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Recently@K. A. Suresh, Yuvaraj Sah, P. B. Sunil Kumar, and G. S. Ranganath, Phys. Rev. Lett.72, 2863
~1994!# the intensity and polarization features associated with the optical diffraction in chiral smectic-C liquid
crystal were studied in the phase grating mode. In the computations it was found that the diffracted intensity,
as a function of sample thickness, has modulations of different length scales. In this paper, using a perturbative
approach, we show that these modulations are a consequence of a coupling between different orders of
scattering.@S1063-651X~96!07608-8#

PACS number~s!: 42.70.Df, 42.25.Fx, 61.30.2v

The chiral smectic-C liquid crystal~Sm-C* ) has a helical
stack of molecular layers. In each layer the molecules are
uniformly tilted at a constant angle with respect to the layer
normal. The optical periodicity of Sm-C* , in general, corre-
sponds to a 2p rotation of the index ellipsoid. For the light
propagation perpendicular to the twist axis the medium acts
as a one-dimensional phase grating resulting in the diffrac-
tion of light.

An earlier paper@1# presented some experimental and
theoretical studies on the diffraction of light in Sm-C* in this
mode. There the experimentally observed intensity and po-
larization features were accounted for by applying the rigor-
ous theory of Rokushima and Yamakita@2#. The computa-
tions indicated that in any diffraction order there are
modulations in the diffracted intensity as a function of
sample thickness. The period of these modulations depends
on the order of diffraction, geometry of diffraction, and ma-
terial parameters. In this paper, using a perturbation tech-
nique, we show that these modulations are the consequence
of coupling between different orders of scattering.

The Rokushima-Yamakita~RY! theory has been dis-
cussed in detail elsewhere@2,3#. Here we present the theory
briefly. We consider Sm-C* with its twist axis along they
direction. When a linearly polarized plane wave front is in-
cident in thez direction normal to the twist axis, the medium
acts as a one-dimensional phase grating with the grating vec-
tor along they direction. Here we assume the medium to be
infinite in extent in thexy plane and to have a thicknessd in
the z direction. We can write@2,3# Maxwell’s equations in
the form

dC~z!

dz
5 ik0DC~z!, ~1!

where

C~z!5F exhyey
hx

G .

ex , ey , hx , andhy are submatrices of the infinite column
matrix C(z) at any pointz and contain the various Fourier
components of the transverse field. Alsok052p/l, l being
the wavelength of the incident light. The propagation matrix
D is an infinite square matrix@1,3#.

According to the modal analysis of Galatola, Oldano, and
Sunil Kumar@3#, the solution of Eq.~1! is

C~d!5exp~ ik0dD!C~0!5UC~0!. ~2!

Usually it is convenient to writeC(z) in terms of the modes
in the bounding isotropic media. We assume the bounding
region to have the refractive index equal to (n11n2)/2, i.e.,
the mean refractive index of the Sm-C* medium. Heren1
andn2 are the principle values of the local index ellipsoid.
ThenC(z) in these regions can be written as

C~z!5Tf~z!, ~3!

wheref(z) is the column vector containing the strength of
different modes in the isotropic media arranged in a particu-
lar order andT is the matrix having the elementsTl j , which
are thel th component of thej th eigenvector of the bounding
isotropic media. The columns of theT matrix are arranged in
the same order as inf(z). Then, from Eq.~2!, for a sample
of thicknessd we get

f~d!5T21UTf~0!5Sf~0!. ~4!

The matrixS is called the scattering matrix and it can yield
the features of the diffraction pattern. The vectorf(0) is the
sum of the reflected and incident components, whilef(d) is
the transmitted component. Thus we write

f~0!5f r1f i , ~5!

f~d!5f t . ~6!

According to the standard procedure@3#, from Eqs.~4!–~6!
we get

f r5Rf i , f t5Tf i , ~7!

whereR andT are the reflection and transmission matrices,
respectively.
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In Figs. 1~a! and 1~b! we have given the computed inten-
sity of the first-order diffraction in different geometries using
the transmission matrix in Eq.~7!. One can notice that, in
Fig. 1~a! for theHV geometry~i.e., the incident wave with
the TM polarization and the diffracted wave analyzed for the
TE polarization!, the diffracted intensity has fine fringes of
width 4mm with intensity modulation of periods of about 25
and 250mm. For theHH geometry~i.e., the incident wave
with the TM polarization and the diffracted wave also ana-
lyzed for the TM polarization! the periods of the modulation
are 250 and 25mm. Also for theVH geometry@Fig. 1~b!#,
one may again notice such modulations in the intensity. Such
effects are also present in second order. We use a perturba-
tion technique@3# to account for these modulations. This
technique is a simpler but approximate method of computing
the diffracted intensity from the scattering matrixS. In this
procedure we look at the propagation equation for theSma-
trix. To get this propagation equation, we start with Eqs.~3!
and ~1! to get

df~z!

dz
5 ik0Gf~z!, ~8!

wheref(z)5Sf(0) at any pointz andG is a new propaga-
tion matrix. SinceT matrix is independent ofz, G is equal to
T21DT. From Eq.~8! we can get the propagation equation
for the scattering matrixS as

dS

dz
5 ik0GS. ~9!

The matrixG can be written as a sum of its diagonal matrix
G0 and an off-diagonal matrixg. G0 contains the strength of
the zeroth-order Fourier components of the dielectric tensor
of an effective homogeneous anisotropic medium. The ma-
trix g contains the strength of the higher-order Fourier com-
ponents that arises due to thez dependence part of the di-
electric tensor. It may be noticed that, mathematically, the
above equation is rather analogous to the time-dependent
Schrödinger equation@4# wherein2 i /\ is equivalent toik0
and the time evolution is equivalent to the thickness variation
of the grating in thez direction. Based on this analogy, we
use the time-dependent perturbation method of quantum me-
chanics@4# to solve this problem.

The first-, second-, and third-order scattering contribu-
tions to the amplitude of the diffracted light, (ASI

) l j ,

(ASII
) l j , and (ASIII

) l j , from the l th and the j th scattered
waves are given by

~ASI
! l j5 ik0E

0

d

dz exp@ ik0Ej~d2z!#gl jexp~ ik0Elz!,

~10!

~ASII
! l j5~ ik0!

2(
k
E
0

d

dzE
0

z

dz8exp@ ik0Ej~d2z!#gjk

3exp@ ik0Ek~z2z8!#gklexp~ ik0Elz8!, ~11!

~ASIII
! l j5~ ik0!

3(
k

(
m

E
0

d

dzE
0

z

dz8E
0

z8
dz9

3exp@ ik0Ej~d2z!#gjkexp@ ik0Ek~z2z8!#gkm

3exp@ ik0~z82z9!#gmlexp~ ik0Elz9!. ~12!

The summations are over all the scattered waves. The ele-
mentgl j of theg matrix represents the coupling between the
l th and the j th-order diffracted waves.El and Ej are the
eigenvalues of the corresponding waves of a particular po-
larization in the effective homogeneous anisotropic medium.

The matrixg can be treated as a perturbation over the
matrix G0. In our case theg matrix does not explicitly de-
pend onz, so the integrals in Eqs.~10!–~12! can be analyti-
cally solved. They give, respectively, the first-, second-, and
third-order scattering contributions to the amplitude of the
diffracted wave for a particular polarization. Figure
2~a! shows the contributions of different orders
(ASI

,ASII
,ASIII

, . . . ) of perturbations to the intensity of the
first-order diffraction due to the coupling between zeroth-
order diffracted TM and first-order diffracted TE polariza-
tions, respectively (HV geometry!. We see that the first-
order perturbation@ u(ASI

)0H1Vu
2# results only in the fine

modulations of 4 mm. The third-order perturbation
@ u(ASI

)0H1V1(AS II
)0H1V1(ASIII

)0H1Vu
2# leads to modulation

with a larger period of 25mm. Figure 2~b! shows the first-
@ u(ASI

)0H1Hu2# and third- @ u(ASI
)0H1H1(ASII

)0H1H
1(ASIII

)0H1Hu2] order perturbation contributions to the inten-
sity in the first-order diffraction due to the coupling between

FIG. 1. Computed normalized intensityI for the first-order dif-
fraction as a function of sample thickness for~a! theHH andHV
geometries, and~b! the VH andVV geometries. Here, in theHV
andVH geometries one can see modulations of periods 250, 25,
and 4mm. In theHH geometry modulations of periods 250 and 25
mm can be seen. The parameters used in the calculation are pitch
p55 mm, n151.535, n251.715, l50.633 mm, and tilt angle
u518°.
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the zeroth-order TM polarization and the first-order TM po-
larization (HH geometry!. Here we find that the first-order
perturbation contribution corresponds to the modulation of
the 250-mm period and the third-order perturbation has, in
addition, the modulation of the 25-mm period seen in Fig.
1~a! for theHH geometry. For the parameters that we used,
the contributions due to second-order perturbation are not
very different from those due to the first-order perturbation.

We would like to mention that the perturbation technique
does not incorporate the effect of reflectance. However, we
find from the rigorous theory that the reflectance effects are
negligible as can be calculated from the reflection matrix
@Eq. ~7!#. For the material parameters used, our calculations
show that the contribution from diffraction to reflectance is

103 times weaker as compared to transmittance. We also find
that the boundary effects do not alter the scale of the modu-
lations present in the diffracted intensity.

In Fig. 3 we have given the intensities obtained from the
RY theory and the perturbation theory for direct comparison.
One can see that the perturbation calculations are valid only
for thin samples. Also the discrepancy in intensity can be
partly attributed to the fact that in the perturbation theory,
contributions up to third order only have been considered.
However, this technique gives a qualitative understanding of
the modulations in the diffracted intensity obtained from the
rigorous theory.

We are thankful to G. S. Ranganath for many useful dis-
cussions.
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FIG. 2. Normalized intensityI of the first-order diffraction as a
function of sample thickness computed using a perturbation theory
for ~a! the HV geometry and~b! the HH geometry. The full line
represents the contribution from the first-order perturbation and the
dashed line represents the third-order perturbation contribution to
the diffracted intensity. In~a!, a long-dashed line is drawn over the
peaks of the dashed curve as a guide to the eye to show the 25-
mm modulation.

FIG. 3. Comparison of the intensitiesI obtained from the two
theories as a function of sample thickness for~a! theHH geometry
and ~b! the HV geometry. The full line represents the calculation
from the RY theory. The dashed line represents the calculation from
the perturbation theory with contributions up to the third order to
the diffracted intensity.
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