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Rotating Bose gas with hard-core repulsion in a quasi-two-dimensional harmonic trap:
Vortices in Bose-Einstein condensates
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We consider a gas ™(=<15) Bose particles with hard-core repulsion, contained in a quasi-two-dimensional
harmonic trap and subjected to an overall angular veldQitgbout thez axis. Exact diagonalization of the
nxn many-body Hamiltonian matrix in given subspaces of the t@maantized angular momenturh,, with
n~10 (e.g., forL,=N=15, n=240782) was carried out using Davidson’s algorithm. The many-body varia-
tional ground-state wave function, as also the corresponding energy and the reduced one-particle density-
matrix p(r,r')=%,\,x;(r)x.(r") were determined. With the usual identification Qf as the Lagrange
multiplier associated witl, for a rotating system, the,-Q) phase diagranfor the stability ling was deter-
mined that gave a number of critical angular velociieg, i=1,2,3 ..., atwhich the ground-state angular
momentum and the associated condensate fraction, given by the largest eigenvalue of the reduced one-particle
density matrix, undergo abrupt jumps. For a giv¢ra number oftotal) angular momentum states were found
to be stable at successively higher critical angular velocfigs i=1,2,3.... All the states in the regime
N>L,>0 are metastable. Fdr,>N, the L, values for the stable ground states generally increased with
increasing critical angular velociti€d;, and the condensate was strongly depleted. The criflcalvalues,
however, decreased with increasing interaction strength as well as the particle number, and were systematically
greater than the nonvariational yrast-state values fotjkeN single vortex state. We have also observed that
the condensate fraction for the single vortex statealso for the higher vortex stateid not change signifi-
cantly even as the two-body interaction strength was varied over severgl ¢rders of magnitude in the
moderately to the weakly interacting regime.

DOI: 10.1103/PhysRevA.64.013608 PACS nuntder03.75.Fi, 67.40-w, 05.30.Jp

I. INTRODUCTION volve heavy computationgl2,13 even for the modest size
of the system ll~10-50). Besides, the existing mean field
The experimental realization of Bose-Einstein Condensaas well as many-body calculations involves only the “Low-
tion (BEC) in dilute vapors of ultracoldnanokelvin) alkali est Landau Leve(LLL)"” single-particle orbitals, with only
atoms[1-3], and other systenigl], trapped in harmonic po- the positive sign(with respect to the trap angular velocity

tential wells has qualitatively extended the domain of occurqye,) of the single-particle angular momentum quantum
rence of the quantum fluids—7]. Unlike their dense and numberm. The interatomic repulsion is known to qualita-
strongly interacting, homogeneodsulk) counterparts, e.g., tively change the ground-state properties of a system of
liquid “He, these mesoscopic gaseous systems are dilutgeakly interacting neutral Bose gésonfined in a rotating
weakly or moderately interacting, and inhomogeneous—wittharmonic trap at T=0 in two distinct ways[6]. First, it
controllable density, effective dimensionality, and tunablejggds to a depletion of the condensate fraction, which is
atom-atom interactions of either sidgB]. Further, the cre- equal to one for an idedhoninteracting Bose gas. Second,
ation[10,9] of the vortex states with quantized circulation in jt gives a phase rigidity, or stiffness, to the ground-state
eXternally I’O'[ated '[rapS, as aISO the direCt Observation qfnany_body wave function. This is responsib'e for the Super-
phase coherence effe¢tsl], have clearly revealed the phase fluid flow that manifests in the successive appearance of vor-
rigidity characteristic of superfluidity associated with thetices with higher quantized circulations beyond certain criti-
BEC. The BEC in a weakly and repulsively interacting dilute cal angular velocitied); of the rotating trap. Both these
Bose gas(i.e., with the two-bodys-wave scattering length aspects are well described by the one-particle reduced

as.< the mean interatomic spaci 713 and with the num-  density-matrixp,(r,r’) obtained from theN-body ground-

ber of atoms in the condensal>1) has often been de- state wave functioWo(ry, ... ,ry) by partial integration, or
scribed macroscopically through the Gross-Pitaevskii equatracing out, of theN—1 coordinates from thé&-body pure
tion based on the condensate amplitude as a slowly varyindensity-matrixW§(rq, ... rn)Wo(ry, ... ry). (It is to be

order parametef6]. Microscopic treatments going beyond recalled in passing here that the condensate and the super-
the mean-field approximation and based on many-bodyluid fractions are not the same thing. More specifically, e.g.,
variational wave functions also exist in the literature but in-for the nonrotating ground state of an interacting Bose gas at
T=0, the condensate fraction is generally less than unity due
to depletion while the superfluid fraction, that includes the
*Present address: Department of Physics, Indian Institute of Sceondensate as well as the above-the-condensate fraction, is
ence, Bangalore 560 012, India. exactly equal to unity. Both the condensate, as well as the
"Email address: nkumar@rri.res.in superfluid fractions, are characterized by the same quantum-
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mechanical phase whose gradient gives the superfluid veloof the one-particle reduced density-matrix characterizing the
ity. Also, both vanish together above the critical temperaturevortical state that gives various density profiles. Finally, in
T.. In fact, it is the condensate that amplifies the effect ofSec. V, we present and discuss our results, and end the paper
even the weakest repulsive interaction, leading to the abwith a brief conclusion and future plan of work.

sence of single-particle excitation and giving rise to the
phase rigidity). Il. THE SYSTEM AND THE HAMILTONIAN

n th's yvork, we have studied the effect Of. the two-body We begin by considering a system of interacting, spinless,
re_p_ulswe Interaction on the copdensate fraction, and on thﬁarticles(bosonss confined in an external harmonic potential
critical angular velocitiesQ.;, i=0,1,2...,) for the ap- (445 The two-body interaction potential is, however, as-
pearance of different vortex states for a quasi-tWo-gymed to be gaussian in the particle-particle separation. The
dimensional Bose gas confined in a highly anisotropic haryap js also subjected to an externally impressed rotation at

mbonlft:]rap @Z>_Icf)i)h.subje§ted 0 anhoverall rgta:jtloﬂ . an angular veIocit;QzQE. The Hamiltonian for the system
about thez axis. To this end, we use the many-body varia-, 5 frame corotating with the angular velocy is

tional approach and calculate the ground-state energy, the
ground-state wave function and the associated one-particle [{rot—{lab_ . lab
reduced density matrix for different values of the interaction, ’
in given subspaces of the total quantized angular momentum

N
. 1 (h_\2
L,. The many-body variational ground-state wave function Alab=">" [%(i—vi
<1

1
+-mo?(r3,+2\22%)

is obtained through the exact diagonalization of tihen 2

many-body Hamiltonian matrixe.g., n=240782 forL, 1 4mh2a 1 \8

=N=15) using Davidson’s algorithm. A distinctive feature LT se

of the present work is that in constructing the many-body 2 m 27a

variational ground-state wave function in a given subspace

L, (= the eigenvalue corresponding to theomponent of XE exp*(]-/z”z){(ui*uj)2+(zi72j)2}7 (1)
the total angular momentum operatoy), we have included, 1#]

in the configuration interaction, the one-particle states witt]Nith

the single-particle angular momenturs{,) quantum num-

ber m of either sign, as also the higher “Landau-Level . N s N

(LL)” states. One of our main results is the variation of the [lab=7 lab= T > (rXV)),.

critical angular velocityQ.; with the interaction strength =1 =1

A,=(N-1)\2/masc/a, (the meanings of various symbols The coordinatedr;} and the corresponding canonical mo-
will be given in the next sectionnamely, that not only does menta{(#/i)V;} refer to the laboratory frame. Here, is
(., decrease with increasing,, it also stays systematically the frequency of the harmonic confinement. From now on-
higher than its nonvarional value, e.g., that given by the reyargs, we will drop the superscrifab on the Hamiltonian

lation Q1= w, (1—A,/4) for the weakly interacting, dilute pyiap " lab ; _parti
case[14,13,19. We have also observed that the condensatc'a_| , the total angular momentuiy; ™, the single-particle

fraction for the single vortex state with,= N (as also for the ~angular mome”t“mlzab’ and their respective eigenvalues,
higher vortex statésloes not change significantly even if the @1d these will always be assumed to refer to the laboratory
two-body scattering length,. is changed over-4 orders of ~ frame unless otherwise specified. _ -
magnitude in the moderately to the weakly interacting re- W& now make the following assumptions. The confining
gime, namely, fromay.=100(, to la, wherea, is the a;ymmetnc harmonic potential is hlghlyloblate spher.0|dal,
Bohr radius. with A,=w,/w, >1, and hence, our confined system is ef-
This paper is organized as follows. In Sec. II, we presenféctively quasi-2D with thec-y rotational symmetry; the re-
our model[18] and bring out, in passing, the mathematicalPulSive two-body scattering is domlnantlzy in thewave
analogy between the system under study here and the othgannel with a scattering lengéyc and 4r%:“as/m having
well-known systems like in the Landau-Darwin-Fock prob- the dimension of energyvolume. The ranger of the two-
lem, and argue that in a certain limiting case of interest to u$0dy interaction is small enough compared to the interatomic
here, it becomes essential to go beyond the lowest LandaRPacing so as to effectively givedfunction interaction po-
Level (LLL) approximation so as to include higher LLs and tential V(r,r") = (4mh*asc/m) 8(r—r"). .
with the single-particle angular momentum eigenvatae Now, for our N-body yanaﬂqnal cal_culatlon we need to
taking both positive as well as negative values in constructeonstruct theN-body basis functions with proper symmetry.
ing the many-body basis functions. Section Il describesSince the system above is rotationally invariant in g
briefly the construction of the many-body basis functions andlane, thezcomponent of the total angular momentubn)
the determination of the variational ground-state wave funciS @ good quantum number leading to block diagonalization
tion by diagonalizing the many-body Hamiltonian matrix us- of the Hamiltonian matrix into the subspaces lof. The
ing Davidson'’s algorithm. In Sec. IV, we outline the proce- N-body basis functions are, in turn, constructed as linear
dure for determining the critical angular velocities for the combinations of the symmetrized products of a finite number
entry of the vortices into the system, and the determinatiorf single-particle basis-functions, which are chosen to be
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eigenfunctions of the unperturbed single-particle Hamil-
tonian. With this in mind, let us consider the noninteracting ( [n—|m|])

single-particle Hamiltoniah in the rotating frame, which we Unm(re @)= —71
now separate into the and the &-y)-plane (commuting ™ (—[n+|m|])'
5 !

componentsh, andh, , respectively:

. 1 (% 2 A X(r, a )|m|e 1/20‘L"Le'm¢L|/2| (a' )
e ( VL) +gmotrt =50 (rXV) L (= m
n - where
hy
1 h 2 1 ) =\ me_ /ﬁ
ton ( l_~Vz> t3 smwz*=h, +h,. ) =the inverse of the transverse oscillator length, ),
h, and
. € m=(2n,.+|m|,,+l)ﬁwiz(n-l-l)ﬁwi,
The eigensolutions fon, are —
I:\]zunz( 2)= fnzunz(z)u with
n=01,2..., m=—w, ..., —10+1,...,to,
where
or equivalently,
€n = nz+§ fw,, Nn,=0,1,2..., n=0,1,2,..., m=+n, +n—2,...,—n+2, —n.
4
a, /a7 Here L|1,|2)(n \m\)(%&) is the associated Laguerre polyno-
un(2)= Jm2"n & T Hy (az2), mial. It may be noted in passing that the Hamiltonian in Eq.
z (2) can be readily generalized to include a chaggen the
and particle and an external magnetic-fidddalong thez axis. It
then represents the well-known Landau-Darwin-Fock
a,=\ma, 1% [16,17) problem in which¢, = \/(qB/2m)?+ wf is now the
frequency for the harmonic confining potential in the
= inverse of the longitudinal oscillator lengtta,). x-y-plane ands=(gB/2m+()) is the cyclotron-rotational
(or the centrifugal angular velocity about the axis [18].
HereH, is the Hermite polynomial. The system has beenLimiting to n,=0 and takingn=0,+1,+2,+3, ..., in Eq.

assumed to be quasi-2D in that there is practically no exci(4) corresponds to the “lowest-Landau Lev@lLL)" ap-
tation along the relatively stiffez axis, and hence, we set Proximation.

n,=0. Let us examine the centrifugal/mechanical stability of the
Let us now conside, . With Q=0&, andr, =xg,  above system by rewriting, as
AT 1 (4 21,1
, , h = 2 VL m(QXrL) o moir— 2m(Q><rL)2
. 7/ N J 1 9 1 .
h=-—r—|— ( ,—)-I— += mwiri R4 b
2m|r, dr, ar, r dd)2 2
[ ~ vl ET+Z/{
Ky
. . 3 Here, 7T is clearly a positive-definite operator. It can readily
—OQL=K, - 0l. ®) be shown that{ is negative definite, null, or positive definite,

respectively, asd, +Q)(w, — Q) is negative, zero, or posi-
A tive, respectivel}{18]
Here, K, is the single-particle 2D-harmonic oscillator  Foris negative definite, the Hamiltonidm =7/ is un-
Hamiltonian, for which the eigensolutions are known to be pounded from below and there are no stable solutions. This
situation arises fow, <(}, i.e., when the rotational angular

IAClun'm(rl v d)=€nmUnm(ry, @), velocity () becomes larger than the confining harmonic trap
frequencyw, .
T Unm(T L )= Up (T, h), For the special case &f null, we havewl ) and the
’ ’ Hamiltonian reduces tbL ICL . This gives rise to a
with situation analogous to the Landau problem when the fre-
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guency for the harmonic confinement is equal to the centrifu
gal frequency. Setting, =1/2w., we have the eigenvalue
equation

Fhun,m(ri n¢):(k¢_ wLTz)un,m(rL ,P)
= (En,m_ mﬁwL)un,m(rL b)),

with

1
n,+ 5(|m|—m)+ 7

1
)ﬁwc

(En,m_mhwi):(

——
E(N—I— l)ﬁwc,

where
n=0123...,

and

m=-—-o...—2-10+1+2,...,t;

or equivalently
N=0,123...

and

m=—-N,—(N-1),...,—-2,-1,041,+2,... +o.

)
Each of theN levels, the so-called Landau LevélsLs), is

PHYSICAL REVIEW A 64 013608

and

m=-o,...,—2—-10+1,+2,... +0o. (6)

In this physically relevant situation, the particle as observed
in the rotating frame finds itself in a shallower harmonic
potential of frequency/aﬂ2 — 0?2, and the states will be more
spread out. It can be seen from E6). that for the centrifugal
frequency Q1 significantly smaller than the confining fre-
quencyw, , the degeneracy of the Landau levels is lifted
even without interaction. Further, the interaction between the
particles causes the different single-particle angular momen-
tum states to scatter into each other. Thus, for the slowly
rotating (low L,) systems and for moderately, aadortiori

for strongly interacting systems, it may be necessary to in-
clude the single-particle basis functions with different values
of n, and with the angular momentum quantum numiver
taking both positive and negative values. This is the case we
shall be concerned with in the following.

Ill. THE MANY-BODY VARIATIONAL WAVE FUNCTION

We need to perform the diagonalization of the Hamil-
tonian matrix in the subspaces of L. only. The N-body varia-
tional wave function W¥(r;, ...,ry) is a linear combination
of the symmetrized products ¢,(r,r,, ...,ry) of the one-

particle basis functions  u, ,(r, ,d))u,,z(z)Eu,,,m,,,z(r)
T
=up(r) introduced earlier:
\P(rl,rz, PR ,I‘N)=2b Cblﬂb(rl,rz, PR ,I’N)

infinitely degenerate corresponding to the infinitely manyWith

possible values ofn. It is clear from the ordering of the
single-particle energy levelsvithout interaction in Eq. (5)
that the single-particle states with positive values (i.e.,

those with the angular momentum parallel to the overall ro-

tational angular velocit)QEQéz) are energetically favored.

These states constitute a massively degenerate manifold.

This is the usual rationale for using the positirevalues
only, in constructing the variational wave function for the

Pp(ra,ro, .. Iy)
1 1 0 1
=— P Ug(rj)——
R R R
vot vy 1 Vot vt vt
X Uy(ry) - — u(ri) |,
AL wtr) Tkuwowﬁnﬂk,ﬁl (1)

Landau-like problem. This degeneracy for the special case of

w, = is, however, lifted by the interparticle interactions.

Finally, we consider the physically interesting casefof
positive definite. The single-particle noninteracting Hamil-

tonianh, , now become$, =k, — O, with the eigenvalue
solution:

A Unm(ry @) =K, = QI )uym(r, ,#)
:(En,m_ rT"ﬁQ)un,m(rJ_ b)),

(€nm—MhQ)=2

ho, ,

+1 QO +1
n, 5 |m|—m(z E

where

n=012...,

k k
b=(vg,vq, ... TR Vi) ;0 v=N, jzo ym=L,.

Here{C,} are the variational parameters, @agermutes the

N particle coordinates. Alsay; is the occupancy of thith
single-particle basis functionuf). (It is to be remembered
that the bold-faced single-particle indgstands for a set of
single-particle quantumm, m, n,.) The many-body quan-
tum index b, labeling the many-body basis function
Yp(ry, ... rn), stands for a set of single-particle quantum
numbers required to satisfy the above two defining relations
between the single-particle occupation quantum numbers
{v;}, the single-particle angular momentum quantum num-
bers{m;}, the number of particledl and the total angular
momentumL,. At this point it becomes more convenient to
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switch over to second-quantization notation in the occupaThis small subspacs; is chosen to contain dominant contri-
tion number ¢;) representation. The basis function is then butions from the ground state and the first few excited states.
o o . An i xi representatioi (") of the HamiltoniarH is obtained
_ (ag)"(ag)"(@z)"2 - - (&)™ over this small subspace to set up the small eigenvalue equa-
= Vool vd vl 19 tion HVa,=\'a,, »=0,1,2...i. HO is an effective
0T TE Tk Hamiltonian for the system over the small subspage
K k spanned byW¥;, j=0,1,2 ... i}. The eigenvalua is the
=|(vory---m): 2 »=N, 2 ym=L,), (7) wth approximate eigenvalue. The convergence for itie
1=0 1=0 state is achieved when the residual vector for thie state
with |AW y=H|¥ )—\'|¥,) becomes a null vector. If the con-
vergence has not been achieved, the residual vec¥y,,

K K after orthonormalization, is added to the list of trial vectors
JZO vi=N, ,Z‘o vim=L, to augment the subspacs; to obtain S ;={V;, |
=0,1,2...,i+1}. The procedure is continued till the con-
and the many-body Hamiltonian written in the second-vergence is obtained. In the process, if the size of the sub-
guantized notation is spacesS; becomes unwieldingly large, a certain number of
1 higher eigenvectors are dropped fra$nand the procedure
— q1livafa 4+ = NI, once again initiated.
H .2;‘ (i[li)ara;+ 2ilz’jl igz (in12[2ljzi2) For N=15 particles, for example, we have carried out
+ + + calculations for all the total angular momentum states in the
x(ailajlaizajg_ 5i2jlailajz)' regime O<L,<3N. Diagonalization of the Hamiltonian ma-

+ ) ) _ trix is performed for each of the subspaced gfseparately.
Here, a;j(a;) are the usual bosonic creatidannihilation  [we have setn,=0 in the single-particle basis function

operators, andi|1[j) and (iy,i,|2lj;,j») are the one-body Uy (2) for reasons discussed earlieThe single-particle ba-
cingle-pertice badis fnctons. The evaluation of the matrpe's Unp(i 1) With n=2n,+[mi n =01, .., andm
elements for the kinetic eneréy and the harmonic trappin 0,12 ... ,spanning the 2Dy plane for a given subspace

. . i . . . of L,, is chosen as follows. It is convenient to defihe
potential over the single-particle basis chosen in the prewou%[l_ IN], where for reak, the symbo[x] denotes the great-
section is trivial. It is also possible to obtain closed form o '

. : est integer less than or equalxoFor very weakly interact-
expressions for the matrix elements for the two-baatyalso ing particles, almost all the particles will condense into a
for the n body,n=2,3, ...) Gaussian potenti@) over the 9p ' P

above basis as they reduce to multidimensional Gaussian ir?—Ingle one-particle state=m=| a yrast-iie state. As the

tegrals. (In the calculations presented here, however, w interaction becomes stronger, the particles start scattering out
grais. b ' » W&o other single-particle states around this state, i.e., some of

have not considered the three or the higher-body potentials . . ;
The variational parameter$C°} for the ground-state the. particles go to states with h|_gher angular momentum
; ionW .= 3. 0 b d ined by mini while some of them go to states with lower angular momen-
wave function¥o=2,Cy,ip, are now determined by mini- y,m (the two-body interaction conserves the total angular

mizing KO{WO}E(WOWWO}_E0<\I_'O|\I’0>_ with respect 10 omentum. The single-particle angular momentum for the
W,. The Lagrange multiplielE, will be identified as the pasis functions is now chosen to be=I-n,, |—n,

variational energy for the ground state. Tilie excited state 4 l+n,—1, I+n,, wheren, is some positive inte-

Wi =2pChiyy is determined by carrying out the variational ger that we have chosen to be 3, 4, or more depending on the
minimization in the restricted Hilbert subspace that is or-gtrength of the interaction and the computational resources
thogonal to thei(— 1) states determined earlier, i.e., by mini- avaijlable ¢, is a kind of the size of the single-particle basis
mizing Ki{W}=(W|H|W;)—E(W¥i[¥;) with (¥;|¥;}=0  chosen for the calculation for a given value lof and de-
forj=0,1,...,(-1). scribes configurational interactipnin all our calculations
The Davidson algorithm of iterative diagonalizatifitB] resented here we have taker=0, 1, andh,=3. Thus, for
is based on a procedure where one keeps a minimum set o xample, foN=15 and for the chosen subspdce= 33, we
orthogonal, trial wave functions that span a small subspacge“E[Lz/N]zz, and the single-particle angular momen-

S of the full many-body Hilbert space: tum quantum number takes values=—1,0,+1,+2,+3,
A +4,+5. Then, withn,=0,1, the single-particle basis set
S={W|¥;=> Clyp, j=01,...] turns out to be
b
and {Uoo, U141, Uzs2, Usiz, Ugia, Usis, Up-1,
(| W ) =Sk Upo, Ust1, Ugsp, Ussz, Us—1}.
for

Thus, theN(=15)-body basis functiongy,}, for the L,
k=01 : =33 subspace, are to be constructed from these single-
1K=0,4,. particle basis functions. These were used in turn to construct
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the variational trial functiorV=%,C,#,, and the ground po{ ' ! ' ! ' ! ' ! '

state properties for the given value lof. 430

“r--

39 -

IV. CRITICAL ANGULAR VELOCITIES AND THE ONE- 2;:
PARTICLE DENSITY MATRIX FOR THE CONFINED 33|

ROTATING BOSE GAS AT ZERO TEMPERATURE Z;:v_:

a7l

From the variational ground-state wave function ,as -

Wo(ry, ... ry) Obtained in the previous section, we now, in =23

the following, go on to calculate various quantities of inter- o
est. 15

Let us first calculate the critical angular velocitigQ .} B

for the onset of different vortical states. Note that for a sys- o -
tem of N particles confined in a trap rotating at an angular
velocity (), the thermodynamic equilibrium corresponds to
the minimum of the free energ¥ given by exp—pBF} _ — el e st il e St it St

~ ~ ~ ~ X 082 084 086 088 0.9 092 094 096 098 1 1.02
=Trlexp{— B~ AOQL)}],  where R™—40QL2° 2~
=H"'(Q), as we have noted earlier, is the Hamiltonian of FiG. 1. Gives the plotsolid line) for the total angular momen-
the system in the corotating frame. For a system-a0, the  tum L, in units of 4 versus the critical rotational velocit; (in
expression for the free energy reduces to a simpler férm units of w,) for the rotating BEC. Dashed line is for the noninter-
:<\p0|(|i||ab_ﬁg|:|zab)|qf0>:<|f|lab>_ﬁg<|:'zab> where¥, acting case, included here for reference.

is the ground-state wave function of the system in the Iabob d which the high |
ratory frame for a given value df, obtained, in our case eyond which the higher angular momentum state say,
z ’ ' _becomes lower in energy in the rotating frame compared to

variationally. The above relation can be seen as the m|n|m|,Ehe lower angular momentum staté(<L,) is given by

®

zation of the energyH'®?)=E2 subject to the constraint

that the system has the angular momentum expectation value E'oab(Lz AL)— E'oab(L; Ay)

(L!2%y, The angular velocity) is then the corresponding = L0k : C)
z z

Lagrange multiplier. Since we have constructed our varia-
tional wave function¥, to be an eigenfunction of the total This gives us a number of critical angular velocities

angular momentum operatdir‘zab, we will necessarily have {Q, i=0,1,2...} at which the ground state of the rotat-

<|:|zab>:LZ. Initially, when the system is subjected to no ing system changes its angular momentum state abruptly.
external rotation, the angular momentum stage-0 corre- ~ 1h€ angular momenturh, of the ground stateersusthe
sponds to the ground state of the system. As the system f1gular velocity) relation, called the-,-Q) phase diagram,
rotated, other nonzero angular momentum states#Q)  ©F the stability line, for the rotating system was calculated in
successively become the ground state of the system. The@qm_s of_the variational ground _states obtained. We present
are obtained by minimizing the energ§'(L,,Q,A,) in the this in Fig. 1 forN=15 system in the angular momentum

rotating frame: regime OsL,<3N. _ _
Next, we calculate the one-particle reduced density ma-

ERYL,,Q,A)=E&"(L,,A,)—hQLSE". (8)  trix. From the many-body ground-state wave function

Yo(rq, ... ry), Obtained through the variational exact di-

Here, A, measures the two-body interaction strength and haagonalization(ED), the one-particle reduced density matrix
been defined in Sec. I. Thus, the critical angular veloSty  p,(r,r’) is obtained by integrating out tié— 1 coordinates:

pl(r’r’)EJ j tee j dl'zdl'3' . 'drN\II(T(r,rZ,rZ, . e ,I'N)\Ifo(l",l'z,l'3, . e ’rN)

:E E E E E E Prmn ,n’m’n’u:im,n (r)un’,m’,n’(r’)
n m non om' n z z Z z
Z

E% )\sz(l')x#(r’) (IZM =020, = 20)

=2 ) A () F 2 M)

1
PP PP

-

2
P D"
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(a) (b)

01 A!g.'
— ['0““ \
soos| ]
X l "0 \
o s

5 FIG. 2. Depicts the normalized
particle density in units oﬁjz for
(a) the total systenp(r, ), (b) the

y 5 -5 condensate fractiop®(r,), (c)
the  nonrotating  component
(c) (d) p®(r,), and (d) the remaining

componentp*~2)(r ) in thex-y
plane. Distances are in units of
a .

with

ry= cH U r). 11
X’u( ) nﬂ:\mM%MHZ,... Ny M0 nM'mM'O( ) (1D
X,u(r)EEn: %: ; C#,m,nzun,m,nz(r)

Note thatn, increases in steps of two, which comes from
and quantization. Tracing out the coordinate, the density
p(r, ,¢), the current 4(r, ,¢), and the velocity 4(r, ,¢)

profiles in thex-y plane, for the quasi-2D system, turn out to
PORYESS (10 be
y23

where{\ ,} are the eigenvalues afa,(r)} the correspond- 2

_a 7a2r22
ing eigenvectors of the one-particle reduced density-matrix p(r ¢)= L& -~ Ny
p1(r,r'). We have ordered, in the above equation, the eigen-

vectors of the density matrix according as the nondecreasing
values of the corresponding eigenvalues. We have also re- X ; Ch m.o
solved the density matrix in a certain way for reasons that nu=Imyl[myl+2,.- e

will become clear in the next section when we present vari- -

ous density plots in Figs. 2 and 3. The diagonal part (z[n,—=[m,[]!

p1(r,r)=p(r) gives the single-particle density profile of the X (L [n,+|m ]!
2L pid/e

system. For our finite system, the BEC corresponds to a

single eigenvalue\; being significantly larger than the rest

of the eigenvalues and the corresponding eigenvegt(r) X(rlai)““u‘L
is the counterpart of the macroscopic order paramei(e)

obtained from the solution of the Gross-Pitaevskii equation

[m,| ( 2 2
r-a
12, ~|m, "L ¥L

with N\, being identified as the condensate fraction amd =p(r.), (12
the vorticity of the condensate. As noted before, our system
is quasi-2D, and hence we sgt=0 and the summation over ho, [ 1
n, in Eg. (10) goes off. We also observe thgt,(r) is an Jo(r, @)= m (a ; )2 ML X (L H)|?
eigenvector of the single-particle angular momeniymwith e
eigenvaluem,,, hence, the summation oven in Eq. (10) =ju(ry), (13
goes away. The only summation that we are left with is then

=2n,,+ h =0,1,2...,).Th
e M2 I e 012 ) T, e 02 =10 -0
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7 1 Ixu (T, )2 The expression for circulation as in EG5) calls for some

) Xull L ol . ) B . . . -

vy, @)= m\Z Z m, "W discussion. The circulation associated with each of the eigen-
u L

components x,) of the one-particle density matrix is, of

a

=0v4(r,), (14) course, quantized as integral multipleshdin for any closed
path, and clearly can have mg dependence for the circular
v, (r,,d)=v,r, ,$)=0. paths chosen for our line integral. The expression, however,
1

involves an average over different components and can,
The density and the velocity profiles are presented in Figs. therefore, assume nonintegral values that vary withfor
and 3 for the single vortex state with,=N for N=15. For  the chosen circular path, = const. This reflects the radial
completeness, we also give the circulatietr,) and the Vvariation — of the relative  fractional  weights

velocity curl profiles M, Nl xu (1. ¢)|? of the different fractions witlr, .
K(r)= f]gr o V. RESULTS AND DISCUSSION
=
o The results and discussions given below refe?’®b and
=f v(rr do the following choice of parameter®@0]: \,=8, w,/27
0 =220 Hz, a, =1.222um, a,.=1000(,, where a, is the
% X, (T B2 Bohr radius. Note that the scattering length chosen above
=2mr vy(r,)=2m > mu\, ﬂ(r 5 is ten times that given in the above reference ¥&b. We
© PREL have consciously chosen this to be so because it has been

(15) argued[6] that the relevant parameter in the problem under
study here is Nas./an,), and since in our calculation there
m [ 'm is little room to further increase the value Nffor reasons of
4 ﬁwi

R N (_ﬂ_
p(ri,¢) % “\ria;

V Xv= computational resources required, we thought it appropriate

to increasea,. SO as to get closer to the value of the param-

eter Nas./an,) corresponding to the experimental situation.
X XZ E Cﬁu,mwo{nﬂ Un,.m,.0 Here, we note in passing that many of the properties that we
M examined, like the condensate fraction and the critical angu-
lar velocities();, were found to be varying smoothly ag.

- \/(n,u,_|m,u.|)(n,u.+|m/1|) un‘u*Z,mlL,O}

+cC.C|. was varied betweenal and 100@,(we will discuss some of
these results in the text ahgadlVe present here the results
(16)  for N=15 only in the angular momentum regime<Q,

(xy)

A\
oo =+ N

o

FIG. 3. Depicts the azimuthal
velocity profile in units of
Vhw, /m for (a) the total system
vy(r.), (b) the condensate frac-
tion v47(r,), (c) the nonrotating
(©) (d) component v{?(r,), and (d)
the remaining components
v!#72(r,) in the x-y plane. Dis-
tances are in units d, .

24~ 24~ {
_ AN
=11 21 AN
= = 2RI
[ A
&eo S 590 5
>5 >5

y -5 -5 X
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<3N. We have, however, done the calculations fdr sponding single-particle angular momentum quantum num-
=6, 8, 10, andN=12 also. First we note that we are al- ber {m,} for the largest threeN;>\,>\3) components.
ways in the dilute gas limit here inasmuch léas./a,,)®  The single-particle angular momentum quantum nunmgr
<1, with ap,=(a%a,)*= aﬁ\z_l/ﬁ- Further, we are also in corresponding to the largest eigenvalug is taken to be the
the regime of moderatea.=10008,) to very weak @,  Vorticity of the condensate. We note that, corresponding to
—1a,) interaction strength as the paramedéa../an, is each of the stable ground states of the rotating system,
of order 1 or much less than 1 for the two regimes,"amely,L,=15, 26, 30, 33, 35, 36, 45,... fAi=15,

: _ ; 'the second largest fraction is found to be nonrotating, i.e.,
respectively. Moreover, foas.= 1000, the healing length m,=0. Hence, particles driven out of the condensate by the

¢ [=(8mnas) Y2 with n~N/ay,, the mean particle den- centrifugal force prefer to go to the zero angular momentum
sity] < the oscillator lengthe;,,, ~ the size of the system. (m=0) state.

Thus, our study for the above choice of parameters may be Figure 1 gives the.,-Q phase diagram, or the stability
relevant to bulk systems. line. One can readily identify the successive critical angular
The critical angular velocity)¢, for the single-vortex velocities{€;, i=0,1,2...} for the transition from one
state {,=N) decreases for increasing valueNyfThus, for  staple state to another stable state. Several points are to be
asc= 1000y, itis 0.884%, , 0.867%, , and 0.8448, for  noted here. The nonintegral values for the angular momen-
N=10, 12, and 15, respectively. For a givBinthe critical  tum per particle clearly indicates the incomplete condensa-

angular velocityQ), is also found to decrease with increas- tion, i.e., the fact that more than one eigenvalfies} of the
ing scattering lengtla.. Thus, forN=15, Q, (in units of  reduced density matrix are nonzero. This is, however, not to
w, ) is found to be 0.9998, 0.9978, 0.9790, and 0.8449 folhe taken as the fragmented conden$aid as in the context
asc=1ay, 103y, 100ay, 100Qx,, respectively. The con- of a spatially homogeneous bosonic system with attractive
densate fractiofi.e., the largest eigenvalug of the density  interaction, but merely as depletion of the condensate frac-
matrix) for a givenN and corresponding to the single vortex tion due to the interaction and the rotation. Also, we have
state (,=N), however, seems to be quite insensitive to aobserved that the critical angular velocify.; decreases
change in the scattering length in the weakly to the modermonotonically with increasing repulsive interaction and the
ately interacting regime. Thus, far,=N=15 state andhs,  particle number. This can be readily understood physically
=1lay, 10ay, 100ay, 100Ga,, the condensate fractions from the expression in Eq9) for the critical angular veloc-
(i.e.,N\; valueg are found to be 0.878 27, 0.878 26, 0.877 78,ity Q.=Q.(L,,A,) if one remembers that the nonrotating
0.87069, respectively, i.e., the condensate fraction slowlfL ,=0 angular momentumstate is more compact and,
decreases with increasing interaction. However, as we gtherefore, has its energy raisémecause of the repulsive in-
over to the strongly interacting regime, the condensate beeraction relative to the expanded higher angular momentum
gins getting strongly depleted. Thus, fag,=10 00y, the states. More importantly, however, our critical angular ve-
condensate fraction for the single vortex state=N=15 locity (., for a givenN, is systematically greater than the
reduces to 0.7674. For higher vortex states like, day, nonvariational value based on the yrast-like state
=26 andL,=2N=230 for N=15, the condensate fractions [14,15,12,13 We expect this to be due to our more accurate
are 0.5404, 0.5408, 0.5455, 0.58&8owly increasing and  and, therefore, lower variational ground-state energies.
0.4187, 0.4182, 0.4167, 0.3996lowly decreasing respec- In Fig. 2(a) we have plotted the total density profiér )
tively, for agc=1ag, 10ay, 1008y, 100Cx. for theL,= N single-vortex state of the system. We have also
In Table |, we summarize our results for the ground stateplotted separately the density profiles for the different com-
of the N=15 system in different subspaces of the total anponents of the density,|x,(r)|?=p™(r, ,¢) correspond-
gular momentumL, in the regime G6L,<3N for a5, ing to the largest eigenvalug,(=0.87069) in Fig. o),
=1000a,. As the system is rotated, a number(aftal) an-  \,|x,(r)|?=p®(r, ,¢) corresponding to the second largest
gular momentum states are found to be stable at successivedjgenvalueh ,(=0.065 76) in Fig. &), and p*=2)(r, ,¢)
higher angular velocities€).;, i=1,2,... . Wehave also corresponding to the remaining components in Figl) ®b-
given the density-matrix eigenvalugsa,} and the corre- tained from the one-particle reduced density matrix

() =2xd () ) A d M)+ 2 MxEr) xur)
the condensate the nonro?ating com- =3
withm; =1 ponent with my=0

-

the remaining components
comprising of m wr M2

|
where, as earliemn,, is the single-particle angular momen- depletes-with the nonrotating componeft)(r, ,¢) and the
tum quantum number associated with flath component of remaining component$*~?)(r, ,¢) become more pro-
the density matrix. As we go to highél, the condensate nouncedas can also be seen from TableWe would like to
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TABLE I. Gives the largest three eigenvalues>\,>\3 and the corresponding single-particle angular
momentum eigenvaluesm;, m,, and m; in the one-particle reduced density-matrig(r,r’)
=E”A#X2(r)xﬂ(r’) for the ground state of the rotating BEC, in given subspaces of the total angular
momentumL,. Also given are the ground-state energE%Sb(Lz) in the laboratory frame and the critical
angular velocitied); corresponding to the stable ground states of the rotating system in the angular mo-
mentum regime 6L ,<3N.

Largest three condensate fractiong & \,>\3)

Largest 2nd largest 3rd largest
L, ESP(L,) Q.,i=01,..., m A1 m, Ay m; A3
0 41.18837 0 0 0.9943 1 0.0021 -1 0.0021
1 42.19021 0 0.9251 1 0.0693 -1 0.0036
2 42.99052 0 0.9198 2 0.0586 1 0.0181
3 43.79210 0 0.9133 3 0.0531 1 0.0181
4 44.73324 0 0.8268 1 0.0925 2 0.0543
5 4555314 0 0.8128 2 0.0741 1 0.0717
6 46.38548 0 0.7976 3 0.0792 1 0.0765
7 47.25794 0 0.6948 1 0.1737 2 0.0914
8 48.08941 0 0.6520 1 0.2007 2 0.1002
9 48.92517 0 0.5878 1 0.2618 2 0.1046
10 49.75782 0 0.5114 1 0.3377 2 0.1164
11 50.58520 0 0.4391 1 0.4119 2 0.1189
12 51.41082 1 0.5015 0 0.3583 2 0.1166
13 52.23442 1 0.6055 0 0.2701 2 0.1072
14 53.05612 1 0.7299 0 0.1717 2 0.0875
15 53.86234 0.8449 1 0.8707 0 0.0658 2 0.0574
16 54.86287 1 0.7072 2 0.1567 0 0.1197
17 55.84557 1 0.6143 2 0.1837 0 0.1543
18 56.72501 1 0.7204 2 0.1086 0 0.0985
19 57.69445 1 0.5298 2 0.2348 0 0.1593
20 58.64083 2 0.3683 1 0.2937 0 0.2541
21 59.56022 1 0.4084 2 0.2839 0 0.1880
22 60.48086 2 0.4876 0 0.2846 1 0.1303
23 61.43733 2 0.4410 0 0.2272 1 0.2002
24 62.33085 2 0.5453 0 0.2567 1 0.0805
25 63.31524 2 0.4498 0 0.2042 1 0.1677
26 64.20739 0.9405 2 0.5845 0 0.2138 4 0.0879
27 65.22391 2 0.4518 0 0.2065 3 0.1797
28 66.11546 2 0.5858 0 0.1773 4 0.1088
29 67.13036 2 0.3556 3 0.2596 0 0.2168
30 68.00749 0.9500 2 0.3996 0 0.2001 4 0.1463
31 68.96896 2 0.2725 0 0.2255 3 0.1883
32 69.93098 3 0.3235 0 0.2506 2 0.1905
33 70.88661 0.9597 3 0.4393 0 0.2553 2 0.1168
34 71.86427 3 0.2384 0 0.2210 2 0.2106
35 72.81314 0.9633 3 0.2733 0 0.2304 2 0.1701
36 73.78031 0.9672 3 0.4723 0 0.2086 4 0.1160
37 74.77086 3 0.2920 0 0.2178 2 0.1608
38 75.74022 3 0.3326 0 0.2193 4 0.1648
39 76.69427 4 0.2501 3 0.2272 0 0.2252
40 77.66436 4 0.4148 0 0.2758 5 0.1081
41 78.68052 4 0.2941 0 0.2579 5 0.1916
42 79.64666 4 0.2256 0 0.2150 3 0.2113
43 80.60356 4 0.3664 0 0.2159 5 0.1554
44 81.56135 4 0.5041 0 0.2341 5 0.1101
45 82.49866 0.9687 3 0.2538 0 0.2093 4 0.1980
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emphasize here that for a confined, finite, rotating system ahe various components of the reduced one-particle density
interacting bosons, the one-particle reduced density matrix asatrix. Further work is in progress to consider spin-1 Bose
decomposed above according to the singe-particle angulguarticles, where we expect qualitative changes in the struc-
momentum value is an unambiguous description of the systure of the rotating BEC. In particular, we expect a dramatic
tem. increase in the critical angular velocities because of the spin-
Figure 3 depicts the velocity profiles,(r, ,¢) for the  polarization drag effect inasmuch as the angular momentum
total system in(a), UE;)(rL ,d)=[(m;/a,r,)Vho, Im] for ~ may be absorbed preferentially in the spin rather than the

the condensate ifb), vff)(h ) =[(My/a,r WWho, Im] orbital degrees of frgedom .Without costing kineti(; energy.
for the non-rotating component {), andvsﬁ”>2)(rj_ ) for This could lead to spin polarization due to the rotation of the
the remaining components (). trap [22,23. We expect this effect to be more pronounced

As can readily be seen, for circular paths of ragiin the ~ N€re than in a classical rotating system.

x—(;l/)plani, the conden_sate fraction has an integral circulation ACKNOWLEDGMENT
«'(r )=m;h/m and is constant over space.

In conclusion, our many-body variational calculation for  One of us(M.A.H.A.) would like to thank Professor R.
an admittedly finite numberN=<15) of particles explicity  Nityananda and Professor R. Srinivasan for useful discus-
resolves the structure of the rotating BECTat 0 in terms of  sions.
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