
G
[ 1

2
b2Su2T

3
[(k1)2] (k2)2 ] (k3)2]

H
F3(1)(k1, k2, k3, t) , (63)

which gives us, in real space,

f(x1, x2, x3, t)\ 1

[J2nL (t)]9
P

exp
C
[ (xa [ ya)2

2L 2(t)
D
f(l)(y1, y2, y3, t)d9y . (64)

Thus, at large separations, the e†ect of including the higher order terms for the three-point correlation function is to convolve
the lowest order induced three-point correlation with a Gaussian of width L (t). As with the two-point correlation function,
this too can be interpreted in terms of a di†usion process.

FIG. 6.ÈSame as but for those cases in which the extra edge connects two di†erent verticesFig. 5,
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7. DISCUSSION AND CONCLUSIONS

We Ðnd that when we calculate the two-point correlation function as a series in powers of the growing mode, we obtain the
same answer as when we perform the calculation by using distribution functions or in the single-stream approximation. Since
the Ðrst method is valid even after multistreaming occurs and the second method breaks down once multistreaming occurs,
once multistreaming has occurred we would expect to obtain di†erent answers from the two methods. But the two results
match to all orders in the expansion parameter. We therefore conclude that, even though these equations are valid in the
multistreaming epoch, if we start from single-streamed initial conditions we cannot perturbatively calculate any e†ect due to
multistreaming, e.g., vorticity or pressure. This limitation arises from the fact that the full two-point correlation function for
ZA, which includes the e†ects of multistreaming, is an exponential in 1/b2. All the derivatives of the function vanish(1/b)e~A@b2
at b \ 0. As a result, if we try to expand this function in a series in powers of b around b \ 0, we Ðnd that coefficients of all the
powers of b are zero. If one considers the power spectrum instead, it is of the form This function can be expressed as ae~ak2b2.
power series in b2, and one might think that it is possible to perturbatively study the e†ects of multistreaming by working in
Fourier space instead of real space. Such a conclusion would be erroneous, as none of the terms in this expansion would have
the e†ects of multistreaming. It would be possible to study the e†ects of multistreaming only if it were possible to sum the
whole series. This point is further illustrated in the Appendix, where we consider a simpler example in which a similar
situation occurs.

& Zeldovich presented a formula for N, the mean number of streams at any point, in a situation in whichShandarin (1989)
the particles are moving in one dimension under ZA. At small b, this formula is of the form where A is aN \ 1 ] e~A@b2,
constant characterizing the initial conditions. If we expand this in powers of b, the coefficients for all the terms are zero, and
we Ðnd that the mean number of streams is 1. This conÐrms that the e†ects of multistreaming cannot be studied per-
turbatively. Although in this analysis we used ZA, we expect this to hold for full gravitational dynamics too, as derived at the
lowest order of nonlinearity in Paper II.

In our comparison of the two-point correlation function at large separations, we Ðnd that the results obtained using ZA are
quite similar to the lowest order nonlinear results obtained using GD and that both can be interpreted in terms of a di†usion
process in which the rearrangement of matter on small scales a†ects the two-point correlation at large scales. In ZA, for an
initial power spectrum with n [ [1, the mean square displacement of the particles from their original positions is
L 2(t)\ b2(t)Su2T, and this makes its appearance in the formula for the nonlinear corrections to the two-point correlation
function obtained using ZA. Interpreting the results from GD in a similar fashion, for an initial power spectrum with n [ 0,
we have L 2(t) D 0.58b2(t)Su2T. In we also considered the case with n \ 0, and for this case we foundPaper II,
L 2(t)D 1.49b2(t)Su2T. The di†erences can be understood in terms of the fact that, in ZA, the particles move along trajectories
calculated using linear GD, whereas, when we take into account nonlinear corrections, the trajectories are modiÐed by tidal
forces. In the equations for the evolution of the two-point correlation function, the tidal force acts through the three-point
correlation function. The tidal force of the third particle (in the three-point correlation) will cause the other two particles to
move toward or away from one another. This e†ect will be strongly dependent on the spatial behavior of the three-point
correlation function. For the cases with n [ 0, the induced three-point correlation has the hierarchical form at large x,
whereas, for the case with n \ 0, the induced three-point correlation does not have this form. We propose that it is because of
this that the e†ect of the tidal forces is di†erent in these two cases and that, in the former, the e†ect of the tidal forces is to
reduce the mean square displacements relative to ZA whereas in the latter case it increases it. Thus, indirectly, it is a diagnostic
of the e†ect of the back-reaction of the three-point correlation function on the pair velocity, which in turn a†ects the
two-point correlation.

We Ðnd that for ZA, at large x, we can sum all terms in the perturbative series, and the nonlinear two-point correlation
function is related to the linear two-point correlation by a convolution with a Gaussian of width PL (t). We also Ðnd that for
special initial conditions in which the power spectrum has a Gaussian cuto† at large k, the evolution at large x can be
described by a simple scaling relation according to which the information propagates outward.

We also Ðnd that this picture based on di†usion provides a good description of the evolution under ZA until the onset of
multistreaming. Based on this, we suggest that the evolution of the two-point correlation function in GD can also be
described by a di†usion process until the onset of multistreaming.

We have calculated the lowest order induced three-point correlation function using ZA, and we Ðnd that it is very similar to
the result obtained using GD; the two di†er only in the numerical factors. We also investigated the e†ect of the higher order
nonlinear terms, and we Ðnd that at large x we can sum the whole perturbation series. We Ðnd that the expression obtained
after taking into account the nonlinear corrections is related to the lowest order three-point correlation function by a
convolution with a Gaussian of width PL (t). This is very similar to the evolution of the two-point correlation function at
large separations. It can be shown that a similar relation holds for the higher correlation functions also, but we do not pursue
this matter in this paper.

The author would like to thank Rajaram Nityananda for his advice, encouragement, and many very useful suggestions and
discussions.

APPENDIX

Consider a Gaussian function of the variable x with standard deviation p. We are interested in the power series expansion
of this function in p around p \ 0. We can do this expansion by taking the Fourier transform of the Gaussian, i.e.,
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1

J2np
e~x2@2p2 \ 1

2n
P

eikxe~k2p2@2dk , (A1)

and then doing a Taylor expansion (convergent) of We then obtaine~k2p2@2.

1

J2np
e~x2@2p2 \ 1

2n
P

eikx ;
n/0

= A
[ 1

2
k2p2

Bn 1
n !

dk , (A2)

which gives us

1

J2np
e~x2@2p2 \ ;

n/0

= 1
n !
A1
2

p2 d2
dx2
Bn

d(x) . (A3)

can also be derived if we take the Gaussian function and directly do a Taylor expansion in p, i.e., without goingEquation (A3)
to Fourier space.

We see that the series expansion is entirely made up of Dirac delta functions and their derivatives, and hence it has nonzero
value only when x \ 0. This should be compared with the original Gaussian function, which has nonzero value even if x D 0.
We see that in this case the Taylor expansion fails to capture an important aspect of the original function, and we can
attribute this to the fact that we are performing the Taylor expansion of a function that is an exponential in 1/p2.

If instead of working in real space we work in Fourier space, we Ðnd that we have to deal with the Taylor expansion of a
function that is an exponential in p2 instead of 1/p2. There is no problem expanding this function in a Taylor series, and one
might be led to think that the limitation of the Taylor expansion in real space can be overcome by going to Fourier space. But
this turns out to be wrong. On comparing equations and we see that each term in the expansion in Fourier space(A2) (A3),
corresponds to some derivatives of a Dirac delta function, and hence it cannot capture any of the e†ects missed if the analysis
is done in real space. These e†ects can be included only if one is able to sum the series in Fourier space and then do the
Fourier transform.

REFERENCES

F., Singh, T. P., Banerjee, B., & Chitre, S. M. 1994, MNRAS,Bernardeau,
269, 947

S. 1994, ApJ, 428, 419 (PaperBharadwaj, I)
1996, ApJ, 460, 28 (PaperÈÈÈ. II)

J. R., & Couchman, H. M. P. 1988, in Proc. Second Canadian Conf.Bond,
on General Relativity and Relativistic Astrophysics, ed. A. A. Coley,
C. Dyer, & T. Tupper (Singapore : World Sci.), 385

J. N. 1984, ApJ, 279,Fry, 499
1994, ApJ, 421,ÈÈÈ. 21

B., & Wise, M. B. 1987, ApJ, 320,Grinstein, 448
S. N., Saichev, A. I., & Shandarin, S. F. 1989, MNRAS, 236,Gurbatov, 385

R. 1981, MNRAS, 197,Juszkiewicz, 931
D., & Starobinsky, A. A. 1994, ApJ, 428,Munshi, 433

P., & Bartlemann, M. 1995, MNRAS, 273,Schneider, 475
S. F., & Zeldovich, Ya. B. 1989, Rev. Mod. Phys., 61,Shandarin, 185

E. T. 1983, MNRAS, 203,Vishniac, 345
Ya. B. 1970, A&A, 5,Zeldovich, 84


