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Dynamics of kinks in smectic-C liquid crystals in periodically varying external fields

Sreejith Sukumaran* and G. S. Ranganath†

Raman Research Institute, Sadashivanagar, Bangalore 560080, India
~Received 14 February 1997!

We have considered the dynamics of kinks in smectic-C liquid crystal in uniformly rotating and oscillating
electric or magnetic fields. In tilted oscillating fields our results are at variance with those of earlier investi-
gations which predict chaos in this geometry for ap kink. On the other hand, we find that the velocity and the
structure of ap kink are oscillatory with the frequency of the varying field. The average velocity as a function
of the tilt angle of the field indicates a threshold angle beyond which there is a crossover in velocity selection
with the system choosing from a family of solutions. Surprisingly, in a nonoscillating field rotating in a plane
normal to the layers, ap kink has a drift velocity whose direction is dependent upon the sense of rotation. As
a result of this, a 2p kink could be in a bound oscillating state or it could split itself into two oppositely drifting
oscillatingp kinks. In a nonoscillating tilted field rotating about the layer normal, in the synchronous regime
we find an instability of a kink connecting a stable state and a metastable state. In the asynchronous regime, a
kink connecting two stable states has aperiodic motion. Interestingly, in the same geometry in oscillating fields,
we find that a kink joining a stable state and a metastable state is more stable. In this geometry, periodic and
aperiodic fluctuating kink structures are also possible. We have suggested a simple way of understanding the
general dynamical features of a kink on the basis of the dynamics of the uniform director state which is found
to be very sensitive to parameters of the system.@S1063-651X~97!04408-5#

PACS number~s!: 61.30.Cz, 61.30.Gd, 03.40.Kf, 75.60.Ch
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I. INTRODUCTION

Propagation of fronts or domain walls has been studie
analyses of reaction-diffusion equations and in phys
models of different phenomena in fluid dynamics, dendr
growth, population growth, chemical reactions, and ot
biological models@1–12#. The nonlinear dynamics of liquid
crystals under the action of external fields has invoked g
theoretical and experimental interest in this subject@13–19#.
In this context, it may be noted that ‘‘solitons’’ describin
domain walls in liquid crystals are not solitons in the tr
sense. They are more in the nature of solitary waves. T
do not have the essential characteristics of true solito
namely, preservation of shape and momenta on a pairw
collision. This is a consequence of the fact that these
overdamped systems.

In this paper we discuss the dynamics of kinks in
smectic-C liquid crystal ~SmC) under the action of externa
fields. A kink is a permitted topological defect in an extern
electric or magnetic field. It is in the nature of a nonsingu
wall connecting two uniform states. It is well known@13#
that these start moving uniformly with a constant veloc
when the potential energy becomes asymmetric. This co
happen in two different ways. Either the uniform stat
themselves are at different potential energies, or the unif
states are at the same potential energy but the internal s
ture of the kink has an asymmetric potential energy. In
first case, the kink connects a stable state to a metas
state or an unstable state, while in the second case, the
connects two stable states. We have considered the dyn
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cal effects of varying, that is, oscillating and rotating, fiel
in these two cases.

A p kink which has a topological winding of 180° move
uniformly with a constant velocity in a static field applied
an angle to the smectic layers. This motion is due to
potential difference between the uniform states. Schil
Pelzl, and Demus@17# obtained an analytical solution whic
describes a uniformly movingp kink. Recently, Sarloos,
Hecke, and Holyst@16# solved a similar problem, and
showed that, in a range of parameters, even though the
linear marginally stable analytical solution is valid, the sy
tem chooses a linear marginally stable solution with a diff
ent velocity. Such a crossover in velocity selection has b
a topic of general interest in recent times@4,6–8,10,16#. Un-
der a sudden destabilization, systems in a wide class of p
lems respond by forming a front which propagates from
stable to an unstable state or a metastable state. The p
lems of interest are whether the front evolves in time into
kink of a constant, unique speed, and, if so, how the sys
selects this speed from many possible speeds.

It is important to know what would happen when the fie
also has an oscillating component. In this context we m
recall the work of Stewart, Carlsson, and Leslie@18,19#.
They showed that in an oscillating tilted field, under certa
assumptions, Melnikov analysis leads to chaotic instabilit
in p kinks. We have reconsidered this geometry in this p
per, and our analysis leads to a nonchaotic behavior of th
kinks. The structure and instantaneous velocity of the k
are found to be oscillatory at the frequency of the oscillat
field. We find that an average velocity exists whose variat
with the tilt of the field indicates a crossover in veloci
selection as in the case of the nonoscillating field. In ot
words, the structure and velocity of ap kink are not de-
scribed by a single function of the tilt angle.

In a nonoscillating field rotating uniformly in a plane no
1791 © 1997 The American Physical Society
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1792 56SREEJITH SUKUMARAN AND G. S. RANGANATH
mal to the smectic layers, the potential energy varies peri
cally in time. Strangely, a kink develops a drift velocity ov
and above an oscillatory motion, and this drift is depend
on the direction of rotation. A consequence of this is tha
2p kink would either be in a bound oscillating state or sp
into oppositely drifting oscillatingp kinks depending upon
the sense of rotation of the field.

In a static tilted field rotating about the layer normal, the
exist two regimes@20#. Below a critical rotational frequency
we have a synchronous regime in which the uniform st
rotates with the rotating field with a constant phase lag,
above this frequency we obtain an asynchronous regim
which the uniform state rotates with phase slipping. T
behavior of the uniform state is also very sensitive to the
angle of the field. Below a certain rotational frequency,
the tilt varies continuously from a direction parallel to th
smectic layers to a direction normal to the layers, we fi
that if the system is already in the asynchronous regim
becomes synchronous at a critical tilt, and remains in t
state till the tilt reaches a higher critical value at which
goes back to the asynchronous regime. This is reminisce
reentrant behavior. Most theoretical studies to date are
kinks in the synchronous state, where a stablep or 2p kink
moves with a uniform velocity@14,15,21#. Not much atten-
tion has been paid to the dynamics of such kinks in
asynchronous regime. We find that the dynamics of the u
form state is helpful in the understanding of the dynamics
such a kink. In the asynchronous regime, the velocity a
structure of the 2p kink becomes time dependent. The kin
exhibits a translatory motion superimposed on an oscillat
motion. Further, due to the phase slipping of the unifo
states in this regime, the dynamics is aperiodic, and a un
structure is not a permitted state.

In an oscillating field, rotating about the layer normal, t
behavior of the uniform state is different. A time-averag
rotational frequency of the uniform state can be defined. T
ratio of this rotational frequency to the frequency of the o
cillating field is a rational number. Also, as the rotation
frequency of the field is varied continuously, the tim
averaged frequency of rotation of the uniform state varies
steps. On the basis of this behavior of the uniform state,
are able to predict qualitatively whether the dynamics o
p or a 2p kink would be periodic or aperiodic.

Further, in this geometry, in a nonoscillating field th
metastable state gradually drifts a little toward the stable
entation, and becomes unstable at a critical rotational
quency even before the onset of asynchronous motion. A
result, ap kink gradually unwinds a little and becomes u
stable against a uniform state at this frequency. Interestin
in an oscillating field, these kinks are stabilized even wh
there is phase slipping, but have a time-dependent topol
cal winding. Finally, we discuss the dynamics associa
with a lattice of kinks, and find that the behavior of a sing
kink is sufficient to understand the behavior of the ent
lattice.

II. THEORY

SmC liquid crystals are layered structures with the me
molecular alignment described by a directorn tilted at an
angleu with respect to the layer normala. We shall assume
i-
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that the layers are of constant thickness. The projection
the directorn onto the smectic planes is denoted by a u
vectorc also called thec director. In an external electric o
magnetic field, kinks or domain walls in thec vector field
that do not disturb the layered structure are possible. T
are either twist kinks, or splay-rich or bend-rich kinks. W
shall be discussing the dynamics of only twist kinks in th
paper since they need not be associated with backflow
fects. In the case of splay-rich or bend-rich kinks, backfl
effects would have to be considered. We use the continu
theory of SmC as developed by Leslie, Stewart, and Nak
gawa @19,22#. The free-energy density includes the elas
deformations of thec director and the energy density due
an applied external electric or magnetic field. In this pap
we shall describe the effects of a magnetic fieldH. Inciden-
tally, electric fields would produce similar results only if th
material is free from ionic impurities.

In the Cartesian coordinate system, the layer norma
taken along thez axis, that is,a5(0,0,1), and the director
n is

n5~sinu cosf,sinu sinf,cosu!,

wheref5f(z,t) is the angle that thec director makes with
the x axis. The free energy-density is

F5
1

2FB3S ]f

]z D 2

2xa~n•H!2G , ~1!

whereB3 is the twist elastic constant andxa is the diamag-
netic anisotropy of the SmC in the local uniaxial approxima-
tion. The dynamical equation is given by

2l5

]f

]t
52

dF

df
, ~2!

where l5 is the twist viscosity coefficient. We consider
spatially homogeneous magnetic field described by

H5H0~a1b cosgt !~cosa cosvt,cosa sinvt,sina!, ~3!

whereg is the angular frequency of the oscillating field,a is
the angle that the field makes with the layers, andv is the
angular frequency of rotation about the layer normal,a. We
discuss the dynamics of twist kinks in the three geomet
depicted in Figs. 1~a!, 1~b!, and 1~c!. In terms of the dimen-
sionless quantities,t5(xaH0

2/2l5)t and h5AxaH0
2/B3z,

the dynamical equation~2! can be written in the form

]f

]t
5

]2f

]h2 2~a1b cosg0t!2

3@sinu cosu sina cosa sin~f2v0t!

1sin2u cos2a sin~f2v0t!cos~f2v0t!#, ~4!

whereg05g(t/t) and v05v(t/t). In this paper, we have
expressed time, distance, velocity and frequencies~of rota-
tion and oscillation! with these dimensionless quantitie
Hencet5t/t0 ,h5z/z0 ,v05vt0 ,g05gt0 and velocity~di-
mensionless! 5z0 /t0 velocity. The characteristic relaxatio
time and coherence length,t0 and z0 are 2l5 /xaH0

2 and
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FIG. 1. Schematic representation of ap kink,
a 2p kink, and the three geometries in which th
dynamics of a kink in an external magnetic fiel
H are considered.~a! A field tilted at a constant
angle a with respect to the layers rotating uni
formly about thez axis, the layer normal.~b! A
nonrotating field at a constant tilt anglea with
respect to the layers.~c! A constant field uni-
formly rotating in a planexz, normal to the lay-
ers. In the representation of the kinks, the arrow
indicate the direction of thec vector. Inside the
kink, it turns ~about thez axis, the direction of
the smectic layer normal! throughp or 2p.
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2, respectively. Since our results are independ

of the phase of the oscillating field, we shall take it to
zero.

This is an overdamped double sine-Gordon equation,
it is applicable to systems other than SmC. Whena50, Eq.
~4! reduces to the normal sine-Gordon equation describ
nematics in an external field. WhenaÞ0, it can be used to
describe field effects in ferronematics which are usual ne
atics with doped ferromagnetic grains. A variant of Eq.~4!
can describe front propagation in chiral smectic liquid cr
tals @16#.

We have numerically solved this partial differential equ
tion by the method of lines using Numerical Algorithm
Group ~NAG! Fortran Library subroutines to study the d
namics of kinks. We look for kink solutions which neces
tate the boundary condition,@]f/]h#h56L50, whereL is
the extent of the system in dimensionless units. We h
takenL51000 with a mesh sizedL50.1. We first excite a
discontinuous twist in the homogeneous state. This is equ
lent to, numerically, a step function in distortion. Then w
study its time evolution to a stable form. For example,
create a propagating 2p kink, it is sufficient to have a step o
2p at the origin as the initial profile. The shape of the profi
does not alter the asymptotic or late-time results as long
the net amplitude is large enough.

III. RESULTS

As mentioned above, kinks can start moving when
potential energy in the external field becomes asymme
An understanding of the dynamical behavior of the unifo
state helps us considerably in predicting the essential
namical features of kinks. Hence we first discuss the dyn
ics of the uniform state. Afterwards we consider the effe
of a periodically varying magnetic field on kinks connecti
a stable state to a metastable state or an unstable stat
kinks connecting stable states. In the first case, we shall
with a p kink in various geometries and in the latter case
2p kink will be the chosen representative.

A. Uniform state

In the case of an uniform state, the azimuthal an
u5(f2v0t) between the director and the field obeys t
ordinary differential equation
t

d

g

-

-

-

e
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a

e

du

dt
52v02~a1b cosg0t!2@sinu cosu sina cosa sinu

1sin2u cos2a sinu cosu#. ~5!

In a nonoscillating field (g050) with a50, Eq. ~5! yields
analytical solutions, but, withaÞ0, the analytical solution is
a complicated function. Numerical integration with a fourt
order Runge-Kutta method reveals that the general feat
are nearly the same in both these cases. The major differ
is that in the case ofaÞ0, the symmetry of the system
makes the statesu and (u12p) equivalent with regard to
their potential energy, while, in the case ofa50, the states
u and (u1p) are equivalent. In a steady state, the behav
of the system falls in two regimes@20#: ~i! the synchronous
regime, where the director follows the field with an ang
constant in time; and~ii ! the asynchronousregime, where
there is slip between the field and the director. These
regimes are demarcated by a critial rotational frequency
the field, v05vc . In Fig. 2, we show the dependence
vc on a for a givenu. Interestingly, at anv0 below a thresh-
old, as the tilt anglea increases from zero, we find a trans
tion from an asynchronous to a synchronous state and
still highera a transition back to an asynchronous state. T
reentrant behavior is characteristic of SmC.

In a tilted nonrotating field,f50 is always a stable state
and in addition we also find a metastable state atf5p exists
for a,ac , a critical value of the tilt. When a field a
a,ac rotates about the layer normal, the relative orientat
of both these states changes. The stable state shows a m
tonic variation. However, the metastable state gradu
shifts toward the stable state, that is, lower values off, till at
a critical rotational frequency it switches to the stable sta
This critical frequency is less than the critical frequency
which asynchronous regime sets in. Figure 3 shows th
features.

In the asynchronous regime, the uniform stable state
lows the field with an angle which is a nonlinear function
time. At a given rotational frequency of the field, the unifor
state changes its orientation as depicted in Fig. 4. For l
intervals of time, the uniform state remains nearly unp
turbed but, at regular intervals, it suffers a ‘‘stick-slip’’ lea
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FIG. 2. v0-a diagram depicting the asynchro
nous to synchronous transition in a constant fie
in the geometry shown in Fig. 1~a!. Below a
threshold rotational frequency, asynchronous
synchronous and back to asynchronous tran
tions are seen asa varies from 0 top/2 rad. Here
a51, andb50.
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ing to a phase slip of 2p for aÞ0; for a50, this phase slip
is p. This interval is a continuous function ofv0.

With an oscillating rotating field, we find that the dynam
ics of the uniform state is very different from what we o
tained in a nonoscillating rotating field. In an oscillatin
field, we have a regime very similar to the synchronous
gime; here we have thec director following the field oscil-
lating about a fixed direction relative to the field. These
cillations are at the frequency of the oscillating field. We c
this thephase-oscillatingregime. The relative mean orienta
tion of the director with respect to the field direction grad
ally increases asv0 increases. Above a critical value of th
rotational frequency,vc8, the behavior of the uniform state i
rather similar to the already described asynchronous reg
in that there exists a phase slip. We call this thephase-
slipping regime. In the case of the asynchronous regime
nonoscillating field, there is a frequency for phase slip to
equivalent state which varies continuously as one varies
rotational frequency. However, with an oscillating field, th
is not the case. We find that the uniform state always
sponds in such a way that inn cycles of the oscillating field,
-

-
l

-

e

a
n
e

-

the uniform state would have rotated, in the frame of ref
ence of the rotating field, by 2pm ~or pm) for aÞ0 ~or
a50). In this case, we can define thephase-slip frequency
w as

w5
u~t1nT!2u~t!

nT
5

2pm

nT
, ~6!

whereT is the period of the oscillating field.~We may recall
here that Jung, Kissner, and Ha¨nggi @23# described the mo-
tion of an overdamped particle in an asymmetric ‘‘ratche
potential in a similar way.! Incidentally,w50 for the phase-
oscillating regime. Our numerical analysis indicates thatw is
always a rational fraction of the frequency,g0, of the oscil-
lating field with w varying with the rotational frequency
v0, as shown in Fig. 5. In Table I we give the values ofm
and n for different values ofv0. This clearly shows the
extreme sensitivity ofm andn to values ofv0. The essential
features for anya, g0 , a, b, and u are ~i! the steplike
behavior and;~ii ! the fact that, for largeg0, w varies nearly
linearly with v0 and the length of steps, if present, is to
le

i-

le
able
re
FIG. 3. The variation of the steady-state ang
u „of a uniformly oriented sample@Fig. 1~a!#…
betweenc and H with rotational frequency. The
circles and continuous line correspond to the in
tial metastable u(t50)5p and stable
u(t50)50 states, respectively. The metastab
state becomes unstable and collapses to the st
state at a critical rotational frequency. He
a510° andu5p/6 rad.
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FIG. 4. Variation of the angleu betweenc
andH as a function of time in the asynchronou
regime @Fig. 1~a!#. We find a sudden jump by
2p at regular intervals. Herea51, b50,
v050.25, anda540°.
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t is
small to show any departure from linearity. It should
noted that the integersm andn are dependent on the param
eters of the problem.

B. Kinks connecting a stable state to a metastable state
or an unstable state

1. Tilted nonrotating nonoscillating field

In this case@see Fig. 1~b!#, g05v050. Equation~4! per-
mits a uniformly movingp kink, described by@17#

f52 tan21exp@~h2cosu sinat!sinu cosa#. ~7!

The velocityv of the propagating kink is

v5cosu sina ~8!

It was recently shown by Sarloos, Hecke, and Holyst@16#
that there can exist two different regimes, which are refer
to as linear and nonlinear marginal-stability regimes. In
d
e

linear marginal-stability regime, the front speed can be c
culated explicitly from perturbation analysis at the leadi
edge of the front. The deviations from the unstable state
small, and one can obtain the dispersion equation from
linearized equations. The velocity obtained from such a
ear marginal-stability analysis,v l , is given by

v l52Asinu cosu sina cosa2sin2u cos2a . ~9!

In the nonlinear marginal-stability regime the front spe
depends on the fully nonlinear behavior of the equati
Here, they show that Eq.~8! corresponds to the nonlinea
marginal-stability regime. Equations~8! and~9! are valid for
0<a<p/2. Similar solutions exist for other values ofa.
These authors conjecture that there exists multiple sta
traveling-wave solutions satisfying the dynamical equati
but the system chooses that particular solution which has
fastest spatial decay at the leading edge of the front. I
FIG. 5. Thephase-slip frequency was a func-
tion of the rotational frequency of the fieldv0.
Below a criticalv05vc8 we find only the phase-
oscillating regime. Here, a50.8, b50.3,
g052p/30, a510°, andu5p/6 rad.
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1796 56SREEJITH SUKUMARAN AND G. S. RANGANATH
such a crossover in velocity selection that has been the t
of discussion in recent times. The interest has been in e
tions of the type

]b

]t
5F1~bzz, . . . !1F2~b!, ~10!

where F1 is a linear function of the spatial derivatives
b, andF2 is a nonlinear function ofb. We shall not discuss
the various conjectures put forward to explain the pheno
enon of velocity selection. In Fig. 6, we show the depe
dence of the velocity of ap kink on a, for u530° as given
by Eqs.~8! and~9!. We have also given our numerical resu
obtained by studying the evolution of a step for the sake
comparison. It should be noted that the curves for veloc
v l in the linear marginal-stability regime, and the veloc

TABLE I. The values ofm andn of w for different v0. They
are very sensitive to values ofv0. The fixed parameters ar
a50.8, b50.3, u5p/6 rad,a510°, andg52p/30.

v0 m n v0 m n

0→0.107 0 1 0.271 63 59
0.109 1 7 0.277 305 267
0.111 2 9 0.284 169 141
0.112 1 4 0.291 593 59 5 4
0.115→0.117 1 3 0.299 715 606 13 10
0.119 311 800 0.305 363 042 4 3
0.122→0.164 1 2 0.335→0.336 3 2
0.169 3 5 0.349 301 85 11 7
0.173→0.179 2 3 0.367 657 157 5 3
0.186→0.188 3 4 0.368 337 202
0.194 4 5 0.383 959 62 7 4
0.198 5 6 0.430→0.437 2 1
0.201 6 7 0.438 549 274
0.205 8 9 0.637 665 222
0.214→0.269 1 1 0.638 3 1
ic
a-

-
-

f
y

v in the nonlinear marginal-stability regime, are mutua
tangential to one another at the crossover point, which
obtained from the relation

cotu tana52. ~11!

It should be noted that such a crossover in velocity selec
has been predicted only in cases where an analytical solu
could be obtained.

2. Tilted nonrotating oscillating field

In this case ofv050 andg0Þ0, Stewart, Carlsson, an
Leslie @18,19# concluded that for a weak slowly oscillatin
field at a small tilt, the dynamics of ap kink exhibits chaos
for certain ranges of the parameters. Their analysis assu
the existence of a uniform moving frame in which the d
namical equations reduce to a system of ordinary differen
equations.

We have reconsidered the behavior of ap kink in the
same geometry. The range of different parameters
2p/2048<g0<2p, 0°<a<85°, 10°<u<80°, 0<a<1,
0<b<1. We have also considered the domain of para
eters, viz. a51, b50.1, u530°, a55°, and g05p/150,
p/125, andp/100, in which Stewart, Carlsson, and Lesl
predicted chaos.

We are interested in the long-time or asymptotic featu
in the dynamics of ap kink. To characterize the dynamics o
the entire kink, we followed the time evolution of thre
‘‘marked’’ states, of thec director, in thep kink. They are at
f5p/4, p/2, and 3p/4 . The distance betweenf5p/4 and
3p/4 is a measure of the width of the kink. In Fig. 7, we giv
the time evolution of the three ‘‘marked’’ states. We find th
instantaneous velocity at any point of the kink and the k
width to be periodic in time in all the cases we consider
The motion is asymmetric in space, since the th
‘‘marked’’ states behave differently. The frequency of th
kink’s structural pulsations and that of the velocity modu
tion of the ‘‘marked’’ states are equal to the frequency of t
oscillating field whenaÞ0, and twice it whena50. Figure
8 shows six ‘‘snapshots’’ of the motion of the entire kink.
-

or-

e

FIG. 6. Velocity of ap kink as a function of
the tilt, a, of the field. Long dashed curve corre
sponds to the velocityv in the nonlinear marginal
stability regime and the short dashed curve c
responds to the velocityv l in the linear marginal
stability regime. The circles are obtained from th
numerical solution of Eq.~4!. Hereu5p/6 rad.
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FIG. 7. Time evolution of the ‘‘marked’’
states,f5p/4 (s), p/2 (1), and 3p/4 (h), of
a p kink in a tilted oscillating field@Fig. 1~b!#.
Here a5b50.5, a520°, g052p, and
u5p/6 rad.
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depicts all the above-mentioned features.
In an oscillating field, too, it is relevant to know wheth

there is a crossover in velocity selection due to the sys
choosing from families of solutions. There is no simple w
of obtaining an analytical solution. Further, methods e
ployed in the linear marginal-stability analysis do not wo
since perturbations at the leading edge of the front sho
have time-dependent frequency and spatial decay. As a
attempt in understanding this problem, we inspect the va
tion of a time-averaged kink velocity with the tilt anglea.

In view of the periodicity in the dynamics of ap kink, we
define anaverage velocityva for every statef i at h i on the
kink as

va5
h i~t1T!2h i~t!

T
. ~12!

Since the kink pulsates with the frequency,g052p/T, va is
unique for the entire kink. In Fig. 9, we show the depende
of va on g0 at fixed values ofa, b, u, anda. A question of
m

-
,
ld
rst
a-

e

relevance at this point is whetherva approaches the ‘‘dc
limit’’ as one goes to the limitg0→0. At g050, our time-
averaged velocity is certainly an ill-defined quantity, an
hence, such a limit is not meaningful. This is analogous
the behavior of a charged particle in an oscillating fie
where the average velocity is zero for any finite frequen
Such an average does not go to the limit of nonzero velo
when the frequency goes to zero. The breakdown of the
fined average velocity can be ascribed to the fact that the
limit is a bifurcation point separating periodic behavior fro
nonperiodic behavior. We find thatva quickly approaches a
fixed asymptotic valuev r , which we call theroot-mean-
squareor rms velocity. It can be seen thatva is nearlyv r at
g0;2p. In all the cases considered by us, we have fou
that this velocity is given by either of the two followin
equations:

v r85S a21
b2

2 D 1/2

cosu sina ~13!
FIG. 8. ‘‘Snapshots’’ of ap kink at different
times t5200 ~I!, 220 (1), 240 (s), 260 (L),
280 (h), and 300 (F). Here
a5b50.5, a520°, g052p/100, andu5p/6
rad.
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FIG. 9. Average velocity of ap kink as a
function of frequency,g0 of oscillating field@Fig.
1~b!#. Here,a50, b51, a520°, u5p/6 rad.
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v r852S a21
b2

2 D 1/2

Asinu cosu sina cosa2sin2u cos2a.

~14!

These are akin to Eqs.~8! and ~9!. In Fig. 10, we showva
versusa for g052p for values ofa, b, and u. It can be
seen that there is a close agreement between the numer
calculated points and the analytical curves. This can be t
as an indication that in the case of oscillating fields a
there is a crossover in velocity selection. In this case, too
system seems to be choosing an unique solution from f
lies of solutions. As in the analysis of Sarloos, Hecke,
Holyst @16#, here also the numerically computed velocit
are slightly below the ones predicted by Eq.~14! in the linear
marginal stability regime, and this is possibly due to sl
convergence to the asymptotic value in this regime. For o
values ofg0 also,va has a similar dependence ona, but we
could not fit an analytical function.
ally
en
,
e
i-
d

er

Our analysis raises an important question about the ve
ity selection in systems more general than that describe
Eq. ~10!. Our results indicate that this phenomenon mig
occur in a broader class of physical systems obeying

]b

]t
5G1~bzz, . . . !1G2~ t,b!, ~15!

where G1 is a linear function of the spatial derivatives
b, andG2 is a nonlinear function ofb andtime also. To our
knowledge, this is the first indication of a system choos
between families of fronts which are not uniformly travelin
that is,b(z,t)5U(z2ct), but varying periodically in time.
The recent work of Armeroet al. @24# considered the effect
of external noise in a one-dimensional model of front pro
gation is an example of a system described by Eq.~15!.
q.
FIG. 10. Average velocity of ap kink as a
function of the tilta in an oscillating field@Fig.
1~b!#. The long dashed curve corresponds tov r8,
and the short dashed curve corresponds tov r9.
The boxes are from the numerical solution of E
~4!. The numerical results agree withv r8 below
the threshold tilt angle given by Eq.~11! and
above that it agrees with v r9. Here
a5b50.5, g052p, andu5p/6 rad.
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FIG. 11. ‘‘Snapshots’’ of ap kink in a field
uniformly rotating in the anticlockwise direction
@Fig. 1~c!#. The snapshots are at the time
t5300 ~-!, 305 (1), 310 (s), 315 (L), and
320 (h). Thep kink fluctuates periodically with
a frequency of 2p/10. The kink drifts such that
the statef5p expands at the expense of th
state f50. For clockwise rotation, the drift is
such that the statef50 expands at the expens
of the state f5p. Here
a51, b50, a5et, e 52p/20, and u5p/6
rad.
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3. Nonoscillating field rotating in a plane normal to the layers

Here @see Fig. 1~c!# we haveb50, v050, anda5et,
wheree is the rotational frequency of the field. We find th
the structure and velocity of ap kink oscillates with a fre-
quency equal to 2e. But the surprising result is that there
an average drift velocity for the kink. In Fig. 11, ‘‘snap
shots’’ of the motion of ap kink are shown. Since Eq.~4! is
invariant under the transformationf→(p2f), e→2e,
we know that the drift would be in the opposite direction
the direction of rotation of the field is reversed. We do fi
that for an anticlockwise rotation, i.e.,e.0, the kink propa-
gates such that the statef5p expands at the expense of th
statef50. For a clockwise rotation, i.e.,e,0, it is the state
f50 that expands at the expense of the statef5p. We also
find that the drift velocity of the kink tends to zero ase
increases.

4. Tilted field rotating about the layer normal

We found in Sec. III A that in this geometry@see Fig.
1~a!#, the uniform metastable state drifts toward the sta
state as the frequency of the rotation increases. But,
critical value of the rotational frequency,vc8, it collapses to
the stable state. This result helps us to understand the dyn
ics of a kink connecting a stable state to a metastable sta
obtained by solving Eq.~4!. These structures are simulate
by the evolution of an initial step of heightp. Referring to
Fig. 3, we can say that these structures can exist with ne
the same topological winding ofp up to a rotational fre-
quencyvc8 at which it suddenly becomes unstable and u
winds into an uniform state since the metastable state
comes unstable. Interestingly, in an oscillating field, thep
kink is not ironed out to the uniform state even in the pha
slipping regime. But the nonintegral topological windin
number becomes time dependent.

C. Kinks connecting stable states

In this section, we bring out the dynamical effects of
periodically varying magnetic field on a 2p kink. It should
be noted that the results can be extended to the case ofp
kink whena50.
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1. Tilted nonrotating oscillating field

We studied the effects of a tilted nonrotating oscillati
field, @see Fig. 1~c!#, on a 2p kink. The kink is stationary, as
is to be expected from pure symmetry considerations, s
the base states are at the same potential energy and th
tential energy is symmetric about the center of the kink. T
structure changes periodically with time. The variations
symmetric about the center. The statef5p is stationary,
and the average velocity of any other state is also zero.

2. Nonoscillating field rotating in a plane normal to the layers

At any givena, a 2p kink is a permitted static solution
when the field is nonrotating and nonoscillating. We cons
ered the stability of a 2p kink in the geometry of Fig. 1~c!. A
2p kink always splits whenf5p becomes a metastab
state. In view of what has been said earlier, for clockw
rotation, the individual pulsatingp kinks drift toward one
another. Hence we end up with a bound oscillating 2p kink
state. On the other hand, for anticlockwise rotation, the in
vidual pulsatingp kinks drift apart leading to a complet
splitting of the 2p kink state. These are depicted in Fig
12~a! and 12~b!.

3. Nonoscillating field rotating about the layer normal

Figure 1~a! describes the geometry under discussion.
this case, we find the following results.

Synchronous regime:In the synchronous regime the p
tential difference between the two base states of a kink
constant, and a uniformly moving kink exists. Bu¨ttiker and
Landauer@21# showed that the kink velocity monotonicall
increases as the rotational frequencyv0 tends to the critical
valuevc at which asynchronous motion sets in. In Fig. 1
we show a variation of the kink velocity witha for a given
u and for three different values ofv0. The kink velocity goes
through a minima asa is increased. Our data have be
given only up to the onset of the asynchronous regime.
known that the direction of kink propagation is dictatedonly
by the sense of rotation of the external field.
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FIG. 12. ‘‘Snapshots’’ of the motion of a
2p kink in a field rotating@Fig. 1~c!#, at t5300
(1), 350 (L), 400 (s), and 450 (h). ~a! An-
ticockwise rotation withe52p/20 leads to a
splitting of a 2p kink. ~b! Clockwise rotation
with e522p/20 leads to a bound 2p kink state.
Herea51, b50, a5et, andu5p/6 rad.
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Asynchronous regime:We already described the dynam
cal behavior of the uniform state in the asynchronous regi
There is a time scale over which the variation ofu is small,
and thenu experiences a ‘‘stick-slip’’ over a short interval o
time as depicted in Fig. 4. Due to this, the structure of
kink becomes time dependent. One can expect a nearly
formly moving kink during the time in which the angle mad
by the uniform state with the field is hardly perturbed. In t
time interval in which the uniform state experiences t
stick-slip, kink features like width and velocity can be e
pected to change rapidly. Thus the structure of the 2p kink
would have an oscillatory motion superimposed on a tra
latory motion. These features are depicted in Fig. 14, wh
shows the time evolution of the three ‘‘marked’’ position
@u(h)2u(2`)#5p/2, p, and 3p/2 of the kink. Within
the range of our numerical investigation, we can conclu
e.

e
ni-

s-
h

,

qualitatively, that a 2p kink in the asynchronous regime ha
the following features:

~i! On long-time scales, the center of the kink
@u(h)2u(2`)#5p drifts in either direction.

~ii ! Even on a time scale ofT.5000, i.e., the asymptotic
or long-time limit, the kink does not seem to have a unifo
velocity or width. Due to the effects of a natural finite rela
ation time of the director and because of the rapid variat
due to the stick-slip, the width and velocity are aperiodic
time.

4. Oscillating field rotating about the layer normal

We have seen that the dynamics of the uniform state
this geometry@see Fig. 1~a!#, is characterized by the pair o
numbers (m,n) describing the phase-slip frequencyw. In the
light of these observations on the uniform state, we natur
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FIG. 13. Velocity of a 2p kink as a function
of the tilt a in geometry of Fig. 1~a!. Here
a51, andb50, and,v050.01 (s), 0.1 (L),
and 0.2 (h).
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expect the structure and dynamics of kinks to be time dep
dent. We have not been able to determine quantitatively
general characteristics of this state. We address ourselve
the behavior of a kink in the phase-oscillating regimew50
and the phase-slipping regimewÞ0. We shall discuss how
sensitively the dynamics of a 2p kink depend upon the pa
rameters of the geometry. Also, we shall quantitatively e
mate the direction of kink propagation.

We find in the phase-oscillating regime, the structure a
width of the 2p kink fluctuates with the periodT of the
oscillating field. This can be considered as a consequenc
the fact that the uniform state follows the field oscillatin
with a time periodT about a direction fixed relative to th
field.

We now consider the phase-slipping regime. For cert
values ofw, there again exists a fluctuating kink structure b
with a periodicity equal tonT. To visualize the dynamics o
a 2p kink, we have employed the scheme of following th
‘‘marked’’ states at um5@u(h)2u(2`)#5p/2, p, and
n-
e
to

i-

d

of

in
t

3p/2 . The width of the soliton is taken to be the distan
betweenum5p/2 andum53p/2 states. In Figs. 15~a! and
15~b!, we show the features of a kink which correspond
values of (m,n)5(1,2) and (m,n)5(1,1), respectively. The
different periodicities are clearly evident. In the numeric
technique of the method of lines, we find that the accur
with which the system of ordinary differential equations a
integrated forward in time should be much greater in the c
wherewÞ0 than the case wherew50.

For those values ofw at which there does not exist
well-defined periodicity, we find that the behavior of th
kink does not depend on the fractionm/n but rather onn.
We have seen an oscillatory behavior for (m,n)5(5,1), but
an aperiodic behavior for (m,n)5(13,10). The dynamics o
such 2p kinks with an aperiodic behavior is similar to it
dynamics in the asynchronous regime. In this case we
serve that aftert5nT, the structure does not return to i
original state. If observed over long-time scales, the k
width increases gradually.
f

e
-
.

FIG. 14. A 2p kink in geom-
etry of Fig. 1~a! in the asynchro-
nous regime. Time evolution o
the ‘‘marked’’ states, um5p/2
(s), p (1), and 3p/2 (h). In
the asynchronous regime a 2p
kink with an unique structure is
not permitted. It is seen that th
kink has a translational motion su
perimposed on oscillatory motion
Here a51, b50, v050.2,
a510°, andu5p/6 rad.
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FIG. 15. A 2p kink in geom-
etry of Fig. 1~a!. The time evolu-
tion of the ‘‘marked’’ states
um5p/2, p, and 3p/2 in an os-
cillating field. Herea51, b50.5,
g052p/100, and v050.1. ~a!
a510°, (m,n)5~1,2!. The state
f50 expands at the expense o
the statef5p. The time period
of the oscillating kink ist5200,
i.e., 2T. ~b! a520°, (m,n)5
(1,1). The statef5p expands at
the expense of the statef50. The
time period of the oscillating kink
is t5100, i.e.,T.
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The last question we would like to address is whether
can determine the direction of propagation of a 2p kink in
the cases where there exists a periodic behavior. From
cases we considered, we find that the answer is not as si
as in the synchronous regime in a nonoscillating field. Co
pare Figs. 15~a! and 15~b! for which a510° anda520°,
respectively, and for which the only parameter varied is
tilt. We do see that the direction of kink drift in Fig. 15~a! is
opposite to what is indicated in Fig. 15~b!. We can determine
the direction of drift in a simpler way for these cases wh
the kink fluctuates periodically.

A kink moves because its internal structure breaks
spatial symmetry of the potential energy. In the frame
reference of the rotating field, the azimuthal angleu that the
uniform director makes with the field decides the direction
propagation. Whena50 ~or aÞ0), the direction of propa-
e

he
ple
-

e

e

e
f

f

gation reverses asu changes byp/2 ~or p). This can be
easily understood. The orientation of the base states de
mine the region within the kink that is at a higher potent
energy. Once we obtain this, we know that the states
lower potential energy would then propagate into the hig
potential states. When there is phase slipping, there will
periods of nearly constant motion and periods of stick-s
during which the structure, direction of propagation, and
locity changes rapidly. We define an average azimuthal an
uav of the uniform state by

uav5
*t0

t01nTu~t!dt

nT
. ~16!

Here n still defines the number of cycles of the oscillatin
field after which the uniform state reaches an equivalent s
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as defined byw. Even if there is phase slipping, if the kin
fluctuates periodically, we find that whena50 ~or aÞ0),
the direction of kink propagation reverses asuav changes by
p/2 ~or p). For the cases considered in Figs. 15~a! and
15~b!, we obtainuav/2p520.5135 anduav/2p520.3707,
respectively. Hence, by solving the ordinary different
equation~5!, we obtainuav, from which the direction of drift
can be obtained.

5. Lattice of kinks

In an oscillating field, a knowledge of the dynamics of
single kink is sufficient to predict the behavior of a lattice
kinks. Equivalent states behave identically. In cases wh
the single kink is a uniformly traveling front, or where i
structure pulsates, we find that the lattice also behaves
same way. In the asymptotic limit, the distance betwe
equivalent states is a constant, while the distance betw
nonequivalent states vary periodically with time. In the as
chronous regime or in the equivalent phase slipping, the
havior of the lattice is nothing but that of a single kink wi
equivalent states behaving identically.
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IV. CONCLUSION

In a nonrotating oscillating field tilted with respect to th
layer normal of a SmC liquid crystal, we show that the struc
ture, width, and instantaneous velocity of ap kink fluctuates
with the period of the oscillating field. The dependence
the average velocity of the kink on the tilt angle of the fie
indicates that there is velocity selection, and that the sys
is possibly choosing between families of solutions. Whe
nonoscillating field is rotated in a plane normal to the sm
tic layers, ap kink has a nonzero drift velocity which de
pends upon the sense of rotation. In this geometry it is a
found that a 2p kink could be in a bound oscillating state o
split into oppositely driftingp kinks depending upon the
direction of the rotation of the field. In an oscllating fie
rotating about the layer normal, we find that the motion
the kinks can be predicted to a large extent by studying
dynamics of the uniform state. In a nonoscillating field,
the asynchronous regime, the kink fluctuates aperiodic
with a slow migration. In an oscillating field, kink motion i
basically decided by a phase-slip frequency which varies
continuously with the frequency of rotation of the field. I
dynamics has both periodic and aperiodic features, be
very sensitive to the parameters of the geometry.
ys.
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