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Rotating Bose gas with hard-core repulsion in a quasi-two-dimensional harmonic trap:
Vortices in Bose-Einstein condensates

M. A. H. Ahsan* and N. Kumar†

Raman Research Institute, Sir C. V. Raman Avenue, Bangalore 560080, India
~Received 14 November 2000; revised manuscript received 21 February 2001; published 31 May 2001!

We consider a gas ofN(<15) Bose particles with hard-core repulsion, contained in a quasi-two-dimensional
harmonic trap and subjected to an overall angular velocityV about thez axis. Exact diagonalization of the
n3n many-body Hamiltonian matrix in given subspaces of the total~quantized! angular momentumLz , with
n;105 ~e.g., forLz5N515, n5240 782) was carried out using Davidson’s algorithm. The many-body varia-
tional ground-state wave function, as also the corresponding energy and the reduced one-particle density-
matrix r(r ,r 8)5(mlmxm* (r )xm(r 8) were determined. With the usual identification ofV as the Lagrange
multiplier associated withLz for a rotating system, theLz-V phase diagram~or the stability line! was deter-
mined that gave a number of critical angular velocitiesVci , i 51,2,3, . . . , atwhich the ground-state angular
momentum and the associated condensate fraction, given by the largest eigenvalue of the reduced one-particle
density matrix, undergo abrupt jumps. For a givenN, a number of~total! angular momentum states were found
to be stable at successively higher critical angular velocitiesVci , i 51,2,3, . . . . All the states in the regime
N.Lz.0 are metastable. ForLz.N, the Lz values for the stable ground states generally increased with
increasing critical angular velocitiesVci , and the condensate was strongly depleted. The criticalVci values,
however, decreased with increasing interaction strength as well as the particle number, and were systematically
greater than the nonvariational yrast-state values for theLz5N single vortex state. We have also observed that
the condensate fraction for the single vortex state~as also for the higher vortex states! did not change signifi-
cantly even as the two-body interaction strength was varied over several (;4) orders of magnitude in the
moderately to the weakly interacting regime.
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I. INTRODUCTION

The experimental realization of Bose-Einstein Conden
tion ~BEC! in dilute vapors of ultracold~nanokelvin! alkali
atoms@1–3#, and other systems@4#, trapped in harmonic po
tential wells has qualitatively extended the domain of occ
rence of the quantum fluids@5–7#. Unlike their dense and
strongly interacting, homogeneous~bulk! counterparts, e.g.
liquid 4He, these mesoscopic gaseous systems are d
weakly or moderately interacting, and inhomogeneous—w
controllable density, effective dimensionality, and tuna
atom-atom interactions of either sign@8#. Further, the cre-
ation @10,9# of the vortex states with quantized circulation
externally rotated traps, as also the direct observation
phase coherence effects@11#, have clearly revealed the phas
rigidity characteristic of superfluidity associated with t
BEC. The BEC in a weakly and repulsively interacting dilu
Bose gas~i.e., with the two-bodys-wave scattering length
asc! the mean interatomic spacingn̄21/3, and with the num-
ber of atoms in the condensateN@1) has often been de
scribed macroscopically through the Gross-Pitaevskii eq
tion based on the condensate amplitude as a slowly var
order parameter@6#. Microscopic treatments going beyon
the mean-field approximation and based on many-b
variational wave functions also exist in the literature but
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volve heavy computations@12,13# even for the modest size
of the system (N;10–50). Besides, the existing mean fie
as well as many-body calculations involves only the ‘‘Low
est Landau Level~LLL !’’ single-particle orbitals, with only
the positive sign~with respect to the trap angular velocit

Vêz) of the single-particle angular momentum quantu
numberm. The interatomic repulsion is known to qualita
tively change the ground-state properties of a system
weakly interacting neutral Bose gas~confined in a rotating
harmonic trap! at T50 in two distinct ways@6#. First, it
leads to a depletion of the condensate fraction, which
equal to one for an ideal~noninteracting! Bose gas. Second
it gives a phase rigidity, or stiffness, to the ground-st
many-body wave function. This is responsible for the sup
fluid flow that manifests in the successive appearance of
tices with higher quantized circulations beyond certain cr
cal angular velocitiesVci of the rotating trap. Both these
aspects are well described by the one-particle redu
density-matrixr1(r ,r 8) obtained from theN-body ground-
state wave functionC0(r1 , . . . ,rN) by partial integration, or
tracing out, of theN21 coordinates from theN-body pure
density-matrixC0* (r1 , . . . ,rN)C0(r18 , . . . ,rN8 ). ~It is to be
recalled in passing here that the condensate and the su
fluid fractions are not the same thing. More specifically, e
for the nonrotating ground state of an interacting Bose ga
T50, the condensate fraction is generally less than unity
to depletion while the superfluid fraction, that includes t
condensate as well as the above-the-condensate fractio
exactly equal to unity. Both the condensate, as well as
superfluid fractions, are characterized by the same quant

i-
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M. A. H. AHSAN AND N. KUMAR PHYSICAL REVIEW A 64 013608
mechanical phase whose gradient gives the superfluid ve
ity. Also, both vanish together above the critical temperat
Tc . In fact, it is the condensate that amplifies the effect
even the weakest repulsive interaction, leading to the
sence of single-particle excitation and giving rise to t
phase rigidity.!

In this work, we have studied the effect of the two-bo
repulsive interaction on the condensate fraction, and on
critical angular velocities (Vci , i 50,1,2, . . . ,) for the ap-
pearance of different vortex states for a quasi-tw
dimensional Bose gas confined in a highly anisotropic h
monic trap (vz@v') subjected to an overall rotationV
about thez axis. To this end, we use the many-body var
tional approach and calculate the ground-state energy,
ground-state wave function and the associated one-par
reduced density matrix for different values of the interactio
in given subspaces of the total quantized angular momen
Lz . The many-body variational ground-state wave funct
is obtained through the exact diagonalization of then3n
many-body Hamiltonian matrix~e.g., n5240 782 for Lz
5N515) using Davidson’s algorithm. A distinctive featu
of the present work is that in constructing the many-bo
variational ground-state wave function in a given subsp
Lz ([ the eigenvalue corresponding to thez component of
the total angular momentum operatorL̂ z), we have included,
in the configuration interaction, the one-particle states w
the single-particle angular momentum ([ l̂z) quantum num-
ber m of either sign, as also the higher ‘‘Landau-Leve
~LL !’’ states. One of our main results is the variation of t
critical angular velocityVc1 with the interaction strength
L2[(N21)A2/pasc /az ~the meanings of various symbo
will be given in the next section!, namely, that not only doe
Vc1 decrease with increasingL2, it also stays systematicall
higher than its nonvarional value, e.g., that given by the
lation Vc15v'(12L2/4) for the weakly interacting, dilute
case@14,13,15#. We have also observed that the condens
fraction for the single vortex state withLz5N ~as also for the
higher vortex states! does not change significantly even if th
two-body scattering lengthasc is changed over;4 orders of
magnitude in the moderately to the weakly interacting
gime, namely, fromasc51000a0 to 1a0, where a0 is the
Bohr radius.

This paper is organized as follows. In Sec. II, we pres
our model@18# and bring out, in passing, the mathematic
analogy between the system under study here and the o
well-known systems like in the Landau-Darwin-Fock pro
lem, and argue that in a certain limiting case of interest to
here, it becomes essential to go beyond the lowest Lan
Level ~LLL ! approximation so as to include higher LLs an
with the single-particle angular momentum eigenvaluem
taking both positive as well as negative values in constru
ing the many-body basis functions. Section III describ
briefly the construction of the many-body basis functions a
the determination of the variational ground-state wave fu
tion by diagonalizing the many-body Hamiltonian matrix u
ing Davidson’s algorithm. In Sec. IV, we outline the proc
dure for determining the critical angular velocities for t
entry of the vortices into the system, and the determina
01360
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of the one-particle reduced density-matrix characterizing
vortical state that gives various density profiles. Finally,
Sec. V, we present and discuss our results, and end the p
with a brief conclusion and future plan of work.

II. THE SYSTEM AND THE HAMILTONIAN

We begin by considering a system of interacting, spinle
particles~bosons! confined in an external harmonic potenti
~trap!. The two-body interaction potential is, however, a
sumed to be gaussian in the particle-particle separation.
trap is also subjected to an externally impressed rotatio
an angular velocityV[V ẑ. The Hamiltonian for the system
in a frame corotating with the angular velocityV is

Ĥrot5Ĥ lab2V•L̂ lab,

Ĥ lab5(
i 51

N F 1

2m S \

i
“ i D 2

1
1

2
mv'

2 ~r' i
2 1lz

2zi
2!G

1
1

2

4p\2asc

m S 1

A2ps
D 3

3(
iÞ j

exp2(1/2s2)$(r' i2r' j )
21(zi2zj )

2%, ~1!

with

L̂ z
lab5(

i 51

N

l̂z i
lab5

\

i (
i 51

N

~r i3“ i !z .

The coordinates$r i% and the corresponding canonical m
menta$(\/ i )“ i% refer to the laboratory frame. Here,v' is
the frequency of the harmonic confinement. From now o
wards, we will drop the superscriptlab on the Hamiltonian
Ĥ lab, the total angular momentumL̂ z

lab , the single-particle

angular momentuml̂z
lab , and their respective eigenvalue

and these will always be assumed to refer to the labora
frame unless otherwise specified.

We now make the following assumptions. The confini
asymmetric harmonic potential is highly oblate spheroid
with lz[vz /v'@1, and hence, our confined system is e
fectively quasi-2D with thex-y rotational symmetry; the re
pulsive two-body scattering is dominantly in thes-wave
channel with a scattering lengthasc and 4p\2asc /m having
the dimension of energy3volume. The ranges of the two-
body interaction is small enough compared to the interato
spacing so as to effectively give ad-function interaction po-
tential V(r ,r 8)5(4p\2asc /m)d(r2r 8).

Now, for our N-body variational calculation we need t
construct theN-body basis functions with proper symmetr
Since the system above is rotationally invariant in thex-y
plane, thez component of the total angular momentum (Lz)
is a good quantum number leading to block diagonalizat
of the Hamiltonian matrix into the subspaces ofL̂ z . The
N-body basis functions are, in turn, constructed as lin
combinations of the symmetrized products of a finite num
of single-particle basis-functions, which are chosen to
8-2
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ROTATING BOSE GAS WITH HARD-CORE REPULSION . . . PHYSICAL REVIEW A64 013608
eigenfunctions of the unperturbed single-particle Ham
tonian. With this in mind, let us consider the noninteracti
single-particle Hamiltonianĥ in the rotating frame, which we
now separate into thez and the (x-y)-plane ~commuting!
components,ĥz and ĥ' , respectively:

~2!

The eigensolutions forĥz are

ĥzunz
~z!5enz

unz
~z!,

where

enz
5S nz1

1

2D\vz , nz50,1,2, . . . ,

unz
~z!5A az

Ap2nznz!
e21/2az

2z2
Hnz

~azz!,

and

az5Amvz /\

[ inverse of the longitudinal oscillator length~az!.

Here Hnz
is the Hermite polynomial. The system has be

assumed to be quasi-2D in that there is practically no e
tation along the relatively stifferz axis, and hence, we se
nz50.

Let us now considerĥ' . With V5Vêz and r'5xêx

1yêy ,

~3!

Here, K̂' is the single-particle 2D-harmonic oscillato
Hamiltonian, for which the eigensolutions are known to b

K̂'un,m~r' ,f!5en,mun,m~r' ,f!,

l̂ zun,m~r' ,f!5m\ un,m~r' ,f!,

with
01360
-

n
i-

un,m~r' ,f!5Aa'
2

p

S 1

2
@n2umu# D !

S 1

2
@n1umu# D !

3~r'a'! umue21/2a'
2 r'

2
eimfL1/2(n2umu)

umu ~a'
2 r'

2 !,

where

a'5Amv' /\

[the inverse of the transverse oscillator length~a'!,

and

with

nr50,1,2, . . . , m52`, . . . ,21,0,11, . . . ,1`,

or equivalently,

n50, 1, 2, . . . , m51n, 1n22, . . . ,2n12, 2n.
~4!

HereL (1/2)(n2umu)
umu (a'

2 r'
2 ) is the associated Laguerre polyn

mial. It may be noted in passing that the Hamiltonian in E
~2! can be readily generalized to include a chargeq on the
particle and an external magnetic-fieldB along thez axis. It
then represents the well-known Landau-Darwin-Fo
@16,17# problem in whichz'[A(qB/2m)21v'

2 is now the
frequency for the harmonic confining potential in th
x-y-plane and§[(qB/2m1V) is the cyclotron-rotational
~or the centrifugal! angular velocity about thez axis @18#.
Limiting to nr50 and takingm50,11,12,13, . . . , in Eq.
~4! corresponds to the ‘‘lowest-Landau Level~LLL !’’ ap-
proximation.

Let us examine the centrifugal/mechanical stability of t
above system by rewritingĥ' as

Here, T̂ is clearly a positive-definite operator. It can read
be shown thatÛ is negative definite, null, or positive definite
respectively, as (v'1V)(v'2V) is negative, zero, or posi
tive, respectively@18#.

For Û negative definite, the Hamiltonianĥ'[T̂1Û is un-
bounded from below and there are no stable solutions. T
situation arises forv',V, i.e., when the rotational angula
velocity V becomes larger than the confining harmonic tr
frequencyv' .

For the special case ofÛ null, we havev'5V and the
Hamiltonian reduces toĥ'5K̂'2v' l̂z . This gives rise to a
situation analogous to the Landau problem when the
8-3
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M. A. H. AHSAN AND N. KUMAR PHYSICAL REVIEW A 64 013608
quency for the harmonic confinement is equal to the centr
gal frequency. Settingv'51/2vc , we have the eigenvalu
equation

ĥ'un,m~r' ,f!5~K̂'2v' l̂z!un,m~r' ,f!

5~en,m2m\v'!un,m~r' ,f!,

with

where

nr50,1,2,3, . . . ,

and

m52`•••22,21,0,11,12, . . . ,1`;

or equivalently

N50,1,2,3, . . .

and

m52N,2~N21!, . . . ,22,21,0,11,12, . . . ,1`.
~5!

Each of theN levels, the so-called Landau Levels~LLs!, is
infinitely degenerate corresponding to the infinitely ma
possible values ofm. It is clear from the ordering of the
single-particle energy levels~without interaction! in Eq. ~5!
that the single-particle states with positivem values ~i.e.,
those with the angular momentum parallel to the overall
tational angular velocityV[Vêz) are energetically favored
These states constitute a massively degenerate man
This is the usual rationale for using the positivem values
only, in constructing the variational wave function for th
Landau-like problem. This degeneracy for the special cas
v'5V is, however, lifted by the interparticle interactions

Finally, we consider the physically interesting case ofÛ
positive definite. The single-particle noninteracting Ham
tonian ĥ' , now becomesĥ'5K'2V l̂z with the eigenvalue
solution:

ĥ'un,m~r' ,f!5~K̂'2V l̂z!un,m~r' ,f!

5~en,m2m\V!un,m~r' ,f!,

~en,m2m\V!52Fnr1
1

2 S umu2m
V

v'
D1

1

2G\v' ,

where

nr50,1,2, . . . ,
01360
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m52`, . . . ,22,21,0,11,12, . . . ,1`. ~6!

In this physically relevant situation, the particle as observ
in the rotating frame finds itself in a shallower harmon
potential of frequencyAv'

2 2V2, and the states will be more
spread out. It can be seen from Eq.~6! that for the centrifugal
frequencyV significantly smaller than the confining fre
quencyv' , the degeneracy of the Landau levels is lifte
even without interaction. Further, the interaction between
particles causes the different single-particle angular mom
tum states to scatter into each other. Thus, for the slo
rotating ~low Lz! systems and for moderately, anda fortiori
for strongly interacting systems, it may be necessary to
clude the single-particle basis functions with different valu
of nr and with the angular momentum quantum numberm
taking both positive and negative values. This is the case
shall be concerned with in the following.

III. THE MANY-BODY VARIATIONAL WAVE FUNCTION

C~r1 ,r2 , . . . ,rN!5(
b

Cbcb~r1 ,r2 , . . . ,rN!

with

cb~r1 ,r2 , . . . ,rN!

5
1

AN!
(
P

PS 1

An0!
)
i 51

n0

u0~r i !
1

An1!

3 )
i 5n011

n01n1

u1~r i !•••
1

Ank!
)

i 5n01n11•••1nk2111

n01n11•••1nk211nk

uk~r i !D ,

b[~n0 ,n1 , . . . ,n j , . . . ,nk!, (
j50

k

n j5N, (
j50

k

n jmj5Lz .

Here$Cb% are the variational parameters, andP permutes the
N particle coordinates. Also,n j is the occupancy of thej th
single-particle basis function (uj). ~It is to be remembered
that the bold-faced single-particle indexj stands for a set of
single-particle quantumn, m, nz .) The many-body quan-
tum index b, labeling the many-body basis functio
cb(r1 , . . . ,rN), stands for a set of single-particle quantu
numbers required to satisfy the above two defining relati
between the single-particle occupation quantum numb
$n j%, the single-particle angular momentum quantum nu
bers $mj%, the number of particlesN and the total angular
momentumLz . At this point it becomes more convenient
8-4
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switch over to second-quantization notation in the occu
tion number (n j) representation. The basis function is the

ucb&[
~a0

†!n0~a1
†!n1~a2

†!n2
•••~ak

†!nk

An0!n1! n2! •••nk

u0&

[U~n0n1•••nk!:(
j50

k

n j5N, (
j50

k

n jmj5LzL , ~7!

with

(
j50

k

n j5N, (
j50

k

n jmj5Lz

and the many-body Hamiltonian written in the secon
quantized notation is

H5(
i,j

^ iu1u j &ai
†aj1

1

2(
i1 ,j1

(
i2 ,j2

^ i1 ,i2u2u j1 ,j2&

3~ai1
† aj1

ai2
† aj2

2d i2j1
ai1

† aj2
!.

Here, aj
†(aj) are the usual bosonic creation~annihilation!

operators, and̂ iu1u j & and ^ i1 ,i2u2u j1 ,j2& are the one-body
and the two-body matrix-elements, respectively, over
single-particle basis functions. The evaluation of the ma
elements for the kinetic energy and the harmonic trapp
potential over the single-particle basis chosen in the prev
section is trivial. It is also possible to obtain closed for
expressions for the matrix elements for the two-body~as also
for the n body, n52,3, . . . ) Gaussian potential~s! over the
above basis as they reduce to multidimensional Gaussia
tegrals. ~In the calculations presented here, however,
have not considered the three or the higher-body potenti!

The variational parameters$Cb
0% for the ground-state

wave functionC05(bCb
0cb are now determined by mini

mizing K0$C0%[^C0uHuC0&2E0^C0uC0& with respect to
C0. The Lagrange multiplierE0 will be identified as the
variational energy for the ground state. Thei th excited state
C i5(bCb

i cb is determined by carrying out the variation
minimization in the restricted Hilbert subspace that is
thogonal to the (i 21) states determined earlier, i.e., by min
mizing Ki$C i%[^C i uHuC i&2Ei^C i uC i& with ^C j uC i&50
for j 50,1, . . . ,(i 21).

The Davidson algorithm of iterative diagonalization@19#
is based on a procedure where one keeps a minimum sei
orthogonal, trial wave functions that span a small subsp
Si of the full many-body Hilbert space:

Si[H C j uC j5(
b

Cb
j cb , j 50,1, . . . ,i

and

^C j uCk&5d jk

for

j ,k50,1, . . . ,i J .
01360
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This small subspaceSi is chosen to contain dominant contr
butions from the ground state and the first few excited sta
An i 3 i representationH ( i ) of the HamiltonianH is obtained
over this small subspace to set up the small eigenvalue e
tion H ( i )an5ln

i an , n50,1,2, . . . ,i . H ( i ) is an effective
Hamiltonian for the system over the small subspaceSi

spanned by$C j , j 50,1,2, . . . ,i %. The eigenvalueln
i is the

nth approximate eigenvalue. The convergence for thenth
state is achieved when the residual vector for thenth state
uDCn&5HuCn&2ln

i uCn& becomes a null vector. If the con
vergence has not been achieved, the residual vectorDCn ,
after orthonormalization, is added to the list of trial vecto
to augment the subspaceSi to obtain Si 115$C j , j
50,1,2, . . . ,i 11%. The procedure is continued till the con
vergence is obtained. In the process, if the size of the s
spaceSi becomes unwieldingly large, a certain number
higher eigenvectors are dropped fromSi and the procedure
once again initiated.

For N515 particles, for example, we have carried o
calculations for all the total angular momentum states in
regime 0<Lz<3N. Diagonalization of the Hamiltonian ma
trix is performed for each of the subspaces ofLz separately.
@We have setnz50 in the single-particle basis functio
unz

(z) for reasons discussed earlier.# The single-particle ba-

sis un,m(r' ,f) with n[2nr1umu nr50,1, . . . , andumu
50,1,2, . . . , spanning the 2Dx-y plane for a given subspac
of Lz , is chosen as follows. It is convenient to definel
[@Lz /N#, where for realx, the symbol@x# denotes the great
est integer less than or equal tox. For very weakly interact-
ing particles, almost all the particles will condense into
single one-particle staten5m5 l a yrast-like state. As the
interaction becomes stronger, the particles start scattering
to other single-particle states around this state, i.e., som
the particles go to states with higher angular moment
while some of them go to states with lower angular mom
tum ~the two-body interaction conserves the total angu
momentum!. The single-particle angular momentum for th
basis functions is now chosen to be:m5 l 2nb , l 2nb
11, . . . ,l 1nb21, l 1nb , wherenb is some positive inte-
ger that we have chosen to be 3, 4, or more depending on
strength of the interaction and the computational resour
available (nb is a kind of the size of the single-particle bas
chosen for the calculation for a given value ofLz and de-
scribes configurational interaction!. In all our calculations
presented here we have takennr50, 1, andnb53. Thus, for
example, forN515 and for the chosen subspaceLz533, we
get l[@Lz /N#52, and the single-particle angular mome
tum quantum number takes valuesm521,0,11,12,13,
14,15. Then, with nr50,1, the single-particle basis se
turns out to be

$u0,0, u1,11 , u2,12 , u3,13 , u4,14 , u5,15 , u1,21 ,

u2,0, u3,11 , u4,12 , u5,13 , u3,21%.

Thus, theN(515)-body basis functions$cb%, for the Lz
533 subspace, are to be constructed from these sin
particle basis functions. These were used in turn to const
8-5
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M. A. H. AHSAN AND N. KUMAR PHYSICAL REVIEW A 64 013608
the variational trial functionC5(bCbcb , and the ground
state properties for the given value ofLz .

IV. CRITICAL ANGULAR VELOCITIES AND THE ONE-
PARTICLE DENSITY MATRIX FOR THE CONFINED
ROTATING BOSE GAS AT ZERO TEMPERATURE

From the variational ground-state wave functi
C0(r1 , . . . ,rN) obtained in the previous section, we now,
the following, go on to calculate various quantities of inte
est.

Let us first calculate the critical angular velocities$Vci%
for the onset of different vortical states. Note that for a s
tem of N particles confined in a trap rotating at an angu
velocity V, the thermodynamic equilibrium corresponds
the minimum of the free energyF given by exp$2bF%
5Tr@exp$2b(Ĥ lab2\VL̂z

lab)%#, where Ĥ lab2\VL̂ z
lab

[Ĥrot(V), as we have noted earlier, is the Hamiltonian
the system in the corotating frame. For a system atT50, the
expression for the free energy reduces to a simpler formF

5^C0u(Ĥ lab2\VL̂ z
lab)uC0&5^Ĥ lab&2\V^L̂ z

lab& whereC0

is the ground-state wave function of the system in the la
ratory frame for a given value ofLz obtained, in our case
variationally. The above relation can be seen as the min
zation of the energŷĤ lab&[E0

lab subject to the constrain
that the system has the angular momentum expectation v

^L̂ z
lab&. The angular velocityV is then the correspondin

Lagrange multiplier. Since we have constructed our va
tional wave functionC0 to be an eigenfunction of the tota
angular momentum operatorL̂ z

lab , we will necessarily have

^L̂ z
lab&5Lz . Initially, when the system is subjected to n

external rotation, the angular momentum stateLz50 corre-
sponds to the ground state of the system. As the syste
rotated, other nonzero angular momentum states (LzÞ0)
successively become the ground state of the system. T
are obtained by minimizing the energyE0

rot(Lz ,V,L2) in the
rotating frame:

E0
rot~Lz ,V,L2![E0

lab~Lz ,L2!2\VLz
lab . ~8!

Here,L2 measures the two-body interaction strength and
been defined in Sec. I. Thus, the critical angular velocityVc
01360
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beyond which the higher angular momentum stateLz , say,
becomes lower in energy in the rotating frame compared
the lower angular momentum stateLz8(,Lz) is given by

Vc5
E0

lab~Lz ,L2!2E0
lab~Lz8 ,L2!

~Lz2Lz8!\
. ~9!

This gives us a number of critical angular velociti
$Vci , i 50,1,2, . . . % at which the ground state of the rota
ing system changes its angular momentum state abru
The angular momentumLz of the ground stateversusthe
angular velocityV relation, called theLz-V phase diagram,
or the stability line, for the rotating system was calculated
terms of the variational ground states obtained. We pres
this in Fig. 1 for N515 system in the angular momentu
regime 0<Lz<3N.

Next, we calculate the one-particle reduced density m
trix. From the many-body ground-state wave functi
C0(r1 , . . . ,rN), obtained through the variational exact d
agonalization~ED!, the one-particle reduced density matr
r1(r ,r 8) is obtained by integrating out theN21 coordinates:

FIG. 1. Gives the plot~solid line! for the total angular momen
tum Lz in units of \ versus the critical rotational velocityVci ~in
units of v') for the rotating BEC. Dashed line is for the noninte
acting case, included here for reference.
8-6
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FIG. 2. Depicts the normalized
particle density in units ofa'

22 for
~a! the total systemr(r'), ~b! the
condensate fractionr (1)(r'), ~c!
the nonrotating componen
r (2)(r'), and ~d! the remaining
componentsr (m.2)(r') in thex-y
plane. Distances are in units o
a' .
tr
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with

xm~r ![(
n

(
m

(
nz

cn,m,nz

m un,m,nz
~r !

and

(
m

lm51, ~10!

where$lm% are the eigenvalues and$xm(r )% the correspond-
ing eigenvectors of the one-particle reduced density-ma
r1(r ,r 8). We have ordered, in the above equation, the eig
vectors of the density matrix according as the nondecrea
values of the corresponding eigenvalues. We have also
solved the density matrix in a certain way for reasons t
will become clear in the next section when we present v
ous density plots in Figs. 2 and 3. The diagonal p
r1(r ,r )[r(r ) gives the single-particle density profile of th
system. For our finite system, the BEC corresponds t
single eigenvaluel1 being significantly larger than the re
of the eigenvalues and the corresponding eigenvectorx1(r )
is the counterpart of the macroscopic order parameterf(r )
obtained from the solution of the Gross-Pitaevskii equat
with l1 being identified as the condensate fraction andm1
the vorticity of the condensate. As noted before, our sys
is quasi-2D, and hence we setnz50 and the summation ove
nz in Eq. ~10! goes off. We also observe thatxm(r ) is an
eigenvector of the single-particle angular momentuml̂z with
eigenvaluemm , hence, the summation overm in Eq. ~10!
goes away. The only summation that we are left with is th
over nm([2nrm1ummu, wherenrm50,1,2, . . . ,). Thus, we
get
01360
ix
n-
ng
e-
t

i-
t

a

n

m

n

xm~r !5 (
nm5ummu,ummu12,•••

cnm ,mm,0
m unm ,mm,0~r !. ~11!

Note thatnm increases in steps of two, which comes fro
quantization. Tracing out thez coordinate, the density
r(r' ,f), the currentj f(r' ,f), and the velocityvf(r' ,f)
profiles in thex-y plane, for the quasi-2D system, turn out
be

r~r' ,f!5
a'

2

p
e2a'

2 r'
2

(
m

lm

3U (
nm5ummu,ummu12,•••

cnm ,mm,0
m

3A~ 1
2 @nm2ummu#)!

~ 1
2 @nm1ummu# !!

3~r'a'! ummuL (1/2)(nm2ummu)
ummu

~r'
2 a'

2 !U2

[r~r'!, ~12!

j f~r' ,f!5A\v'

m S 1

a'r'
D(

m
mmlmuxm~r' ,f!u2

[ j f~r'!, ~13!

j r'
~r' ,f!5 j z~r' ,f!50;
8-7
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vf~r' ,f!5A\v'

m S 1

a'r'
D(

m
mmlm

uxm~r' ,f!u2

r~r' ,f!

[vf~r'!, ~14!

v r'
~r' ,f!5vz~r' ,f!50.

The density and the velocity profiles are presented in Fig
and 3 for the single vortex state withLz5N for N515. For
completeness, we also give the circulationk(r') and the
velocity curl profiles

k~r'![ R
r'5const

v•dl

5E
0

2p

vf~r'!r'df

52p r'vf~r'!52p
\

m (
m

mmlm

uxm~r' ,f!u2

r~r' ,f!
,

~15!

“3v5
ẑv'

r~r' ,f! (
m

lmS mm

r'a'

2vfA m

\v'
D

3Fxm* S (
nm

cnm ,mm,0
m $nm unm ,mm,0

2A~nm2ummu!~nm1ummu! unm22,mm,0% D 1c.c.G .

~16!

01360
2

The expression for circulation as in Eq.~15! calls for some
discussion. The circulation associated with each of the eig
components (xm) of the one-particle density matrix is, o
course, quantized as integral multiples ofh/m for any closed
path, and clearly can have nor' dependence for the circula
paths chosen for our line integral. The expression, howe
involves an average over different componentsxm , and can,
therefore, assume nonintegral values that vary withr' for
the chosen circular pathr'5const. This reflects the radia
variation of the relative fractional weight
mm lmuxm(r' ,f)u2 of the different fractions withr' .

V. RESULTS AND DISCUSSION

The results and discussions given below refer to87Rb and
the following choice of parameters@20#: lz5A8, vz/2p
5220 Hz, a'51.222mm, asc51000a0, where a0 is the
Bohr radius. Note that the scattering lengthasc chosen above
is ten times that given in the above reference for87Rb. We
have consciously chosen this to be so because it has
argued@6# that the relevant parameter in the problem und
study here is (Nasc /aho), and since in our calculation ther
is little room to further increase the value ofN for reasons of
computational resources required, we thought it appropr
to increaseasc so as to get closer to the value of the para
eter (Nasc /aho) corresponding to the experimental situatio
Here, we note in passing that many of the properties that
examined, like the condensate fraction and the critical an
lar velocitiesVci , were found to be varying smoothly asasc
was varied between 1a0 and 1000a0~we will discuss some of
these results in the text ahead!. We present here the resul
for N515 only in the angular momentum regime 0<Lz
l

-

s

FIG. 3. Depicts the azimutha
velocity profile in units of
A\v' /m for ~a! the total system
vf(r'), ~b! the condensate frac
tion vf

(1)(r'), ~c! the nonrotating
component vf

(2)(r'), and ~d!
the remaining component
vf

(m.2)(r') in the x-y plane. Dis-
tances are in units ofa' .
8-8
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<3N. We have, however, done the calculations forN
56, 8, 10, andN512 also. First we note that we are a
ways in the dilute gas limit here inasmuch asN(asc /aho)

3

!1, with aho[(a'
2 az)

1/35a'lz
21/6. Further, we are also in

the regime of moderate (asc51000a0) to very weak (asc
51a0) interaction strength as the parameterNasc /aho is
of order 1 or much less than 1 for the two regime
respectively. Moreover, forasc51000a0, the healing length
j @[(8pn̄asc)

21/2, with n̄;N/aho
3 , the mean particle den

sity# , the oscillator lengthaho ; the size of the system
Thus, our study for the above choice of parameters may
relevant to bulk systems.

The critical angular velocityVc1 for the single-vortex
state (Lz5N) decreases for increasing value ofN. Thus, for
asc51000a0, it is 0.8849v' , 0.8679v' , and 0.8449v' for
N510, 12, and 15, respectively. For a givenN, the critical
angular velocityVc1 is also found to decrease with increa
ing scattering lengthasc . Thus, forN515, Vc1 ~in units of
v') is found to be 0.9998, 0.9978, 0.9790, and 0.8449
asc51a0 , 10a0 , 100a0 , 1000a0, respectively. The con
densate fraction~i.e., the largest eigenvaluel1 of the density
matrix! for a givenN and corresponding to the single vorte
state (Lz5N), however, seems to be quite insensitive to
change in the scattering length in the weakly to the mod
ately interacting regime. Thus, forLz5N515 state andasc
51a0 , 10a0 , 100a0 , 1000a0, the condensate fraction
~i.e., l1 values! are found to be 0.878 27, 0.878 26, 0.877 7
0.870 69, respectively, i.e., the condensate fraction slo
decreases with increasing interaction. However, as we
over to the strongly interacting regime, the condensate
gins getting strongly depleted. Thus, forasc510 000a0, the
condensate fraction for the single vortex stateLz5N515
reduces to 0.7674. For higher vortex states like, say,Lz
526 andLz52N530 for N515, the condensate fraction
are 0.5404, 0.5408, 0.5455, 0.5845~slowly increasing! and
0.4187, 0.4182, 0.4167, 0.3996~slowly decreasing!, respec-
tively, for asc51a0 , 10a0 , 100a0 , 1000a0.

In Table I, we summarize our results for the ground st
of the N515 system in different subspaces of the total a
gular momentumLz in the regime 0<Lz<3N for asc
51000a0. As the system is rotated, a number of~total! an-
gular momentum states are found to be stable at success
higher angular velocitiesVci , i 51,2, . . . . Wehave also
given the density-matrix eigenvalues$lm% and the corre-
-
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sponding single-particle angular momentum quantum nu
ber $mm% for the largest three (l1.l2.l3) components.
The single-particle angular momentum quantum numberm1,
corresponding to the largest eigenvaluel1, is taken to be the
vorticity of the condensate. We note that, corresponding
each of the stable ground states of the rotating syst
namely, Lz515, 26, 30, 33, 35, 36, 45, . . . forN515,
the second largest fraction is found to be nonrotating, i
m250. Hence, particles driven out of the condensate by
centrifugal force prefer to go to the zero angular moment
(m50) state.

Figure 1 gives theLz-V phase diagram, or the stabilit
line. One can readily identify the successive critical angu
velocities $Vci , i 50,1,2, . . . % for the transition from one
stable state to another stable state. Several points are t
noted here. The nonintegral values for the angular mom
tum per particle clearly indicates the incomplete conden
tion, i.e., the fact that more than one eigenvalues$lm% of the
reduced density matrix are nonzero. This is, however, no
be taken as the fragmented condensate@21# as in the context
of a spatially homogeneous bosonic system with attrac
interaction, but merely as depletion of the condensate fr
tion due to the interaction and the rotation. Also, we ha
observed that the critical angular velocityVci decreases
monotonically with increasing repulsive interaction and t
particle number. This can be readily understood physica
from the expression in Eq.~9! for the critical angular veloc-
ity Vci[Vci(Lz ,L2) if one remembers that the nonrotatin
(Lz50 angular momentum! state is more compact and
therefore, has its energy raised~because of the repulsive in
teraction! relative to the expanded higher angular moment
states. More importantly, however, our critical angular v
locity Vc1 for a givenN, is systematically greater than th
nonvariational value based on the yrast-like st
@14,15,12,13#. We expect this to be due to our more accura
and, therefore, lower variational ground-state energies.

In Fig. 2~a! we have plotted the total density profiler(r')
for theLz5N single-vortex state of the system. We have a
plotted separately the density profiles for the different co
ponents of the density:l1ux1(r )u2[r (1)(r' ,f) correspond-
ing to the largest eigenvaluel1(50.870 69) in Fig. 2~b!,
l2ux2(r )u2[r (2)(r' ,f) corresponding to the second large
eigenvaluel2(50.065 76) in Fig. 2~c!, and r (m.2)(r' ,f)
corresponding to the remaining components in Fig. 2~d! ob-
tained from the one-particle reduced density matrix
where, as earlier,mm is the single-particle angular momen
tum quantum number associated with themth component of
the density matrix. As we go to higherV, the condensate
depletes-with the nonrotating componentr (2)(r' ,f) and the
remaining componentsr (m.2)(r' ,f) become more pro-
nounced~as can also be seen from Table I!. We would like to
8-9
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TABLE I. Gives the largest three eigenvaluesl1.l2.l3 and the corresponding single-particle angu
momentum eigenvaluesm1 , m2, and m3 in the one-particle reduced density-matrixr(r ,r 8)
5(mlmxm* (r )xm(r 8) for the ground state of the rotating BEC, in given subspaces of the total an
momentumLz . Also given are the ground-state energiesE0

lab(Lz) in the laboratory frame and the critica
angular velocitiesVci corresponding to the stable ground states of the rotating system in the angula
mentum regime 0<Lz<3N.

Largest three condensate fractions (l1.l2.l3)
Largest 2nd largest 3rd largest

Lz E0
lab(Lz) Vci ,i 50,1, . . . , m1 l1 m2 l2 m3 l3

0 41.18837 0 0 0.9943 1 0.0021 21 0.0021
1 42.19021 0 0.9251 1 0.0693 21 0.0036
2 42.99052 0 0.9198 2 0.0586 1 0.0181
3 43.79210 0 0.9133 3 0.0531 1 0.0181
4 44.73324 0 0.8268 1 0.0925 2 0.0543
5 45.55314 0 0.8128 2 0.0741 1 0.0717
6 46.38548 0 0.7976 3 0.0792 1 0.0765
7 47.25794 0 0.6948 1 0.1737 2 0.0914
8 48.08941 0 0.6520 1 0.2007 2 0.1002
9 48.92517 0 0.5878 1 0.2618 2 0.1046
10 49.75782 0 0.5114 1 0.3377 2 0.1164
11 50.58520 0 0.4391 1 0.4119 2 0.1189
12 51.41082 1 0.5015 0 0.3583 2 0.1166
13 52.23442 1 0.6055 0 0.2701 2 0.1072
14 53.05612 1 0.7299 0 0.1717 2 0.0875
15 53.86234 0.8449 1 0.8707 0 0.0658 2 0.0574
16 54.86287 1 0.7072 2 0.1567 0 0.1197
17 55.84557 1 0.6143 2 0.1837 0 0.1543
18 56.72501 1 0.7204 2 0.1086 0 0.0985
19 57.69445 1 0.5298 2 0.2348 0 0.1593
20 58.64083 2 0.3683 1 0.2937 0 0.2541
21 59.56022 1 0.4084 2 0.2839 0 0.1880
22 60.48086 2 0.4876 0 0.2846 1 0.1303
23 61.43733 2 0.4410 0 0.2272 1 0.2002
24 62.33085 2 0.5453 0 0.2567 1 0.0805
25 63.31524 2 0.4498 0 0.2042 1 0.1677
26 64.20739 0.9405 2 0.5845 0 0.2138 4 0.0879
27 65.22391 2 0.4518 0 0.2065 3 0.1797
28 66.11546 2 0.5858 0 0.1773 4 0.1088
29 67.13036 2 0.3556 3 0.2596 0 0.2168
30 68.00749 0.9500 2 0.3996 0 0.2001 4 0.1463
31 68.96896 2 0.2725 0 0.2255 3 0.1883
32 69.93098 3 0.3235 0 0.2506 2 0.1905
33 70.88661 0.9597 3 0.4393 0 0.2553 2 0.1168
34 71.86427 3 0.2384 0 0.2210 2 0.2106
35 72.81314 0.9633 3 0.2733 0 0.2304 2 0.1701
36 73.78031 0.9672 3 0.4723 0 0.2086 4 0.1160
37 74.77086 3 0.2920 0 0.2178 2 0.1608
38 75.74022 3 0.3326 0 0.2193 4 0.1648
39 76.69427 4 0.2501 3 0.2272 0 0.2252
40 77.66436 4 0.4148 0 0.2758 5 0.1081
41 78.68052 4 0.2941 0 0.2579 5 0.1916
42 79.64666 4 0.2256 0 0.2150 3 0.2113
43 80.60356 4 0.3664 0 0.2159 5 0.1554
44 81.56135 4 0.5041 0 0.2341 5 0.1101
45 82.49866 0.9687 3 0.2538 0 0.2093 4 0.1980
013608-10
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emphasize here that for a confined, finite, rotating system
interacting bosons, the one-particle reduced density matri
decomposed above according to the singe-particle ang
momentum value is an unambiguous description of the s
tem.

Figure 3 depicts the velocity profilesvf(r' ,f) for the
total system in~a!, vf

(1)(r' ,f)[@(m1 /a'r')A\v' /m# for
the condensate in~b!, vf

(2)(r' ,f)[@(m2 /a'r')A\v' /m#
for the non-rotating component in~c!, andvf

(m.2)(r' ,f) for
the remaining components in~d!.

As can readily be seen, for circular paths of radiir' in the
x-y plane, the condensate fraction has an integral circula
k (1)(r')[m1h/m and is constant over space.

In conclusion, our many-body variational calculation f
an admittedly finite number (N<15) of particles explicitly
resolves the structure of the rotating BEC atT50 in terms of
an
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the various components of the reduced one-particle den
matrix. Further work is in progress to consider spin-1 Bo
particles, where we expect qualitative changes in the st
ture of the rotating BEC. In particular, we expect a drama
increase in the critical angular velocities because of the s
polarization drag effect inasmuch as the angular momen
may be absorbed preferentially in the spin rather than
orbital degrees of freedom without costing kinetic energ
This could lead to spin polarization due to the rotation of t
trap @22,23#. We expect this effect to be more pronounc
here than in a classical rotating system.
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