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Dynamics of kinks in smecticC liquid crystals in periodically varying external fields
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We have considered the dynamics of kinks in smeCtiliguid crystal in uniformly rotating and oscillating
electric or magnetic fields. In tilted oscillating fields our results are at variance with those of earlier investi-
gations which predict chaos in this geometry forr &ink. On the other hand, we find that the velocity and the
structure of arr kink are oscillatory with the frequency of the varying field. The average velocity as a function
of the tilt angle of the field indicates a threshold angle beyond which there is a crossover in velocity selection
with the system choosing from a family of solutions. Surprisingly, in a nonoscillating field rotating in a plane
normal to the layers, a kink has a drift velocity whose direction is dependent upon the sense of rotation. As
a result of this, a 2 kink could be in a bound oscillating state or it could split itself into two oppositely drifting
oscillating 7 kinks. In a nonoscillating tilted field rotating about the layer normal, in the synchronous regime
we find an instability of a kink connecting a stable state and a metastable state. In the asynchronous regime, a
kink connecting two stable states has aperiodic motion. Interestingly, in the same geometry in oscillating fields,
we find that a kink joining a stable state and a metastable state is more stable. In this geometry, periodic and
aperiodic fluctuating kink structures are also possible. We have suggested a simple way of understanding the
general dynamical features of a kink on the basis of the dynamics of the uniform director state which is found
to be very sensitive to parameters of the systg91063-651X97)04408-5

PACS numbgs): 61.30.Cz, 61.30.Gd, 03.40.Kf, 75.60.Ch

[. INTRODUCTION cal effects of varying, that is, oscillating and rotating, fields
in these two cases.

Propagation of fronts or domain walls has been studied in A 7 kink which has a topological winding of 180° moves
analyses of reaction-diffusion equations and in physicaliniformly with a constant velocity in a static field applied at
models of different phenomena in fluid dynamics, dendritican angle to the smectic layers. This motion is due to the
growth, population growth, chemical reactions, and othepotential difference between the uniform states. Schiller,
biological modeld1—12]. The nonlinear dynamics of liquid Pelzl, and Demu§l7] obtained an analytical solution which
crystals under the action of external fields has invoked greadescribes a uniformly movingr kink. Recently, Sarloos,
theoretical and experimental interest in this subjég—19.  Hecke, and Holyst[16] solved a similar problem, and
In this context, it may be noted that “solitons” describing Showed that, in a range of parameters, even though the non-
domain walls in liquid crystals are not solitons in the truelinear marginally stable analytical solution is valid, the sys-
sense. They are more in the nature of solitary waves. ThelfM choqses a linear marglnally stable .solutlon ywth a differ-
do not have the essential characteristics of true soliton€Nt VElocity. Such a crossover in velocity selection has been
namely, preservation of shape and momenta on a pairwis® (OPiC Of general interest in recent times6-8,10,16 Un-

collision. This is a consequence of the fact that these ar er a sudden destabili;ation, systems in a wide class of prob-
overdamped systems ems respond by forming a front which propagates from a

In this paper we discuss the dynamics of kinks in astable to an unstable state or a metastable state. The prob-

) Con . lems of interest are whether the front evolves in time into a
smectic€ liquid crystal (SmC) under the action of external

. S . . , kink of a constant, unique speed, and, if so, how the system
fields. A kink is a permitted topological defect in an externalggacts this speed from many possible speeds.

electric or magnetic field. It is in the nature of a nonsingular | is important to know what would happen when the field
wall connecting two uniform states. It is well knoWa3] 5150 has an oscillating component. In this context we must
that these start moving uniformly with a constant velocityecall the work of Stewart, Carlsson, and LediE8,19.
when the potential energy becomes asymmetric. This coul¢hey showed that in an oscillating tilted field, under certain
happen in two different ways. Either the uniform statesassumptions, Melnikov analysis leads to chaotic instabilities
themselves are at different potential energies, or the unifornih 7 kinks. We have reconsidered this geometry in this pa-
states are at the same potential energy but the internal struper, and our analysis leads to a nonchaotic behavior of these
ture of the kink has an asymmetric potential energy. In thekinks. The structure and instantaneous velocity of the kink
first case, the kink connects a stable state to a metastabdee found to be oscillatory at the frequency of the oscillating
state or an unstable state, while in the second case, the kirileld. We find that an average velocity exists whose variation
connects two stable states. We have considered the dynamtith the tilt of the field indicates a crossover in velocity
selection as in the case of the nonoscillating field. In other
words, the structure and velocity of @a kink are not de-
*Electronic address: sreesuku@rri.ernet.in scribed by a single function of the tilt angle.
Electronic address: gsr@rri.ernet.in In a nonoscillating field rotating uniformly in a plane nor-
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mal to the smectic layers, the potential energy varies periodithat the layers are of constant thickness. The projection of
cally in time. Strangely, a kink develops a drift velocity over the directorn onto the smectic planes is denoted by a unit
and above an oscillatory motion, and this drift is dependentectorc also called the director. In an external electric or
on the direction of rotation. A consequence of this is that anagnetic field, kinks or domain walls in thevector field
2 kink would either be in a bound oscillating state or split that do not disturb the layered structure are possible. They
into oppositely drifting oscillatingr kinks depending upon are either twist kinks, or splay-rich or bend-rich kinks. We
the sense of rotation of the field. shall be discussing the dynamics of only twist kinks in this
In a static tilted field rotating about the layer normal, therepaper since they need not be associated with backflow ef-
exist two regime$20]. Below a critical rotational frequency fects. In the case of splay-rich or bend-rich kinks, backflow
we have a synchronous regime in which the uniform stateeffects would have to be considered. We use the continuum
rotates with the rotating field with a constant phase lag, antheory of SnC as developed by Leslie, Stewart, and Naka-
above this frequency we obtain an asynchronous regime igawa[19,22. The free-energy density includes the elastic
which the uniform state rotates with phase slipping. Thisdeformations of the director and the energy density due to
behavior of the uniform state is also very sensitive to the tiltan applied external electric or magnetic field. In this paper
angle of the field. Below a certain rotational frequency, aswe shall describe the effects of a magnetic figldinciden-
the tilt varies continuously from a direction parallel to the tally, electric fields would produce similar results only if the
smectic layers to a direction normal to the layers, we findmaterial is free from ionic impurities.
that if the system is already in the asynchronous regime it In the Cartesian coordinate system, the layer normal is
becomes synchronous at a critical tilt, and remains in thataken along thez axis, that is,a=(0,0,1), and the director
state till the tilt reaches a higher critical value at which itn is
goes back to the asynchronous regime. This is reminiscent of
reentrant behavior. Most theoretical studies to date are on n=(sinfd cosp, sind sing,coY),
kinks in the synchronous state, where a stabler 27 kink
moves with a uniform velocity14,15,2]. Not much atten- Where¢=¢(z,t) is the angle that the director makes with
tion has been paid to the dynamics of such kinks in theheXx axis. The free energy-density is
asynchronous regime. We find that the dynamics of the uni-
form state is helpful in the understanding of the dynamics of F= E
such a kink. In the asynchronous regime, the velocity and 2
structure of the Z kink becomes time dependent. The kink
exhibits a translatory motion superimposed on an oscillatoryvhereBs is the twist elastic constant ang, is the diamag-
motion. Further, due to the phase slipping of the uniformnetic anisotropy of the S@iin the local uniaxial approxima-
states in this regime, the dynamics is aperiodic, and a uniquéon. The dynamical equation is given by
structure is not a permitted state.
In an oscillating field, rotating about the layer normal, the o\ @ __ f ©
behavior of the uniform state is different. A time-averaged 5 ot o9’
rotational frequency of the uniform state can be defined. The
ratio of this rotational frequency to the frequency of the os-where A5 is the twist viscosity coefficient. We consider a
cillating field is a rational number. Also, as the rotational spatially homogeneous magnetic field described by
frequency of the field is varied continuously, the time- _ _
averaged frequency of rotation of the uniform state varies in  H=Ho(a+bcosyt)(cosx coswt, cosr sinwt, sina), (3)
steps. On the basis of this behavior of the uniform state, we . o o
are able to predict qualitatively whether the dynamics of avherey is the angular frequency of the oscillating fieidjs
7 or a 2 kink would be periodic or aperiodic. the angle that the field makes with the layers, ands the
Further, in this geometry, in a nonoscillating field the @ngular frequency of rotation about the layer norraal\Ve
metastable state gradually drifts a little toward the stable oridiscuss the dynamics of twist kinks in the three geometries
entation, and becomes unstable at a critical rotational fredepicted in Figs. @), 1(b), and Xc). In terms of the dimen-
quency even before the onset of asynchronous motion. As $ionless quantitiesr= (x,H§/2\s)t and 5= /x,H§/Bsz,
result, a7 kink gradually unwinds a little and becomes un- the dynamical equatiof®) can be written in the form
stable against a uniform state at this frequency. Interestingly, )
in an oscillating field, these kinks are stabilized even when ﬁ_ ﬂ_ 2
. o . . =—5—(at+bcosyyr)
there is phase slipping, but have a time-dependent topologi- it dn
cal winding. Finally, we discuss the dynamics associated ) : ,
with a lattice of kinks, and find that the behavior of a single X [sing cost sinex cos sin( ¢ — wo7)
Ikl?tk is sufficient to understand the behavior of the entire +5sir?0 coa sin(¢— weT)COS h— wor)],  (4)
attice.

d¢

B -
8\ 9z

2
) —Xa(n'H)z}, ey

where yo=v(t/7) and wy=w(t/7). In this paper, we have
expressed time, distance, velocity and frequen@xésota-
tion and oscillation with these dimensionless quantities.
SmC liquid crystals are layered structures with the meanHencer=t/ty, n=2/2y,wo= wtq,yo= yto and velocity(di-
molecular alignment described by a directottiited at an  mensionless=z,/t, velocity. The characteristic relaxation
angle @ with respect to the layer normal We shall assume time and coherence lengthy and z, are 2)\5/)(aH?J and

Il. THEORY
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B —~——
D —— —
B —— —
n kink ® 21 kink ——= FIG. 1. Schematic representation ofrakink,
_ - a 27 kink, and the three geometries in which the
- -~ dynamics of a kink in an external magnetic field
- - H are considereda) A field tilted at a constant
¢ c angle a with respect to the layers rotating uni-
formly about thez axis, the layer normakb) A
z z nonrotating field at a constant tilt angte with
respect to the layergc) A constant field uni-
H 1 H formly rotating in a planexz, normal to the lay-

ers. In the representation of the kinks, the arrows
indicate the direction of the vector. Inside the
kink, it turns (about thez axis, the direction of
the smectic layer normathrough = or 2.

(a) (b) ©

\/B3/XaH02, respectively. Since our results are independent du o ) )
of the phase of the oscillating field, we shall take it to be g~ ~ @0~ (a+bCosy,7)[sinf cosf sina cosx sinu
zero.
This is an overdamped double sine-Gordon equation, and +sirf 9 cos a sinu codu]. 5)
it is applicable to systems other than SmiWhena=0, Eg.
(4) reduces to the normal sine-Gordon equation describing
nematics in an external field. When# 0, it can be used to In a nonoscillating field §,=0) with «=0, Eq. (5) yields
describe field effects in ferronematics which are usual nemanalytical solutions, but, witlk# 0, the analytical solution is
atics with doped ferromagnetic grains. A variant of E4).  a complicated function. Numerical integration with a fourth-
can describe front propagation in chiral smectic liquid crys-order Runge-Kutta method reveals that the general features
tals [16]. are nearly the same in both these cases. The major difference
We have numerically solved this partial differential equa-js that in the case oft#0, the symmetry of the system
tion by the method of lines using Numerical Algorithms makes the states and (u+2#) equivalent with regard to
Group (NAG) Fortran Library subroutines to study the dy- ineir potential energy, while, in the case ®&0, the states
namics of kinks. We look for kink solutions which necessi- u and (u+ ) are equivalent. In a steady state, the behavior

tate the boundary conditiofig¢/d7],-+ =0, whereL is ¢ o : : o
LT == ) ystem falls in two regimd®0]: (i) the synchronous
the extent of the system in dimensionless units. We hav egime, where the director follows the field with an angle

takenL =1000 with a mesh sizéL =0.1. We first excite a constant in time; andii) the asynchronousegime, where

discontinuous twist in the homogeneous state. This is equiva{here is slip between the field and the director. These two

lent to, numerically, a step function in distortion. Then we =~ " .
study its time evolution to a stable form. For example, to'egimes are demarcated by a critial rotational frequency of

create a propagating=2kink, it is sufficient to have a step of 1€ fieldf, wo=we. In Fig. 2, .Wei show th% cljependhenccra] of
27 at the origin as the initial profile. The shape of the profile ®c 0N« for a givend. Interestingly, at am, below a thresh-

does not alter the asymptotic or late-time results as long a%ld' ?S the tilt angle; increases from zre]ro, we find a tragsp
the net amplitude is large enough. tion from an asynchronous to a synchronous state and at a

still higher « a transition back to an asynchronous state. This
. RESULTS reentrant behavior is characteristic of Sm
. . ) In a tilted nonrotating field¢p=0 is always a stable state,
As mentioned above, kinks can start moving when theand in addition we also find a metastable staté atr exists
potential energy in the externall field becqmes asymmetriqor a<a., a critical value of the tilt. When a field at
An understanding of the dynamical behavior of the uniform, < 4 _rotates about the layer normal, the relative orientation
state helps us considerably in predicting the essential dysf poth these states changes. The stable state shows a mono-
namical features of kinks. Hence we first discuss the dynamgpic variation. However, the metastable state gradually
ics of the uniform state. Afterwards we consider the effectshifis toward the stable state, that is, lower values il at
of a periodically varying magnetic field on kinks connecting 5 critical rotational frequency it switches to the stable state.
a stable state to a metastable state or an unstable state af\is critical frequency is less than the critical frequency at

kinks connecting stable states. In the first case, we shall degjnich asynchronous regime sets in. Figure 3 shows these
with a 7 kink in various geometries and in the latter case, &gatyres.
27 kink will be the chosen representative. In the asynchronous regime, the uniform stable state fol-
lows the field with an angle which is a nonlinear function of
time. At a given rotational frequency of the field, the uniform
In the case of an uniform state, the azimuthal anglestate changes its orientation as depicted in Fig. 4. For long
u=(¢—wyr) between the director and the field obeys theintervals of time, the uniform state remains nearly unper-
ordinary differential equation turbed but, at regular intervals, it suffers a “stick-slip” lead-

A. Uniform state
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Asynchronous © Asynchronous

°

FIG. 2. wy-a diagram depicting the asynchro-

° nous to synchronous transition in a constant field
o 1 Synchronous in the geometry shown in Fig.(d). Below a
threshold rotational frequency, asynchronous to
. synchronous and back to asynchronous transi-
tions are seen as varies from O tor/2 rad. Here

- a=1, andb=0.

0.18

0.08¢4

.
0 0.2 0.4 0.6 0.8 1 1.2 174
¢, (radians)

ing to a phase slip of 2 for a#0; for «=0, this phase slip the uniform state would have rotated, in the frame of refer-
is 7r. This interval is a continuous function afj. ence of the rotating field, by 2m (or =m) for a#0 (or
With an oscillating rotating field, we find that the dynam- «=0). In this case, we can define tpbase-slip frequency
ics of the uniform state is very different from what we ob- w as
tained in a nonoscillating rotating field. In an oscillating
field, we have a regime very similar to the synchronous re- _u(r+nT)—u(r) 27m
gime; here we have the director following the field oscil- w= nT T nT ©
lating about a fixed direction relative to the field. These os-
cillations are at the frequency of the oscillating field. We callwhereT is the period of the oscillating fieldWWe may recall
this thephase-oscillatingegime. The relative mean orienta- here that Jung, Kissner, and htmi [23] described the mo-
tion of the director with respect to the field direction gradu-tion of an overdamped particle in an asymmetric “ratchet”
ally increases a& increases. Above a critical value of the potential in a similar way.Incidentally,w=0 for the phase-
rotational frequencye,, the behavior of the uniform state is oscillating regime. Our numerical analysis indicates thas
rather similar to the already described asynchronous regimalways a rational fraction of the frequency,, of the oscil-
in that there exists a phase slip. We call this fiflmase- lating field with w varying with the rotational frequency,
slipping regime. In the case of the asynchronous regime in avg, as shown in Fig. 5. In Table | we give the valuesnof
nonoscillating field, there is a frequency for phase slip to arand n for different values ofwy. This clearly shows the
equivalent state which varies continuously as one varies thextreme sensitivity o andn to values ofwg. The essential
rotational frequency. However, with an oscillating field, this features for anya, 7y, a, b, and 6 are (i) the steplike
is not the case. We find that the uniform state always rebehavior and(ii) the fact that, for largey,, w varies nearly
sponds in such a way that mcycles of the oscillating field, linearly with wy and the length of steps, if present, is too

................. Metastable

FIG. 3. The variation of the steady-state angle
u (of a uniformly oriented sampléFig. 1(a)])
betweenc andH with rotational frequency. The

1.5T circles and continuous line correspond to the ini-
tial metastable u(7=0)==7 and stable
g u(7=0)=0 states, respectively. The metastable

state becomes unstable and collapses to the stable
state at a critical rotational frequency. Here
a=10° andf= /6 rad.

Steady state orientation, u (radians)

0lp ~ .04 0.06 0.08 0.1 0.12 @ 0.14 0.16
]
Stable
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u (radians)

FIG. 4. Variation of the anglal betweenc
andH as a function of time in the asynchronous
regime [Fig. 1(a)]. We find a sudden jump by
27 at regular intervals. Herea=1, b=0,
wp=0.25, anda=40°.

small to show any departure from linearity. It should belinear marginal-stability regime, the front speed can be cal-
noted that the integers andn are dependent on the param- culated explicitly from perturbation analysis at the leading

eters of the problem.

B. Kinks connecting a stable state to a metastable state
or an unstable state

1. Tilted nonrotating nonoscillating field

In this casdsee Fig. 1b)], yo= wy=0. Equation(4) per-
mits a uniformly movingm kink, described by17]

¢=2tan ‘exd (n—cod sina7)singd cosx].  (7)
The velocityv of the propagating kink is
v =co9 Sina (8

It was recently shown by Sarloos, Hecke, and Holy€]

edge of the front. The deviations from the unstable state are
small, and one can obtain the dispersion equation from the
linearized equations. The velocity obtained from such a lin-
ear marginal-stability analysis, , is given by

v,=2/sing cos sina cosa — sirfd coSa . 9

In the nonlinear marginal-stability regime the front speed
depends on the fully nonlinear behavior of the equation.
Here, they show that Eq8) corresponds to the nonlinear
marginal-stability regime. Equatiori8) and(9) are valid for
O<a=m/2. Similar solutions exist for other values of.
These authors conjecture that there exists multiple stable
traveling-wave solutions satisfying the dynamical equation,

that there can exist two different regimes, which are referredut the system chooses that particular solution which has the
to as linear and nonlinear marginal-stability regimes. In thefastest spatial decay at the leading edge of the front. It is

FIG. 5. Thephase-slip frequency as a func-
tion of the rotational frequency of the field,.
Below a criticalwy= w, we find only the phase-
oscillating regime. Here, a=0.8, b=0.3,
vo=2m/30, «=10°, andf= /6 rad.
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TABLE I. The values ofm andn of w for differentwo. They v in the nonlinear marginal-stability regime, are mutually
are very sensitive to values ab,. The fixed parameters are tangential to one another at the crossover point, which is

a=0.8, b:0.3, 0=ml6 rad,a/:10°, and‘}/:277/30. obtained from the relation

@o m n @o m n cotdtana=2. (12)
0—0.107 0 1 0.271 63 59 It should be noted that such a crossover in velocity selection
0.109 1 7 0.277 305 267 has been predicted only in cases where an analytical solution
0.111 2 9 0.284 169 141 could be obtained.

0.112 1 4 0.291 593 59 5 4 . . _— !

0.115-0.117 1 3 0.299 715 606 13 10 2. Tilted nonrotating oscillating field

0.119 311 800  0.305 363042 4 3 In this case ofwy=0 andyy,#0, Stewart, Carlsson, and
0.122-0.164 1 2 0.335-0.336 3 2 Leslie [18,19 concluded that for a weak slowly oscillating
0.169 3 5 0.349 301 85 11 7 field at a small tilt, the dynamics of & kink exhibits chaos
0.173-0.179 2 3 0.367 657 157 5 3  for certain ranges of the parameters. Their analysis assumes
0.186—0.188 3 4 0.368 337 202 the existence of a uniform moving frame in which the dy-
0.194 4 5 0.383 959 62 7 4  hamical equations reduce to a system of ordinary differential
0.198 5 6 0.430-0.437 2 1 equations. . . o

0.201 6 7 0.438 549 274 We have reconsidered the behavior ofrakink in the
0.205 8 9 0.637 665 oo Same geometry. The range of different parameters is
0.214-0.269 1 1 0.638 3 1 2m/2048< 'yO$27T, 0°$a$850, 10°< 0$80°, 0$a$1,

0<b=1. We have also considered the domain of param-
eters, viz. a=1, b=0.1, 6=30°, «=5°, and yy=n/150,

such a crossover in velocity selection that has been the topi€/125, and@/100, in which Stewart, Carlsson, and Leslie

of discussion in recent times. The interest has been in equ&redicted chaos. _ _ _
tions of the type We are interested in the long-time or asymptotic features

in the dynamics of ar kink. To characterize the dynamics of
28 the entire kink, we followed the time evolution of three
—=F1(Byyr ... )+F(P), (100  “marked” states, of thee director, in thew kink. They are at
at ¢=l4, w2, and 3r/4 . The distance betweeb= 7/4 and

37/4 is a measure of the width of the kink. In Fig. 7, we give
whereF, is a linear function of the spatial derivatives of the time evolution of the three “marked” states. We find the
B, andF, is a nonlinear function of8. We shall not discuss instantaneous velocity at any point of the kink and the kink
the various conjectures put forward to explain the phenomwidth to be periodic in time in all the cases we considered.
enon of velocity selection. In Fig. 6, we show the depen-The motion is asymmetric in space, since the three
dence of the velocity of ar kink on «, for §=30° as given “marked” states behave differently. The frequency of the
by Egs.(8) and(9). We have also given our numerical results kink’s structural pulsations and that of the velocity modula-
obtained by studying the evolution of a step for the sake ofion of the “marked” states are equal to the frequency of the
comparison. It should be noted that the curves for velocityoscillating field whera+ 0, and twice it whera=0. Figure
v, in the linear marginal-stability regime, and the velocity 8 shows six “snapshots” of the motion of the entire kink. It

Ve
0.81 -7
- TS
35 ”/6,( ° S vl
S 0.6 ) # “
> ﬁ FIG. 6. Velocity of am kink as a function of
o ° the tilt, @, of the field. Long dashed curve corre-
/" sponds to the velocity in the nonlinear marginal
0.41 stability regime and the short dashed curve cor-
o I responds to the velocity, in the linear marginal
// f stability regime. The circles are obtained from the
g / numerical solution of Eq(4). Here 6= /6 rad.
0.24
/p/
06 52 011 3 ) 1 )

o (radians)
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3n
39 . ¢ = e
A
)
3
0}
= 37t
fe}
&
P o =% FIG. 7. Time evolution of the “marked”
Ny [T sttt states = /4 (O), /2 (+), and 3/4 (O), of
M o P et a 7 kink in a tilted oscillating field[Fig. 1(b)].
g ’ Here a=b=0.5, «=20°, yy=2m, and
i 0= /6 rad.
Z}' 34+
8
33 o :IL
MW°M%WGO 4
,90009000000000000%°
327 (00999006000000000°™
200 201 202 203 204 205
T
depicts all the above-mentioned features. relevance at this point is whether, approaches the “dc

In an oscillating field, too, it is relevant to know whether limit” as one goes to the limity;—0. At y,=0, our time-
there is a crossover in velocity selection due to the systeraveraged velocity is certainly an ill-defined quantity, and,
choosing from families of solutions. There is no simple wayhence, such a limit is not meaningful. This is analogous to
of obtaining an analytical solution. Further, methods em-the behavior of a charged particle in an oscillating field
ployed in the linear marginal-stability analysis do not work, where the average velocity is zero for any finite frequency.
since perturbations at the leading edge of the front shoul&uch an average does not go to the limit of nonzero velocity
have time-dependent frequency and spatial decay. As a firsthen the frequency goes to zero. The breakdown of the de-
attempt in understanding this problem, we inspect the variafined average velocity can be ascribed to the fact that the dc
tion of a time-averaged kink velocity with the tilt angle limit is a bifurcation point separating periodic behavior from

In view of the periodicity in the dynamics ofa kink, we  nonperiodic behavior. We find that, quickly approaches a
define anaverage velocity , for every statep; at », on the  fixed asymptotic valuey,, which we call theroot-mean-

kink as squareor rms velocity It can be seen that, is nearlyv, at
vo~2. In all the cases considered by us, we have found
i(7+T)— (1) that this velocity is given by either of the two following
Va1 - (12) equations:

Since the kink pulsates with the frequengy=2=/T, v, is
unique for the entire kink. In Fig. 9, we show the dependence
of v, on vy, at fixed values of, b, 6, anda. A question of

b2

2
a’+ —
2

1/2
coY sina (13

r_
U, =

3

¢ (radians)
o

N

FIG. 8. “Snapshots” of ar kink at different
times 7= 200 (1), 220 (+), 240 (O), 260 (¢),
280 @, and 300 B). Here
a=b=0.5, «a=20°, y,=27x/100, and 6= /6
rad.
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0.2021

w 02T FIG. 9. Average velocity of ar kink as a
function of frequencyyy, of oscillating field[Fig.
0.198] ° 1(b)]. Here,a=0, b=1, «=20°, 6= /6 rad.
0.196 T
0.194 -°
04192"0
0.19t% N
] 1 2 3 4 5 [
%
or Our analysis raises an important question about the veloc-

ity selection in systems more general than that described by

2\ 1/2 > . i
i ol a2, 9 - - — Eqg. (10). Our results indicate that this phenomenon might
vr=2{at 2 Vsing cos sina cosa =i’ § cos occur in a broader class of physical systems obeying
(14
These are akin to Eq$8) and (9). In Fig. 10, we show ,
versusa for yo=2 for values ofa, b, and 6. It can be p
seen that there is a close agreement between the numerically 2t = CGa1(Bzz, - - )+ Go(L ), (15

calculated points and the analytical curves. This can be taken

as an indication that in the case of oscillating fields also,

there is a crossover in velocity selection. In this case, too, the

system seems to be choosing an unique solution from famiwhere G, is a linear function of the spatial derivatives of
lies of solutions. As in the analysis of Sarloos, Hecke, and3, andG, is a nonlinear function o8 andtime also To our
Holyst [16], here also the numerically computed velocitiesknowledge, this is the first indication of a system choosing
are slightly below the ones predicted by Ety) in the linear  between families of fronts which are not uniformly traveling,
marginal stability regime, and this is possibly due to slowthat is, 8(z,t)=U(z—ct), but varying periodically in time.
convergence to the asymptotic value in this regime. For othefhe recent work of Armeret al.[24] considered the effects
values ofy, also,v, has a similar dependence anbut we  of external noise in a one-dimensional model of front propa-

could not fit an analytical function. gation is an example of a system described by ##§).
0.51 v T
0 ‘ ,f'//{‘n d\.u a s
,,urjf?";/ FIG. 10. Average velocity of ar kink as a

function of the tilt« in an oscillating field Fig.

P 1(b)]. The long dashed curve corresponds{o

A and the short dashed curve corresponds to
’ 7 The boxes are from the numerical solution of Eq.

0.l / (4). The numerical results agree with below

” ; the threshold tilt angle given by Ed11l) and

’ / above that it agrees withv;. Here

a=b=0.5, y,=2m, and 6= /6 rad.

N

) 0.2 0.4 6.6 0.8 1 1.2

O (radians)
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FIG. 11. “Snapshots” of ar kink in a field
uniformly rotating in the anticlockwise direction.
L, [Fig. 1(c)]. The snapshots are at the times
7=300 (-), 305 (+), 310 (O), 315 (¢), and
320 @). The = kink fluctuates periodically with
a frequency of 2r/10. The kink drifts such that

¢ (radians)

T1.5
the state¢p=m expands at the expense of the
state =0. For clockwise rotation, the drift is
1, such that the stat¢=0 expands at the expense
of the state d=r. Here
a=1, b=0, a=er, € =27/20, and 8==/6
rad.
+0.5
BT 30 15 o0 )
n
3. Nonoscillating field rotating in a plane normal to the layers 1. Tilted nonrotating oscillating field
Here[see Fig. 1c)] we haveb=0, wy=0, anda=e€r, We studied the effects of a tilted nonrotating oscillating

wheree is the rotational frequency of the field. We find that field, [see Fig. 1c)], on a 27 kink. The kink is stationary, as

the structure and velocity of @ kink oscillates with a fre- is to be expected from pure symmetry considerations, since
quency equal to & But the surprising result is that there is the base states are at the same potential energy and the po-
an average drift velocity for the kink. In Fig. 11, “snap- tential energy is symmetric about the center of the kink. The
shots” of the motion of ar kink are shown. Since E¢4) is  structure changes periodically with time. The variations are
invariant under the transformatiop— (7~ @), €e~>—¢€,  symmetric about the center. The state= is stationary,

we know that the drift would be in the opposite direction if 5nq the average velocity of any other state is also zero.
the direction of rotation of the field is reversed. We do find

that for an anticlockwise rotation, i.es>0, the kink propa-
gates such that the stafe= 7 expands at the expense of the
state¢p=0. For a clockwise rotation, i.e<0, it is the state At any givena, a 2 kink is a permitted static solution
¢ =0 that expands at the expense of the sater. We also  when the field is nonrotating and nonoscillating. We consid-
find that the drift velocity of the kink tends to zero as ered the stability of a 2 kink in the geometry of Fig. (£). A
increases. 27 kink always splits whenp= 7 becomes a metastable
state. In view of what has been said earlier, for clockwise
rotation, the individual pulsatingr kinks drift toward one
We found in Sec. Ill A that in this geometrjsee Fig. another. Hence we end up with a bound oscillating nk
1(a)], the uniform metastable state drifts toward the stablestate. On the other hand, for anticlockwise rotation, the indi-
state as the frequency of the rotation increases. But, at gigyal pulsatings kinks drift apart leading to a complete

critical value of the rotational frequency,, it collapses to  splitting of the 2r kink state. These are depicted in Figs.
the stable state. This result helps us to understand the dynamgy(g) and 12b).

ics of a kink connecting a stable state to a metastable state as
obtained by solving Eq). These structures are simulated
by the evolution of an initial step of height. Referring to
Fig. 3, we can say that these structures can exist with nearly Figure Xa) describes the geometry under discussion. In
the same topological winding of up to a rotational fre- this case, we find the following results.
quencyw, at which it suddenly becomes unstable and un- Synchronous regimdn the synchronous regime the po-
winds into an uniform state since the metastable state bdential difference between the two base states of a kink is a
comes unstable. Interestingly, in an oscillating field, the constant, and a uniformly moving kink exists. tBker and
kink is not ironed out to the uniform state even in the phasetandauer21] showed that the kink velocity monotonically
slipping regime. But the nonintegral topological winding increases as the rotational frequengytends to the critical
number becomes time dependent. value w, at which asynchronous motion sets in. In Fig. 13,
we show a variation of the kink velocity with for a given
0 and for three different values afy. The kink velocity goes

In this section, we bring out the dynamical effects of athrough a minima asy is increased. Our data have been
periodically varying magnetic field on ar2kink. It should  given only up to the onset of the asynchronous regime. It is
be noted that the results can be extended to the caserof aknown that the direction of kink propagation is dictatady
kink whena=0. by the sense of rotation of the external field.

2. Nonoscillating field rotating in a plane normal to the layers

4. Tilted field rotating about the layer normal

3. Nonoscillating field rotating about the layer normal

C. Kinks connecting stable states
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Asynchronous regimaA/e already described the dynami- qualitatively, that a 2 kink in the asynchronous regime has
cal behavior of the uniform state in the asynchronous regimehe following features:
There is a time scale over which the variationuois small, (i) On long-time scales, the center of the kink at
and theru experiences a “stick-slip” over a short interval of [U(7)—u(—%)]= drifts in either direction.
time as depicted in Fig. 4. Due to this, the structure of the (i) Even on a time scale df=5000, i.e., the asymptotic
kink becomes time dependent. One can expect a nearly un@ long-time limit, the kink does not seem to have a uniform
formly moving kink during the time in which the angle made ve_IOC|t_y or width. Due to the effects of a natural f|_n|te re_la?(-
by the uniform state with the field is hardly perturbed. In the@tion time of the director and because of the rapid variation
time interval in which the uniform state experiences thedu€ t0 the stick-slip, the width and velocity are aperiodic in
stick-slip, kink features like width and velocity can be ex- iMe-
pected to change rapidly. Thus the structure of thekink
would have an oscillatory motion superimposed on a trans-
latory motion. These features are depicted in Fig. 14, which We have seen that the dynamics of the uniform state in
shows the time evolution of the three “marked” positions this geometnfsee Fig. 1a)], is characterized by the pair of
[u(n)—u(—o)]=m/2, 7, and 37/2 of the kink. Within = numbers {n,n) describing the phase-slip frequeneyIn the
the range of our numerical investigation, we can concludelight of these observations on the uniform state, we naturally

4. Oscillating field rotating about the layer normal
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= FIG. 13. Velocity of a 2r kink as a function
[ . . .
> - ° of the tilt « in geometry of Fig. la). Here
0.27 a=1, andb=0, and,wy=0.01 (©O), 0.1 (),
e, . ° and 0.2 ().
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expect the structure and dynamics of kinks to be time deper8#/2 . The width of the soliton is taken to be the distance
dent. We have not been able to determine quantitatively theetweenu,,= /2 andu,,=37/2 states. In Figs. X8 and
general characteristics of this state. We address ourselves 1&(b), we show the features of a kink which correspond to
the behavior of a kink in the phase-oscillating regime 0  values of (n,n)=(1,2) and (m,n)=(1,1), respectively. The
and the phase-slipping reginve#0. We shall discuss how different periodicities are clearly evident. In the numerical
sensitively the dynamics of a2 kink depend upon the pa- technique of the method of lines, we find that the accuracy

rameters of the geometry. Also, we shall quantitatively estiwith which the system of ordinary differential equations are
integrated forward in time should be much greater in the case

mate the direction of kink propagation.
We find in the phase-oscillating regime, the structure andvherew+ 0 than the case wherg=0.

width of the 27 kink fluctuates with the period of the For those values oiv at which there does not exist a
oscillating field. This can be considered as a consequence @fell-defined periodicity, we find that the behavior of the
the fact that the uniform state follows the field oscillating kink does not depend on the fractiom'n but rather onn.
with a time periodT about a direction fixed relative to the We have seen an oscillatory behavior fon,()=(5,1), but
field. an aperiodic behavior fom§,n)=(13,10). The dynamics of
We now consider the phase-slipping regime. For certairsuch 27 kinks with an aperiodic behavior is similar to its
values ofw, there again exists a fluctuating kink structure butdynamics in the asynchronous regime. In this case we ob-
with a periodicity equal toT. To visualize the dynamics of serve that afterr=nT, the structure does not return to its
a 2 kink, we have employed the scheme of following the original state. If observed over long-time scales, the kink
“marked” states atu,=[u(%)—u(—=)]=mx/2, =, and width increases gradually.

? \:%
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The last question we would like to address is whether wegation reverses as changes byr/2 (or ). This can be
can determine the direction of propagation of & Rink in  easily understood. The orientation of the base states deter-
the cases where there exists a periodic behavior. From thmine the region within the kink that is at a higher potential
cases we considered, we find that the answer is not as simpémergy. Once we obtain this, we know that the states of
as in the synchronous regime in a nonoscillating field. Comiower potential energy would then propagate into the higher
pare Figs. 1) and 1%b) for which «=10° anda=20°, potential states. When there is phase slipping, there will be
respectively, and for which the only parameter varied is theperiods of nearly constant motion and periods of stick-slip
tilt. We do see that the direction of kink drift in Fig. & is  during which the structure, direction of propagation, and ve-
opposite to what is indicated in Fig. @. We can determine locity changes rapidly. We define an average azimuthal angle
the direction of drift in a simpler way for these cases whereu,, of the uniform state by
the kink fluctuates periodically. enT

A kink moves because its internal structure breaks the ITS u(r)dr
spatial symmetry of the potential energy. In the frame of V=" 7 - (16)
reference of the rotating field, the azimuthal anglthat the
uniform director makes with the field decides the direction ofHere n still defines the number of cycles of the oscillating
propagation. Wherr=0 (or «#0), the direction of propa- field after which the uniform state reaches an equivalent state
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as defined byw. Even if there is phase slipping, if the kink
fluctuates periodically, we find that when=0 (or a#0),
the direction of kink propagation reverseswag changes by
/2 (or 7). For the cases considered in Figs.(d5and
15(b), we obtainu,/27=—0.5135 andu,/27=—0.3707,
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IV. CONCLUSION

In a nonrotating oscillating field tilted with respect to the
layer normal of a Si@ liquid crystal, we show that the struc-
ture, width, and instantaneous velocity ofr&ink fluctuates
with the period of the oscillating field. The dependence of

respectively. Hence, by solving the ordinary differentialthe average velocity of the kink on the tilt angle of the field

equation(5), we obtainu,,, from which the direction of drift
can be obtained.

5. Lattice of kinks

indicates that there is velocity selection, and that the system
is possibly choosing between families of solutions. When a
nonoscillating field is rotated in a plane normal to the smec-
tic layers, am kink has a nonzero drift velocity which de-
pends upon the sense of rotation. In this geometry it is also
found that a 2r kink could be in a bound oscillating state or

In an oscillating field, a knowledge of the dynamics of agplit into oppositely driftingw kinks depending upon the
single kink is sufficient to predict the behavior of a lattice of girection of the rotation of the field. In an oscllating field
kinks. Equivalent states behave identically. In cases whergotating about the layer normal, we find that the motion of
the single kink is a uniformly traveling front, or where its the kinks can be predicted to a large extent by studying the
structure pulsates, we find that the lattice also behaves thdynamics of the uniform state. In a nonoscillating field, in
same way. In the asymptotic limit, the distance betweerthe asynchronous regime, the kink fluctuates aperiodically
equivalent states is a constant, while the distance betweesith a slow migration. In an oscillating field, kink motion is
nonequivalent states vary periodically with time. In the asyn-basically decided by a phase-slip frequency which varies dis-
chronous regime or in the equivalent phase slipping, the becontinuously with the frequency of rotation of the field. Its
havior of the lattice is nothing but that of a single kink with dynamics has both periodic and aperiodic features, being

equivalent states behaving identically.

very sensitive to the parameters of the geometry.
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