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Angular momentum and an invariant quasilocal energy in general relativity
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~Received 10 March 2000; published 27 November 2000!

A key feature of the Brown-York definition of quasilocal energy is that, under local boosts of the fleet of
observers measuring the energy, the quasilocal energy surface density transforms as one would expect based on
the equivalence principle, namely, likeE in the special relativity formula:E22pW 25m2. This paper provides
physical motivation for the general relativistic analogue of this formula, and thereby arrives at a geometrically
natural definition of an ‘‘invariant quasilocal energy’’~IQE!. In analogy with the invariant massm, the IQE is
invariant under local boosts of the fleet of observers on a given two-surfaceS in spacetime. A reference energy
subtraction procedure is required, but in contrast with the Brown-York procedure,S is isometrically embedded
in a four-dimensional reference spacetime of one’s choosing. For example, it is well known thatany sphere,
round or not, can always be isometrically embedded into Minkowski space, even if its scalar curvature is not
everywhere positive. So rather than embeddability being a concern, the problem now is that such embeddings
are not unique, leading to an ambiguity in the reference IQE. However, in this codimension-two setting there
are two curvatures associated withS: the curvature of its tangent bundle, and the curvature of its normal
bundle. Taking advantage of this fact suggests a possible way to resolve the embedding ambiguity, which at
the same time will be seen to incorporate angular momentum into the energy at the quasilocal level. The IQE
is analyzed in the following cases: both the spatial and future null infinity limits of a large sphere in asymp-
totically flat spacetimes; a small sphere shrinking to a point along either spatial or null directions; and finally,
a large sphere in asymptotically anti–de Sitter spacetimes. The last case reveals a striking similarity between
the reference IQE and a certain counterterm energy recently proposed in the context of the conjectured
AdS/CFT correspondence.

PACS number~s!: 04.20.Cv
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I. INTRODUCTION

It is generally agreed that gravitational energy exists,
because of the equivalence principle it cannot be localiz
The notion of quasilocal energy is currently one of the m
promising descriptions of energy in the context of gene
relativity, and can be characterized simply as follows. T
total energy, including both matter and gravitational con
butions, contained in a finite spatial volumeS can be defined
only as the integral of some energy surface density ove
two-surface boundary,S5]S. This implies that, strictly
speaking, there is no such thing as a local energy volu
density, except that which arises from the smallS limit of
quasilocal energy.1 And even this local notion is not truly
local because it cannot be integrated over a finite volu
unless one is willing to ignore effects due to gravity. In sho
energy is associated with closed spacelike two-surface
spacetime, not points.

There is also a growing consensus that the Arnowi
Deser–Misner~ADM ! and Bondi–Sachs masses are sim
not enough. We need some definition of energy that
‘‘more local’’ than these; i.e., a quasilocal definition th

*Email address: repp@avatar.uwaterloo.ca
1A notable exception is the Tolman density, which integrates

the Komar mass@1#. But it can be defined only when the spacetim
possesses special properties, namely a timelike Killing vector fi
and an asymptotically flat spatial infinity, and so tells us little ab
the nature of energy in a general context.
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does not rely on the existence of an asymptotically flat
gion @2#. For example, recent proponents of this movem
are Ashtekaret al. @3,4#, who have introduced the quasiloc
idea of an isolated horizon to describe a black hole. Th
articulate several reasons for this need, and it is usefu
paraphrase here at least part of their argument: Let us ac
that a black hole is a thermodynamic object, and so obeys
first law: dE5TdS1¯ . Now suppose that the universe
asymptotically flat in spatial directions, and contains a sin
black hole. ThenE in the first law is the ADM mass. But if
there is anything else in the universe thenE is not the ADM
mass, and the question arises, What expression is to be
for E in the first law? In other words, we expect that we c
put something else in the universe, say a galaxy somewh
such that the black hole we started with, considered by its
will still behave as more or less the same thermodyna
object, with the same mass, radiating at the same tempera
as before, and with the same entropy equal to one quarte
area. This expectation requires the ability to compute
energy of a given system contained within a finite clos
surface, rather than merely the total energy of all such s
tems comprising the whole universe.

Thus quasilocal energy lies between the notions of lo
energy density and total energy of an isolated system, in
sense that it is expected to give the energy contained in
volume, no matter how small or large. Although the equiv
lence principle precludes the existence of a local grav
tional energy density, it does not prevent us from evaluat
the ~quasilocal! gravitational energy in an arbitrarily sma
but nonvanishing volumeS. This is because no matter ho
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RICHARD J. EPP PHYSICAL REVIEW D 62 124018
small S is, S5]S is not a point, but rather the boundary
some neighborhood of a point, and so we are always in
ently making a ‘‘tidal force measurement.’’ In this sen
quasilocal energy is distinct from attempts to define a lo
gravitational energy density based on certain symmetrie
the action, and the concept of a No¨ther charge.2 At the other
extreme is the Komar mass~or the closely related ADM
mass!, i.e., the total energy associated with the time trans
tion symmetry of an isolated system. As emphasized in R
@6#, this gravitational conserved charge is intimately co
nected with a lapse function, whereas quasilocal energy n
not make any reference to a lapse function. The point is,
two are conceptually distinct@2,6#, even though in some cir
cumstances one might expect their numerical values to c
cide.

Currently there are several contenders for a good de
tion of quasilocal energy~see Refs.@7–9# and the reference
therein!. The two that interest us at the moment are
Brown-York ‘‘canonical quasilocal energy’’~CQE! @7#, and
the various definitions based on the integral overS of the
Witten-Nester two-form~the two-form used in Witten’s
proof of the positive energy theorem@10,11#!. The latter ap-
proach uses spinorial methods, and the different definiti
are distinguished by the choice of supplementary equa
the S-spinors are supposed to satisfy, for example the S
Witten equation@11,12#, the Dougan-Mason equation@13#,
or the Ludvigsen-Vickers equation@14#. The Brown-York
definition of quasilocal energy has the form3

CQE52
1

8p E
S
dS k2CQEref, ~1.1!

in geometrized units, withG5c51. The CQE is supposed t
be the energy of the gravitational and matter fields contai
in a finite spatial volumeS, whose boundary two-surface
S5]S. dS is the induced integration measure onS, andk is
the trace of the extrinsic curvature ofS as embedded inS.
Thus, 2k/(8p) is the Brown–York quasilocal energy su
face density. WhenS is asymptotically flat the integral in
Eq. ~1.1! ~the unreferenced CQE! diverges asS is taken to
infinity, and a reference term, denoted CQEref, is required to
regulate the energy. The Brown-York prescription is
choose

CQEref52
1

8p E
S
dS kref, ~1.2!

wherekref is the trace of the extrinsic curvature of an isom
ric embedding ofS into some reference space, usually tak
to be flatR3. With this choice the resulting CQE reduces
the ADM mass whenS is taken to infinity@7#. While the
CQE has a host of desirable properties, neatly summarize
Ref. @15#, the embedding prescription needed to evalu

2However, a recent discussion of the connection between pse
tensor methods and the quasilocal idea can be found in Ref.@5#.

3We use a sign convention for extrinsic curvatures opposite to
of Brown and York, hence the negative sign in front of this integr
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CQEref is not entirely satisfactory, because not all tw
surfaces that arise in practice can be embedded into flatR3.
A ready example is the horizon of the Kerr black hole, whi
fails to be embeddable in flatR3 when the angular momen
tum exceeds the irreducible mass~but the black hole is not
yet extremal!, and the two-sphere develops regions w
negative scalar curvature@16#. While this is but one example
it is noteworthy that the breakdown of embeddability is
this case associated with angular momentum and nega
scalar curvature. It is precisely such issues: embeddab
angular momentum, and negative scalar curvature, that
figure prominently in this paper, and will be seen to be sub
intertwined.

Although a relationship between the Brown-York qua
local energy and the spinorial definitions based on
Witten-Nester integral is not immediately obvious, Lau@15#
has shown that spinors may always be chosen so that
resulting spinorial definition is equal to the unreferenc
Brown-York quasilocal energy in Eq.~1.1!. Moreover, he
shows that the role of the Sen-Witten equation is to prov
a definite reference point for the energy, which is not
general the same as CQEref in Eq. ~1.2!. The point being
made here is twofold:~i! the unreferenced Brown-York
quasilocal energy seems to be robust, and~ii ! all of the prob-
lems lie in choosing a suitable reference energy. The vari
prescriptions are either not generally well defined, or they
not agree with each other.

I will now present a brief review of the Brown-York ap
proach in a form that will be useful to us later. The classi
stress-energy tensor of matter is a local concept, assoc
with a spacetime point. It is defined for any field theo
residing on a nondynamical background spacetime~M,g! via
the functional derivative of the~first order! matter action
with respect to the metric, as follows:

2dgI mat@w,g#5E
M

d4xA2gTmat
ab dgab . ~1.3!

Herew denotes the matter field~s! in question, and the facto
of two on the left is a convention. Usually, as we will assum
here, there is no boundary term arising from this variat
~for minimally coupled matter!, but in case there is it doe
not change the essence of the following argument, it j
adds an interesting dimension to it.Tmat

ab so defined is covari-
antly conserved, as follows from the matter Euler-Lagran
equations. This prescription for learning about matter stre
energy gives reasonable answers for all field theories, an
it is natural to try the same thing for gravity. In this case o
finds, for the usual first order action@17#,

2dgI grav@g#5E
M

d4xA2gS 2
1

8p
GabD dgab

1E
B
d3xA2gS 2

1

8p
PabD dgab . ~1.4!

Inspecting the bulk term one is thus tempted to defineTgrav
ab

ª2Gab/(8p) as the local stress-energy tensor of the gra
tational field, whereGab is the Einstein tensor. And this i
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ANGULAR MOMENTUM AND AN INVARIAN T . . . PHYSICAL REVIEW D 62 124018
perfectly reasonable: it is covariantly conserved—in this c
identically so, via the contracted Bianchi identity. Moreov
its on-shell value is zero, in full accord with the equivalen
principle, i.e., there is no nontrivial local stress-energy ten
for the gravitational field.

In fact this absence of a nontrivial local stress-energy t
sor is true not only for the gravitational field, but also for a
system comprised of both matterandgravity. To see this we
need only make the spacetime metric dynamical, in wh
case the matter action in Eq.~1.3! must be augmented by th
gravity action. Adding Eqs.~1.3! and ~1.4! one finds for the
total action

2dgI tot@w,g#5E
M

d4xA2gS Tmat
ab 2

1

8p
GabD dgab

1E
B
d3xA2gS 2

1

8p
PabD dgab . ~1.5!

Thus one is led to identifyTtot
ab
ªTmat

ab 2Gab/(8p) as the total
local stress-energy tensor for matter plus gravity. It has
desirable property of being covariantly conserved, but tu
out to be just zero by the Einstein equations. If this argum
is taken seriously we learn that, as soon as we add gravi
any matter system, the notion of a nontrivial local stre
energy tensor disappears. Furthermore, one might inter
the Einstein equations, written in the formTmat

ab 1Tgrav
ab 50, as

a micro-balancing of local stress–energy at each space
point: wherever a component of matter stress–energy is p
tive, the corresponding component of gravitational stre
energy is negative, and vice versa, such that the total is
ways zero. The idea that2Gab/(8p) is the local stress-
energy tensor of gravity is, of course, a very old idea, fi
put forward by Lorentz and Levi-Civita. It was rejected b
Einstein, since it implies that the total energy of a clos
system would always be zero, which is obvious
problematic.4 It is only with hindsight that we now realize
why the problem was not resolved much sooner. People
did not think about boundary terms as much as they do
day. Thanks to Brown and York we now know that wh
comes to the rescue is the boundary term in Eq.~1.5!.

In this equation the spacetime is assumed to be the to
logical product of a three-spaceS and a real line interval.
The boundary componentB is a timelike tube, topologically
the product ofS5]S and the real line interval.~The two
spacelike end-cap boundary components of]M have been
omitted, as they play no role in this discussion.! The quantity
2A2gPab/(16p), constructed in the usual way out of th
extrinsic curvature ofB, is the gravitational momentum con
jugate to the three-metricgab induced onB. Now, in the
spirit of identifying the stress-energy tensor as the functio
derivative of the action with respect to the metric, one re
off from Eq. ~1.5! the stress-energy tensorTB

ab
ª

4See the historical discussion given on pages 176 and 177 in
@18#. Thanks to L. de Menezes for bringing this reference to
attention.
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2Pab/(8p), which is inherently associated with the boun
ary B, rather than the bulk spacetime. Like any accepta
stress-energy tensor,TB

ab is covariantly conserved~with re-
spect to the derivative operator induced onB!; this follows
from the analogue of the diffeomorphism constraint of ge
eral relativity for the three-surfaceB ~rather thanS!, and
assuming the appropriate components ofTmat

ab vanish onB.
Physically,B is to be thought of as the congruence of wor
lines of a two-parameter family of observers with fou
velocity ua, hypersurface orthogonal to a one-parameter
liation of B by spacelike two-surfaces with the topology ofS.
Within their three-dimensional spacetime~B,g!, the observ-
ers measure a spatial energy densityTB

abuaub , which is pre-
cisely 2k/(8p), and thus one is led to Eq.~1.1!. Finally,
observe that one can add to the action any covariant fu
tional of the boundary three-metricgab without affecting the
previous argument. This is the source of the reference p
ambiguity CQEref in Eq. ~1.1!. This summarizes the centra
idea of the Brown-York approach@7#.

Now if energy is really quasilocal, and calculated via
surface integral involvingTB

ab , one comes to the conclusio
that a priori neitherTmat

ab nor Tgrav
ab has anything to do with

energy. While this might be unsettling at first, it is reassur
to know that a satisfactory notion of localmatter energy
density can be recovered from the small sphere limit
quasilocal energy. For example, in Ref.@19# it is shown that,
for a certain choice of reference term CQEref, the Brown-
York quasilocal energy contained in an infinitesimal sph
of proper radiusr is the volume of the sphere (4pr 3/3) times
the local matter energy densityTmat

ab uaub ~evaluated at the
center of the sphere! that would be measured by an observ
with four-velocity ua. Moreover, this is a well-establishe
property of most quasilocal energy definitions@19–24#, so
the result is quite robust. But at higher order inr, gravita-
tional energy begins to appear, as will be discussed in de
later. The point is there is no contradiction between~i! the
local stress-energy tensorTmat

ab 1Tgrav
ab being zero, and~ii !

there being nonzero stress–energy in a finite spatial volu
This is becauseTmat

ab 1Tgrav
ab is not a local stress-energy

tensor—indeed, if we accept the previous argument, ther
no such thing. There is onlyTB

ab , associated with the fac
that energy is fundamentally quasilocal.

The main purpose of this introduction is to emphasi
firstly, that energy is fundamentally quasilocal, i.e., asso
ated with closed spacelike two-surfaces—not points—
spacetime; and secondly, there are strong reasons to be
that 2k/(8p) is the correct quasilocal energy surface de
sity. The major unresolved problem is how to choose
right well-defined energy reference term, CQEref. Rather
than address this problemper se, I will begin with 2k/(8p)
as an energy surface density and construct a new defin
of quasilocal energy based on analogy with the special r
tivity formula: E22pW 25m2. The new definition is both
physically and geometrically natural, and lies somewhere
tween the Brown-York CQE and the Hawking@25# or Hay-
ward @8# definitions. A reference subtraction procedure
still required, that involves a reference embedding, but thi
a codimension-two embedding that is not subject to the pr

ef.
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RICHARD J. EPP PHYSICAL REVIEW D 62 124018
lem that afflicts the Brown-York embedding prescriptio
Moreover, there is a shift in the physics: the reference e
bedding is not associated with determining a reference
ergy so much as a reference angular momentum, so to sp
Why angular momentum? Because angular momentum
tributes to energy, and the new definition can be seen
precise formulation of this fact at the quasilocal level.

The paper is organized as follows. In Sec. II we introdu
the geometrical quantities we will use later. Section III co
tains the physical and geometrical motivations behind
new definition of quasilocal energy~as well as the definition
itself!. The reference subtraction term is discussed in S
IV. In Sec. V both the spatial and future null infinity limits o
the energy are examined; the small sphere limit is conside
in Sec. VI. Finally, in Sec. VII we examine the new ener
in the context of asymptotically anti–de Sitter spacetimes
summary of results is found at the end of the paper, wh
also includes some additional discussion.

II. THE GEOMETRY OF TWO-DIMENSIONAL
SPACELIKE SUBMANIFOLDS

Let ~M,g! be a four-dimensional Lorentzian geomet
with signature12, andSbe a closed two-dimensional spac
like submanifold. Letua and na be timelike and spacelike
unit normals toS that are orthogonal to each other:uaua5
21, nana51, anduana50. We will assume thatS is orient-
able, and an open neighborhood ofS in M is space and time
orientable, so thatua andna are globally well defined@26#.
ua and na are fixed up to an arbitrary local boost transfo
mation:

u8a5ua coshl1na sinhl,
~2.1!

n8a5ua sinhl1na coshl.

The physical picture to keep in mind is that of a finite spa
volume S, i.e., a three-dimensional spacelike submanifo
whose boundary isS. AlthoughSneed not be connected, no
simply connected, we will often think ofS as having the
topology of a three-ball, andS that of a two-sphere, and thu
will sometimes refer to the direction ofna ~assumed outward
directed! as the radial direction. Given such a three-surfacS
spanningS it is natural to chooseua to be orthogonal toS
~and future directed!, in which casena is tangential toS.
Physically,ua is the instantaneous four-velocity of a two
parameter family of observers onS. With ua thus tied to the
spanning surfaceS, a deformation ofS ~preservingS! will in
general effect a radial boost, Eqs.~2.1!.

The remainder of this section is a summary of some s
dard facts about the geometry of the submanifoldS, as can
be found, e.g., in Ref.@27#, except here we follow a notatio
similar to that used in Ref.@26#. The surface projection op
erator,Pb

a , is a tensor defined onS by

Pb
a
ªdb

a1uaub2nanb . ~2.2!

~All raising and lowering of indicesa,b,c, ... will be effected
with the metricgab , or its inverse,gab.! A surface tensor is
defined as a tensor onS that is left invariant under projection
12401
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of all its indices with the surface projection operator. Ob
ously one such tensor is the spatial two-metric

sabªPa
cPb

dgcd5gab1uaub2nanb ~2.3!

induced onS. Another is the corresponding volume form o
S, given by

eabªeabcdu
cnd, ~2.4!

whereeabcd is the volume form onM. The symboldSwill be
used in place ofeab as the integration measure for (S,s).

If ¹a denotes the Levi-Civita connection of~M, g!, then
Da , the Levi-Civita connection induced on (S,s), is defined
by

DaTc...
b...5Pa

dPe
bPc

f
¯¹dTf ...

e... , ~2.5!

whereTc...
b... is any surface tensor. Then for any two surfa

vector fieldsXa andYa, the Gauss formula reads

Xa¹aYc5XaDaYc1hc
abX

aYb, ~2.6!

wherehc
ab is the second fundamental form. Its first index

normal toS, i.e., Pc
dhc

ab50, whereas the remaining two ar
surface tensor indices, that are symmetric under intercha
@as can be easily seen by interchangingX andY in Eq. ~2.6!
and subtracting the two equations#. Thus the second funda
mental form can be decomposed into components along
two unit normals:

hc
ab5ucl ab2nckab , ~2.7!

where the two extrinsic curvatures are~symmetric! surface
tensors given by

l ab52uch
c
ab5Pa

cPb
d
“cud ,

~2.8!
kab52nch

c
ab5Pa

cPb
d
“cnd .

It is useful to decompose the extrinsic curvatures into tr
and trace-free parts:

l ab5 1
2 lsab1 l̃ ab

~2.9!
kab5 1

2 ksab1 k̃ab ,

wherel 5sabl ab andk5sabkab , and a tilde appearing ove
any quantity in this paper will always mean trace-free p
of. The mean curvature vector is then

Hc
ª

1
2 sabhab

c 5 1
2 ~ luc2knc!, ~2.10!

andH•H5(k22 l 2)/4 is the square of the mean curvature
Extrinsic curvature is a measure of how a unit norm

vector rotates as it is parallelly propagated tangent toS in the
ambient space~M, g!. Two normal vectors means two extrin
sic curvatures. However, from Eqs.~2.8! we see thatl ab and
kab measure only the components of this rotation tangen
S. There is also a normal component, i.e., the componen
the rotation of one normal vector along the other. Thus
8-4
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ANGULAR MOMENTUM AND AN INVARIAN T . . . PHYSICAL REVIEW D 62 124018
complete characterization of the extrinsic geometry ofS re-
quires also the surface one-form

AaªPa
bnc¹buc . ~2.11!

This is an SO~1,1! connection in the normal bundle ofS, and
its associated curvature two-form is

FabªDaAb2DbAa . ~2.12!

We will see later that the curvature of the normal bundle oS
plays a key role with regard to angular momentum.

While the second fundamental form~including Hc and
H•H! and the curvature of the normal bundle are invari
under local radial boosts, the extrinsic curvatures and
connection on the normal bundle are not. They transform

l ab8 5 l ab coshl1kab sinhl,

kab8 5 l ab sinhl1kab coshl, ~2.13!

Aa85Aa1Dal.

Observe thatAa is different from the other measures of e
trinsic geometry in that it transforms as a gauge field.

Our sign conventions are such that the Riemann tenso
~M,g! is defined by (¹a¹b2¹b¹a)Xc5Rabc

dXd , and simi-
larly that of (S,s) by (DaDb2DbDa)Xc5Rabc

dXd ~Xc is a
surface one-form in the latter case!. Appropriate projections
of the Riemann tensor of~M,g! yield the Gauss equation

Pa
ePb

f Pc
gPd

hRe f gh5Rabcd1~ l acl bd2 l bcl ad!

2~kackbd2kbckad!, ~2.14!

the Codazzi equations

Pa
ePb

f Pc
guhRe f gh5~Dal bc2Dbl ac!2~Aakbc2Abkac!,

Pa
ePb

f Pc
gnhRe f gh5~Dakbc2Dbkac!2~Aal bc2Abl ac!,

~2.15!

and the Ricci equation:

Pa
ePb

f ugnhRe f gh52Fab1~ka
cl bc2 l a

ckbc!. ~2.16!

These are the integrability conditions for the isometric e
bedding of (S,s) into ~M,g!, and so by definition ofS are
necessarily satisfied.

III. THE INVARIANT QUASILOCAL ENERGY

A physical interpretation of the various geometrical qua
tities introduced in the preceding section can be given
follows. The expansionk measures the fractional expansio
of the area of a small element ofS when each point in the
element is projected a unit distance radially outward. It w
have a certain positive value if, for example,S is a round
sphere enclosing a volume of flatR3. ~For our present pur-
poses, imagine flatR3 as at5constant surface in Minkowsk
space.! Now if S is a round sphere of the same area enclos
some matter, then, according to the Einstein equations,
12401
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matter curves the space insideS in such a way that its vol-
ume is greater than one would infer by measuring just
area of the sphere and using Euclidean geometry. Thus
expansion measured atS must be smaller, i.e., the areas
spherical shells at larger radii will not increase as rapidly
expected. So we see that the unreferenced Brown-Y
quasilocal energy in Eq.~1.1! is greater~less negative! when
S contains matter, than when it does not. This is an intuit
reason whyk is a measure of the energy insideS. @It also
explains the need to subtract off a reference energy of
form given in Eq.~1.2!: kref is the nonzero value ofk whenS
merely encloses a volume of flatR3, i.e., no energy.#

l is similar tok, except that it measures the expansion oS
in time, i.e., in the direction of the observer’s four-veloci
ua. Intuitively, if the observers tend to be moving radial
outward then the area of the two-surface they are on will
expanding, i.e.,l .0. Conversely, a radially inward motio
corresponds tol ,0. Thusl @more precisely,l /(8p)# can be
interpreted as a radial momentum surface density@28#. In the
case that (k22 l 2) is positive, the observers can always ma
appropriate local radial boosts such thatl 50 at each point of
S, a situation corresponding to a quasilocal rest frame. I w
comment on this notion more precisely at the end of t
section.

The trace-free quantitiesk̃ab and l̃ ab measure the shear o
S, and are intimately connected with angular momentum~or
at leastl̃ ab is!. For example, consider a set of locally nonr
tating observers who at coordinate timet are on a constantr,
t sphere of the Kerr black hole in Boyer-Lindquist coord
nates. Their four-velocity is given by

ua5
1

N S ]

]t
1v

]

]f D a

, ~3.1!

whereN is the lapse function, andv(r ,u)52gtf /gff is an
observer’s angular velocity as measured from infinity@29#.
Starting at Eqs.~2.8! it is not difficult to show that in this
casel 50, so here is an example of observers in a quasilo
rest frame as defined above. Furthermore, one can show
the nonvanishing components of the shear in the time di
tion are given by

l̃ uf5 l̃ fu5
gff

2N

]v

]u
. ~3.2!

Physically, a nonzerov reflects the frame dragging cause
by the rotating black hole. The fact that the degree of fra
dragging depends onu is what makes the observers at d
ferent latitudes of the sphere rotate at different rates rela
to the distant stars, and more to the point, relative to e
other. This causes a shear effect between observers at n
boring latitudes, which obviously disappears when the an
lar momentum is zero.

Furthermore, let the locally nonrotating observers la
themselves with coordinates (u8,f8), which at t50 coin-
cide with the Boyer-Lindquist~u,f! coordinates onS. Then
although the observers always measure the same
geometry ofS as time t goes on, the components of th
two-metricsab in their (u8,f8) coordinates will differ from
8-5
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RICHARD J. EPP PHYSICAL REVIEW D 62 124018
those in the~u,f! coordinates by at- and u-dependent dif-
feomorphism along thef-direction. So although one usuall
associates shear with a geometrical deformation, for insta
a round sphere evolving into an ellipsoid, one can also h
a physically meaningful shear associated with a continu
parameter family of isometric surfaces. This fact plays
important role in understanding certain embedding equat
we will encounter later, and will be discussed in detail el
where@30#.

The last geometrical quantity to interpret isAa , the con-
nection in the normal bundle. In the Brown-York analys
the quantity 2Aa /(8p) is called the momentum surfac
density, and is denoted asj a @7#. The momentum vectorj a is
tangential toS, corresponding to a rotating two-surface, a
thus should be associated with angular momentum. Ind
this is correct: LetB denote the timelike three-surface that
the congruence of world lines belonging to the tw
parameter family of observers on a two-sphereS. If B admits
a Killing vector fieldfa, whose orbits lie inS, then one can
define the angular momentum charge

JªE
S
dSfaj a , ~3.3!

which can be shown to coincide with the ADM angular m
mentum at infinity for asymptotically flat spacetimes@7#.
Thus we expect both the shear and the connection in
normal bundle to play a role in angular momentum at
quasilocal level, and indeed we will see that this turns ou
be the case.

Now the first goal of this paper is to provide a physic
motivation for the general relativistic analogue of the spec
relativity formula:E22pW 25m2. First of all, this formula ap-
plies strictly to point particles~as opposed to extended o
jects!. One imagines determining, say, the instantane
three-velocity of such a particle by measuring its location
space at two closely separated points in time, in some ine
reference frame. In the spirit of the quasilocal idea, the a
logue of this in general relativity would be to first repla
measurements at a point with measurements on a cl
spacelike two-surfaceS. But measurements of what?
would seem that measurements of the location of the p
particle in some inertial frame is to be replaced with me
surements of the two-geometry ofS in a generic spacetime
These measurements are to be repeated at two closely
rated points in time. In the point particle case this yields
three-velocity~or the three-momentumpW if one also knows
m!; in the two-surface case it yieldsl ab , the time componen
of the extrinsic curvature ofS. Now I pointed out above tha
the trace ofl ab—more preciselyl /(8p)—indeed has the in-
terpretation of a momentum: it is the normal~or radial! mo-
mentum surface density@28#. So it seems reasonable to r
placepW with l /(8p). What about the trace-free part ofl ab? It
was argued above thatl̃ ab is associated with angular mome
tum. Insofar as angular momentum is qualitatively distin
from linear momentum, its role at least at this point of t
argument is not clear, and we will simply drop it for no
~however, its role will become clear later!. Notice that drop-
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ping l̃ ab is at least roughly consistent with being interest
only in the two-geometry ofS, i.e., the two-metricsab

modulo diffeomorphisms, since, as indicated above,l̃ ab is in
some cases associated with just diffeomorphisms ofS.

Thus, in the expressionE22pW 2 we will replacepW with
l /(8p). What should replaceE? Given the preceding discus
sion, the obvious answer is the Brown-York energy surfa
density,2k/(8p). Clearly l /(8p) and2k/(8p) are on ex-
actly the same geometrical footing, being proportional to
timelike and spacelike components of the mean curva
vectorHc @see Eq.~2.10!#. Thus we arrive at the generaliza
tion

E22pW 2→ 1

~8p!2 ~k22 l 2!. ~3.4!

Now before we accept this generalization, let us observe
there is something unexpected about it. The four-momen
(E,pW ) has become a two-momentum (2k,l )/(8p). What
happened to the other two components of spatial mom
tum? l /(8p) is just the radial component; should not th
Brown-York momentum surface densityj a @in our notation,
2Aa/(8p)#, which is tangent toS, be the analogue of the
two missing components ofpW ? If so, then instead of Eq.~3.4!
we should have

E22pW 2→
? 1

~8p!
~k22 l 22AaAa!. ~3.5!

At first sight this expression is appealing because it ma
festly includes a contribution from angular momentum, a
it is known that in general relativity angular momentum co
tributes to mass. A simple example that illustrates this p
nomenon is the Kerr black hole, where the ADM mass
excess of the irreducible mass is due to rotational ene
The precise relationship is@29#

M ir
25M22S J

2M ir
D 2

, ~3.6!

whereM is the ADM mass,M ir the irreducible mass, andJ
the angular momentum of the black hole. Comparing
right-hand sides of the previous two equations suggests
conceptually identifyuAu/(8p) with the angular momentum
term, J/(2M ir), which seems reasonable. This leav
Ak22 l 2/(8p) to be interpreted as an object likeM, viz., a
total mass, total in the sense that it includes the contribu
from angular momentum. But here then is the poi
Ak22 l 2/(8p) somehow implicitly already includes the an
gular momentum contribution to mass. Precisely how w
become clear later, but to see immediately that this is at le
plausible, consider the casel 50. Then2Ak22 l 2/(8p) re-
duces to the Brown-York energy surface density, at le
whenk is non-negative, and it is known that the~referenced!
Brown-York quasilocal energy yields the ADM mass at sp
tial infinity, which includes the correct angular momentu
contribution to mass. So we do not need theAaAa term in
Eq. ~3.5!. Besides, putting it in is counter to our goal o
8-6
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ANGULAR MOMENTUM AND AN INVARIAN T . . . PHYSICAL REVIEW D 62 124018
seeing if general relativity admits an analogue of theinvari-
ant mass,m: While the combinationk22 l 2 is invariant under
radial boosts,5 AaAa is not—see Eqs.~2.13!. So from this
point of view the right-hand side of Eq.~3.5! is defective, not
to mention the generally unsavory fact that itmixesobjects
with different transformation properties.6 The question of
missing momentum components can also be thought abo
follows. A point particle has three components of spa
momentum. Likewise, each point on a two-surfaceSalso has
three components of spatial momentum~more properly, mo-
mentum surface density!: one normal, and two tangential t
S. But being tangential, the latter two are associated wit
rotating surface, and hence with angular momentum. In
ing from a point to a two-surface, two components of t
linear momentum have become angular momenta. So the
not ~directly at least! contribute to the expression for an in
variant mass given on the right-hand side of Eq.~3.4! be-
cause, as claimed, this expression already inherently inclu
the contribution from angular momentum.

Thus we are led to propose the following definition of
invariant quasilocal energy~or IQE!:

IQE52
1

8p E
S
dSAk22 l 22IQEref, ~3.7!

where IQEref is a reference subtraction term that will be d
fined later. The word invariant in IQE refers to the fact ju
mentioned, thatk22 l 2 is invariant under local radial boost
of the observers onS. And the word energy is used instead
mass—despite our analogy betweenAk22 l 2/(8p) and the
massm—because, as we will see in Sec. VII, the IQE b
haves more like an energy than a mass. So the IQE ca
thought of as the amount of rest energy contained inS, a
quantity independent of the motion of the observers mea
ing it. Notice that the unreferenced IQE is negative. Nom
nally the reference energy IQEref is morenegative, so that the
referenced IQE is positive.

5This was first noted in Ref.@28#. A further discussion of boosted
observers in the Brown-York framework appears in Ref.@31#.

6Hayward’s@8# definition of quasilocal energy includes an angu
momentum contribution of the form2vava , analogous to the
2AaAa term in Eq.~3.5!. Hayward’sva is a suitably normalized
anholonomicity, or twist, of the pair of null normals toS, and en-
codes essentially the same information asAa . The important dis-
tinction is that, unlike the connectionAa , the objectva is boost
invariant, and so representing angular momentum with a term
portional to 2vava , as Hayward does, is perfectly acceptab
~The relationship betweenAa andva is discussed in Appendix B o
Ref. @32#.! However, there is no need, or even natural way forva to
enter our work here. For instance, theAaAa term in Eq.~3.5! cannot
simply be replaced withvava , since the~tentative! inclusion of
this term is suggested by the physical interpretation ofAa as a
momentum surface density. This interpretation arises from Brow
and York’s Hamilton-Jacobi analysis of the gravitational action@7#,
and it is not clear that a similar interpretation can be given tova .
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It is useful to express the integrand of the unreferen
IQE in two other equivalent forms. Define the pair of nu
normalsj6

a
ªua6na on S, and the corresponding null ex

pansions

u6ªsab¹aj6b5 l 6k, ~3.8!

cf. Eqs. ~2.8! and ~2.9!. Then we have the following three
equivalent expressions:

1

8p
Ak22 l 25

1

8p
A2u1u25

1

4p
AH•H. ~3.9!

For the last expression recall the definition of the mean c
vature given after Eq.~2.10!. Thus the unreferenced IQE i
Eq. ~3.7! has a very simple geometrical interpretation: up
a proportionality constant, it is just the mean curvature ofS,
averaged overS. Because of the square root it is defined on
whenk22 l 2>0, i.e., at each point ofS the mean curvature
vectorHc in Eq. ~2.10! must be either spacelike or null, bu
never timelike. Roughly speaking, this means that the are
Schanges more rapidly in a radial direction, than in time. F
example, this condition is satisfied for the constantr,t two-
spheres outside the horizon of a Schwarzschild black h
but not for those inside; on the horizon the unreferenced I
is zero.

In terms of the null expansions, recall that a future~past!
trapped surface is one for which both ingoing and outgo
null expansions,u2 andu1 , are everywhere negative~posi-
tive! on S@1#. Thus, the unreferenced IQE is imaginary wh
S is a future or past trapped surface. It is real only when
point onS is trapped. Now a future trapped surface does
quite characterize a black hole, and more subtle characte
tions have been proposed for a local definition of a bla
hole horizon@3,4,32#. For example, Hayward@32# has intro-
duced the notion of a future outer trapping horizon,H, char-
acterized by~i! u2uH,0 ~in-going light rays converging!,
~ii ! u1uH50 ~outgoing light rays instantaneously parallel o
the horizon!, ~iii ! u1uH1.0 ~outgoing light rays diverging
just outside the horizon!, and~iv! u1uH2,0 ~outgoing light
rays converging just inside the horizon!. According to this
general definition of a black hole, the unreferenced IQE
nonzero just outside the horizon, zero on the horizon,
undefined~or imaginary! just inside the horizon. In this con
nection see also Ref.@33#.

Furthermore, observe that the condition for the integra
of the unreferenced IQE to be real and nonzero, namelyk2

2 l 2.0, is precisely the same condition that ensures that
observers can always, by appropriate local boosts, go
quasilocal rest frame in whichl 50 at each point ofS. Such
a two-surface is analogous to a massive particle. The c
k22 l 250 everywhere onS, for instance whenS is a future
outer trapping horizon, is analogous to a massless part
for which no quasilocal rest frame exists. And finally, th
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.
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RICHARD J. EPP PHYSICAL REVIEW D 62 124018
casek22 l 2,0, say inside a future outer trapping horizo
corresponds to a superluminal particle.7

The situation is actually more subtle than indicated in
previous two paragraphs. The conditions forA2u1u2 to be
real are reminiscent of the conditionu2<0 required for the
holomorphic case of the Dougan-Mason quasilocal energ
be non-negative. The conditionsu1>0 and u2<0 essen-
tially imply that the two-surfaceS is suitably convex@13#. To
emphasize that ‘‘suitably convex’’ is not a serious restr
tion, in particular it does not mean thatScannot be concave
consider a two-parameter family of observers at rest in
inertial frame in flat spacetime. Suppose that att50 they lie
on a two-sphereS that is round except for a small indent
tion. Thenl 50 at each point ofS, andk is positive every-
where except in a small region near the center of the ind
tation, where it is negative. Thus there will be a circle
points C at which k50. So at each point ofS we havek2

2 l 2>0, equality holding onC. One might worry that a ra-
dial boost at a point onC will make l 2.0, and hencek2

2 l 2,0. But of course this will not happen: If we consider
second set of observers, boosted relative to the first, thek
5 l 50 onC impliesk85 l 850 onC. So we can consider th
second set of observers to be boosted radially outward in
region of the indentation, such that the indentation, and
attendant set of fixed pointsC, smoothly disappear as th
sphere evolves in time.k switches from negative to positiv
by passing through the origin of ak- l diagram. Thus we can
imagine a wide class of two-surfaces, including ones w
indentations, and dynamically changing in time, for whi
k22 l 2>0 everywhere onS. Moreover, bear in mind that th
observers are allowed to accelerate, so there is a great de
freedom for them to maintain a physically reasonableS.
Nevertheless, what is needed here is a careful analysis b
on Raychaudhuri equations for a two-parameter family
accelerated timelike curves. Such a detailed analysis is
side the scope set for this introductory paper.

IV. THE REFERENCE INVARIANT QUASILOCAL
ENERGY

As in the Brown-York case, the unreferenced IQE
verges in an asymptotically flat spacetime as the two-sur
S is taken to~spatial or null! infinity, and so must be regu
lated with a reference term, IQEref, as already anticipated in
Eq. ~3.7!. To better understand the nature of our definition
the invariant quasilocal energy, and to help suggest a na
choice for IQEref, we now make use of the Gauss embedd
equation given in Eq.~2.14!. This equation has only on
independent component. Transvecting both sides w

7As noted in the text, the spirit of the quasilocal idea is to repla
measurements at a point~of certain aspects of a point particle, sa!
with measurements on a closed spacelike two-surface. If one t
seriously that Eq.~3.4! is the generalization of point particle re
mass, then one is quickly led to speculate that a closed spac
two-surface is the generalization of a point particle. This is cu
ously reminiscent of string theory, except that the one-dimensio
string is replaced by a two-dimensional surface.
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sacsbd reduces it to the scalar equation

ssR5R2 1
2 ~k22 l 2!1~ k̃22 l̃ 2!, ~4.1!

where ssR is shorthand forsacsbdRabcd, (k̃22 l̃ 2) is
shorthand for (k̃abk̃ab2 l̃ abl̃ ab), andR is the scalar curva-
ture of (S,s). Using this equation we can express the IQ
given in Eq.~3.7! in the equivalent form

IQE52
1

8p E
S
dSA2@R2ssR1~ k̃22 l̃ 2!#2IQEref.

~4.2!

We remark here thatssR is a natural geometrical objec
called the sectional curvature of (S,s) as embedded in~M,
g! @27#. It will play an important role in what follows.

Now the definition of the unreferenced IQE is rooted
the extrinsic geometry of the submanifold (S,s), thought of
as a two-surface isometrically embedded in the spacet
~M,g!. It is then natural to define the reference IQE to be
the same form as the unreferenced IQE in Eq.~4.2!, i.e., to
be the same geometrical object, except with (S,s) now iso-
metrically embedded in a different spacetime—some re
ence spacetime (M ref,gref). Thus IQEref will be the integral
in Eq. ~4.2! @or Eq. ~3.7!#, except with all quantities referred
to the reference spacetime, which we indicate with a sup
script ref. Note that although the extrinsic geometry ofSwill
be different in (M ref,gref), its intrinsic geometry, by assump
tion, will not. So in the IQEref integral we are constructing
we can setdSref5dS, Rref5R, and (ssR)ref5ssRref. Also
note that, in general,M refÞM ~topologically!. For example,
S may be a two-sphere embedded in a black hole spacet
with M5R23S2, whereas the reference spacetime might
Minkowski space, withM ref5R4. With this understanding
we define

IQEref52
1

8p E
S
dSA~k22 l 2!ref

52
1

8p E
S
dSA2@R2ssRref1~ k̃22 l̃ 2!ref#.

~4.3!

The termssRref is shorthand forsacsbdRabcd
ref , whereRabcd

ref

is the Riemann tensor of the reference spacetime.
Typically one is motivated to choose a reference spa

time of constant curvature, the geometrical reason being
then the Gauss, Codazzi, and Ricci embedding equat
make no reference to where (S,s) is embedded in
(M ref,gref). In other words, the conditions placed onkab

ref ,
l ab
ref , and Aa

ref by the reference version of Eqs.~2.14!–
~2.16!—which are just integrability conditions for the refe
ence embedding—do not depend on knowing the embed
itself @34#. This is a pleasing criterion because it keeps
reference spacetime abstract, rather than concrete. For a
dimensional space of constant curvature we have
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Rabcd
ref 5

C

12
~gac

refgbd
ref2gbc

refgad
ref!, ~4.4!

whereC is the constant value of its scalar curvature. For t
choice of reference spacetime one gets

ssRref5
C

6
. ~4.5!

For example, for Minkowski space we haveC50, and for
anti–de Sitter space we haveC5212/l 2, where l is the
radius of curvature of the anti–de Sitter space, and is rela
to the ~negative! cosmological constantL by L523/l 2.
We will return to these two examples later.

The idea of embedding (S,s) into some reference space
~time! is in the same spirit as the Brown-York approach, b
an important difference that arises out of using the invari
quantityAk22 l 2, rather thank, deserves further comment. I
the Brown-York approachk is the trace of the extrinsic cur
vature of (S,s) as embedded in a three-geometry~S,h!,
where S is a spacelike three-surface spanningS, with in-
duced metrichab . Thus it is natural to takekref as the trace
of the extrinsic curvature of (S,s) as embedded in som
three-dimensional reference space, (S ref,href). So the embed-
dings of S, for both the unreferenced and reference CQ
inherently have athree-dimensional target space. On th
other hand,Ak22 l 2 is proportional to a geometrical invar
ant of S, namely its mean curvature, and makes no esse
reference to a spanning three-surfaceS ~making the IQE
truly quasilocal in the sense that it depends onS alone8!. As
a consequence, the embeddings inherently have afour-
dimensional target space~time!.

The advantage of a three-dimensional target refere
space, say flatR3, is that when the embedding exists, it
unique~up to translations and rotations!, and so the Brown-
York CQEref is unique. The disadvantage, as is well know
is that such embeddings do not exist for all (S,s) of interest,
and this problem is not limited to just a few isolated exce
tional cases.

For a four-dimensional target reference spacetime,
Minkowski space, the situation is reversed: an embedd
always exists, but it is not unique. Regarding the first half
this statement, Brinkmann@35# has shown, by a simple ex
plicit construction, that anyn-dimensional conformally flat
Riemann space can be considered as a particular cut
light cone in (n12)-dimensional Minkowski space. An
conversely, any cut of such a light cone gives
n-dimensional conformally flat Riemann space. Now anyn
52 space is, of course, conformally flat, and thus any (S,s)
can always be so embedded, even ifShas regions with nega
tive scalar curvature. In the Introduction I mentioned t

8The CQE can also be made truly quasilocal, in a slightly differ
sense: by relaxing the restriction that the foliation of the spacet
~i.e., S! be orthogonal to the boundaryB @7#, it is shown in Ref.
@31# that the resulting CQE no longer depends onS, but instead just
depends on the foliation ofB.
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example of the horizon of the Kerr black hole, which cann
be globally embedded into flatR3 when the angular momen
tum exceeds the irreducible mass, which coincides with
two-sphere developing regions with negative scalar cur
ture @16#. However, it is a simple exercise to apply Brink
mann’s construction and thus globally embed the horiz
into a light cone of four-dimensional Minkowski space.
will omit the details of this calculation, and just note that t
embedding is valid for all angular momentumJ ~up to and
including the extremal black hole case!, and changes
smoothly withJ, including at the critical point whenJ equals
the irreducible mass.

On the other hand, in a codimension-two~versus
codimension-one! embedding there is more elbow room, an
consequently the embedding is not unique—there is a fu
tion worth of freedom~which will be discussed in detail in
Ref. @30#!. This results in an ambiguity in the reference e
ergy, IQEref, which enters via the reference shear term (k̃2

2 l̃ 2)ref—see Eq.~4.3!. This is the only term in IQEref not yet
determined, and the only one for which we require an
plicit reference embedding. Observe that in the Brown-Yo
approach the undetermined quantity iskref, an expansion.
Here it is (k̃22 l̃ 2)ref, a shear. I will now argue that it is
precisely this term that plays the key role in properly inco
porating angular momentum into the IQE. The basic idea
simple, but first we will introduce some notation.

In the preceding section we introduced the null norm
j6

a 5ua6na, and corresponding null expansionsu65 l 6k
in Eq. ~3.8!. Similarly, the~trace-free! shears in the two null
directions are defined bys6abª l̃ ab6 k̃ab . The curvature of
the normal bundle has only one independent component,
can be written asFab5(F/2)eab for some scalar fieldF,
where eab is the volume form onS defined earlier in Eq.
~2.4!. With this notation, and assuming that the referen
spacetime is one of constant curvature, i.e., Eq.~4.5! holds,
the Gauss, Codazzi, and Ricci embedding equations give
the end of Sec. II take the form

C

6
5R1

1

2
u1

refu2
ref2s1

refa
bs2

refb
a , ~4.6!

05 1
2 ~Da7Aa

ref!u6
ref2~Db7Ab

ref!s6
refb

a ,
~4.7!

05Fref1 1
2 ea

b@s1
ref ,s2

ref#b
a . ~4.8!

In the Ricci equation,@s1
ref ,s2

ref#b
a denotes the commutator o

the shears:s1
refb

cs2
refc

a–s2
refb

cs1
refc

a . Notice that by using null
directions, rather thanua andna, the Codazzi equations hav
decoupled into a1 and a2 set.

Our task is thus: Givensab , and henceR, Da , andeab ,
solve these embedding equations for the unknown quant
u6

ref , s6ab
ref , andAa

ref . ~Of courseFref52eabDaAb
ref is not an

independent quantity.! In particular, we are interested in th
solution for the boost invariant reference shear term

~ k̃22 l̃ 2!ref[2s1
refa

bs2
refb

a ~4.9!
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RICHARD J. EPP PHYSICAL REVIEW D 62 124018
appearing in the Gauss equation, which is to then be su
tuted into the second integral of Eq.~4.3!. Or equivalently,
solve for (k22 l 2)ref[2u1

refu2
ref and substitute the answe

into the first integral of Eq.~4.3!. This is how IQEref is de-
termined.

However, as already noted, any solution we obtain is
unique. We can see this immediately by counting functio
degrees of freedom.u6

ref are two functions,s6ab
ref are four~the

two shears are symmetric and trace-free!, andAa
ref are two.

These eight functions are subject to six equations: Gaus
one, Codazzi are four, and Ricci is one. This leaves t
arbitrary functions in the solution. But owing to the invar
ance of the embedding equations under a local boost tr
formation@see Eqs.~2.13!#, one of these functions is just th
boost parameter,l, leaving one nontrivial arbitrary function
in the solution.

The question then arises, Is there a natural way to imp
one additional functional condition on the unknowns so t
the embedding, subject to this additional condition,
unique, and hence IQEref is unique? One of the central idea
in this paper is to impose the additional condition

Fref5F, ~4.10!

i.e., the curvature of the normal bundle ofS as embedded in
the reference spacetime (M ref,gref) should equal that ofS as
embedded in the original physical spacetime~M,g!.

There are several reasons why it is geometrically nat
to demandFref5F. First, the two-surfaceShas two connec-
tions: one is an SO~2! connection on the tangent bundle ofS,
associated with the curvatureR, and the other is an SO~1,1!
connection on the normal bundle ofS, associated with the
curvatureF. In fact both of these connections are met
connections, associated with the metrics in the tangent
normal bundles toS, respectively@27#. Furthermore, Szaba
dos @26# has considered the two-dimensional version of
Sen connection for spinors and tensors on a subman
such asS, and has found that the two-surface spinor cur
ture has, essentially, imaginary part equal toR, and real part
equal toF. Finally, althoughAa is a measure of extrinsic
geometry, as pointed out earlier it is not really on the sa
footing as the extrinsic curvatureskab and l ab , since its
transformation law under local radial boosts is qualitativ
different—see Eqs.~2.13!. It transforms like the connection
that it is, and gives rise to a curvature, and so arguably
more in common withR than withkab andl ab . The point is,
F is really on the same geometrical footing asR. We have
already demanded thatRref5R, as a necessary condition fo
the embedding of (S,s) into (M ref,gref) to be isometric. So
demanding also thatFref5F is thus seen to be quite natura

Unfortunately, implementing Eq.~4.10! seems like an in-
tractable task. Embedding equations involving curvature
the normal bundle, i.e., codimension-two~and higher! em-
beddings, have, of course, been studied for a long time. W
regard to solutions, although one expects to be able to
press (k̃22 l̃ 2)ref in terms ofF, R, and their derivatives, I am
not aware of any such general results in the literature. In f
much of the literature on such embeddings considers the
F50, which is not the case we are particularly interested
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here~a notable exception is Ref.@27#!. One possible way to
proceed is as follows. GivenFref @5F by Eq.~4.10!#, choose
Aa

ref such thatFref52eabDaAb
ref . There may be a convenien

gauge choice, such asD•Aref50, or l ref50. Then view the
Codazzi equations~4.7! as a set of four linear partial differ
ential equations for the four independent degrees of freed
in the two shears. These equations are of second order if
makes use of the fact that any trace-free symmetric ten
sab on a two-surface (S,s) with two-sphere topology can b
expressed assab5Davb1Dbva2sabD•v for some vector
field va. Thus solve fors6ab

ref in terms of the expansions
u6

ref , and their derivatives. The expressions one obtains
this stage are, in general, nonlocal. Then substitute these
the Gauss and Ricci equations~4.6! and ~4.8!, which are
really just nonlinear algebraic constraints. But because
shears involve nonlocal operators acting on the expansi
one ends up with two nonlocal and nonlinear partial diffe
ential equations for the two expansions. Remarkably, i
almost possible to solve these equations, but in the end
encounters a certain combination of nonlocality and non
earity that makes the final step to a solution seem imposs
Nevertheless, it appears that the solution for (k̃22 l̃ 2)ref, if it
can be found, almost certainly depends in a simple way
bothR andF, and derivatives~of a finite or possibly infinite
order! of these two curvatures. I am suggesting that it
through this subtle presence ofF in ( k̃22 l̃ 2)ref that angular
momentum is properly incorporated into the IQE.

So although a direct attack on the embedding equati
has not yet yielded a solution, fortunately one can ma
some progress of a general nature by calculating the first
second order variations ofFref and (k̃22 l̃ 2)ref under isomet-
ric deformations of a given embedding. The idea is to s
how both of these quantities change under such a defor
tion, and thereby infer how (k̃22 l̃ 2)ref depends onFref, and
hence angular momentum. The results are somewhat
volved, and will be given elsewhere@30#. For now let us start
by making some simple observations regarding the enigm
object (k̃22 l̃ 2)ref.

To begin with, one might object to our argument thus
because it implies that (k̃22 l̃ 2)ref, and hence IQEref, de-
pends on the extrinsic geometry ofS as embedding in the
physical spacetime. In particular, through Eq.~4.10! and the
reference embedding equations, (k̃22 l̃ 2)ref depends onF.
On the other hand, it is often stated that a reference subt
tion term should be a functional of only the intrinsic geom
etry of (S,s). However, notice that there is no dependen
on the extrinsic curvatures proper, i.e.,l ab and kab , only a
dependence onF, a quantity which I argued above is real
on the same geometrical footing as the intrinsic quantityR.
Moreover, as discussed in the Introduction@refer to Eq.
~1.5!#, in the Brown-York approach one is free to add to t
action any functional of the boundarythree-metric, gab ,
which contains information about the two-metricsab , as
well as information about how (S,s) is embedded in the
three-boundaryB. For instance, one could add to the action
boundary integral of the scalar curvature ofB, whose varia-
tion would add toPab in Eq. ~1.5! a term proportional to the
8-10
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ANGULAR MOMENTUM AND AN INVARIAN T . . . PHYSICAL REVIEW D 62 124018
Einstein tensor ofgab , as is done in Ref.@36#. Such a term
obviously depends on some extrinsic geometry of (S,s). In
the work of Brown and York this fact is of course reco
nized, but being in a Hamiltonian framework, they restr
the form of the arbitrary boundary functional such that t
energy surface density@2k/(8p)# and momentum surfac
density@2Aa /(8p)# of S in a particular spacelike hypersu
faceS depend only on the canonical data onS. This effec-
tively means that their reference subtraction term can dep
only onsab @7#. But as I emphasized earlier, our approach
based on the invariant objectAk22 l 2, and makes no essen
tial reference to a three-surfaceS spanningS. The invariant
quasilocal energy constructed here does not come out
canonical analysis, so there is no reason that our subtrac
term cannot depend onF.

So the shear term (k̃22 l̃ 2)ref is allowed, but is it really
necessary? Perhaps it is just an unsavory term resulting
a poor definition of the IQE. For instance, looking at t
Gauss embedding equation~4.1! one might be tempted to
write, instead of Eq.~3.4!,

E22pW 2 →
? 1

~8p!2 @~k22 l 2!22~2k̃22 l̃ 2!#, ~4.11!

where the additional shear term on the right-hand side
perhaps the proper way to include angular momentum, so
what like theAaAa term we attempted in Eq.~3.5!. This
would have the advantage of changing IQEref in Eq. ~4.3! to

IQEref5
?

2
1

8p E
S
dSA2@R2ssRref#, ~4.12!

which is clearly unique, and moreover, requires no expl
reference embedding~no equations need to be solved!. Equa-
tion ~4.12! is a more general case of the zero point ene
suggested by Lau@37# ~except that his derivation of it re
quires an explicit reference embedding—we will return
this point later!. But unfortunately it cannot be correct. Fo
example, when the reference spacetime is Minkowski sp
Eq. ~4.5! tells us thatssRref50 and thus the radical reduce
to A2R, which is not defined for negativeR. Nor is this
problem properly solved by takingCÞ0 in Eq. ~4.5!, since
this would put anad hocfixed lower bound onR.

So the shear term (k̃22 l̃ 2)ref is not only allowed, it is
necessary~or at least its absence leads to an unsatisfac
result!. In fact its role seems to beto keep non-negative wha
is under the square rootin Eq. ~4.3!. To see this more
clearly, consider the special case that (S,s) is embeddable in
flat R3. If our reference spacetime is Minkowski space,
can then choose to embed (S,s) in a t5constant slice and
within this slice, the embedding is essentially unique. In t
case it is easy to see that we will havel ab

ref50. And by as-
sumption,ssRref50, so Eq.~4.3! reduces to
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IQErefu l
ab
ref5052

1

8p E
S
dSukrefu

52
1

8p E
S
dSA2@R1~ k̃ref!2#. ~4.13!

The uniqueness of the embedding means thatkref andk̃ab
ref are

unique. Now clearly, no matter what the surface is, the s
tial sheark̃ab

ref must be such that what is under the square r
in Eq. ~4.13! is non-negative, becauseukrefu is real. @More
properly, one should look at the ‘‘reference version’’ of E
~4.1!, with (l ref)25( l̃ ref)25ssRref50.# For example, con-
sider a dumb-bell–shaped surface of revolution in flatR3. In
a region near the throat of this surfaceR is negative, never-
theless at every point of the surface we haveR1( k̃ref)2

>0.
I emphasize that, even when (S,s) can be embedded in

flat R3, its embedding in Minkowski space need not be ch
sen to be in at5const slice, as was done in the previo
paragraph. One may also embed it in a light cone, or i
host of other ways—remember that there is a function-wo
of freedom in our choice. I argued in the context of E
~4.10! that this freedom has to do with angular momentu
or more precisely, the curvature of the normal bundle. F
the t5const embedding,l̃ ab

ref50 implies s6ab
ref 56 k̃ab

ref , and
so inspection of Eq.~4.8! reveals that in this caseFref50.
However, it is not hard to see that starting with such at
5const embedding one can perform an infinitesimal isom
ric deformation of the embedding out of thet5const plane,
i.e., in a directionw]/]t, wherew is an arbitrary function.
Furthermore, I show in Ref.@30# that after such an infinitesi
mal deformationFref is no longer zero, and can in fact b
made to be essentially any infinitesimal function we like by
suitable choice ofw. It is not hard to imagine~just hard to
do! that by integrating such isometric deformations one m
be able to achieve a two-geometry (S,s) isometrically em-
bedded with any desired curvature of the normal bund
With this in mind, it would seem unnatural to referenc
embed, e.g., a constantr,t two-sphere of the Kerr geometr
~which is easily shown to haveFÞ0! as a two-sphere in a
Minkowski reference spacetime withFref50 ~say, in a t
5const slice!, when it seems possible to instead embed
with Fref5F. Note, however, that as the embedding is d
formed out of thet5const surface,l̃ ab

ref will also cease to be
zero, and so will introduce a negative contribution to t
quantity under the square root in Eq.~4.3!. This jeopardizes
the non-negativity of this quantity. But at the same time
clearly cannot simply throw away the2( l̃ ref)2 term, since
this would violate a key property of the IQE, namely i
invariance under local boosts. Short of solving the emb
ding equations for a genericFref and explicitly checking, I do
not know of any guarantee of non-negativity. Equivalent
in question here is the non-negativity of the quantity (k2

2 l 2)ref, which is the same type of question as the no
negativity of (k22 l 2) discussed at the end of Sec. III. I d
not at present have a complete answer to either of th
difficult questions.
8-11
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RICHARD J. EPP PHYSICAL REVIEW D 62 124018
Finally, one might guess that it is possible to avoid t
embedding problem entirely by simply setting (k̃22 l̃ 2)ref

5( k̃22 l̃ 2), which is in the same spirit as Eq.~4.10! in that,
like F, the shear term has something to do with angu
momentum. But this does not work. For example, it is n
hard to show that, although (k̃22 l̃ 2) is in general nonvan-
ishing on constantr,t spheres of the Kerr geometry, it hap
pens to vanish on the horizon. So if we set (k̃22 l̃ 2)ref5( k̃2

2 l̃ 2), then in calculating IQEref for the Kerr horizon ex-
ample we would run into the same problem with negativeR
as we did in Eq.~4.12!. So such a prescription must not b
valid, and we cannot avoid the embedding problem this w

Let us conclude this section by addressing the follow
question: What is the relationship between the IQE defi
here and the Brown-York CQE? We begin by supposing t
the following four conditions are satisfied:~i! (S,s) is a
two-surface in the physical spacetime such thatk22 l 2.0;
~ii ! k.0; ~iii ! (S,a) is such that it can be embedded in fl
R3; and~iv! for the embedding in~iii !, kref>0. As discussed
earlier, condition~i! ensures that the unreferenced IQE
well defined—roughly speaking,S is not inside a black hole
Then it is always possible to go to a quasilocal rest fra
where l 50 on S, and the integrand in Eq.~3.7! is just uku.
Given condition~ii !, the unreferenced IQE thus reduces
the unreferenced CQE in Eq.~1.1!, provided the observers in
the Brown-York case are in a quasilocal rest frame. Con
tion ~iii ! ensures that the Brown-York prescription is we
defined, and allows us to choose at5const embedding in
Minkowski space, as above, and get Eq.~4.13!. The first
integral in this equation, together with condition~iv!, shows
that our IQEref reduces to the Brown-York CQEref in Eq.
~1.2!. So if these conditions hold, and we choose to uset
5const embedding to calculate IQEref, then our invariant
quasilocal energy is the same as the Brown-York rest ene
In most applications considered in the literature these co
tions are satisfied, and the IQE will then share all of t
desirable properties of the CQE. For example, it will be
thermodynamic energy that appears in the first law of bl
hole thermodynamics for Schwarzschild black holes, as c
sidered in Ref.@7#.

On the other hand, I emphasize that conditions~ii ! and
~iv! are easily violated. One need only think of a rou
sphere with a small indentation, an example discussed a
end of Sec. III~except here the embedding spacetime is
neric!. So in general, the IQE defined here is not simply
Brown-York rest energy. Furthermore, we need not choos
t5const embedding to calculate IQEref. Indeed, as I have
argued, such a choice is unnatural whenFÞ0. In short, the
invariant quasilocal energy defined here is not quite the s
object as the Brown–York quasilocal energy. Note that
aforementioned thermodynamic nature of the CQE is deri
in Ref. @7# assuming thatS is a round sphere. It would b
interesting to extend this analysis to indented spheres,
instance, and determine which, if either of the CQE or IQ
is the correct thermodynamic energy.

V. THE LARGE SPHERE LIMIT OF THE IQE

Let us now assume that the spacetime~M,g! is asymptoti-
cally flat, and evaluate the limit of the invariant quasiloc
12401
r
t

y.
g
d
t

e

i-

y.
i-

e
e
k
n-

he
-

e
a

e
e
d

or
,

l

energy as (S,s) tends to a large sphere at infinity. At spati
and null infinity we might expect these limits to be the AD
and Bondi-Sachs masses, respectively. Let us see if this i

Let t be a time function onM such thatt5t* defines a
spacelike~respectively, null! hypersurfaceHt

*
of topology

R3S2 extending to spatial~respectively, null! infinity. Let-
ting the parametert* vary over some range gives a foliatio
of a part ofM. Let r be a function onM such thatr 5r *
defines a hypersurface that intersects each leafH* t ~over the
allowed range oft* ! in a spacelike two-sphere,St

*
,r

*
. The

parameterr * ranges to infinity, and over its range the su
facesSt

*
,r

*
provide a foliation ofHt

*
. We are interested in

the limit r * →`, with t* arbitrary but fixed. In a rather
benign abuse of notation we will refer toSt

*
,r

*
as simplyS,

and take the limit asr→` with t fixed. The metric induced
on S will, as usual, be denoted assab ~in abstract index
notation!.

Now assume that the functionst andr have been chosen
such that (S,s) tends to a round sphere at infinity. Thus th
components of its metric in spherical coordinatesxi

5(u,f) have an asymptotic expansion of the form

s i j 5r 2S 1 0

0 sin2 u D 12r S X Ysinu

Y sinu Z sin2 u D 1O,~r !.

~5.1!

In this expansion,X, Y, andZ are each arbitrary functions o
t, u, andf. The symbolO,(r 2n) denotes a term that falls
off faster~or grows more slowly, depending on the sign ofn!
thanr 2n, but not necessarily according to a power ofr. For
example, rather thanO(1), theremainder termO,(r ) in Eq.
~5.1! might grow as lnr. The motivation for this increased
generality will be explained below when we consider t
large sphere limit at null infinity. Furthermore, we ca
choose~the function! r to be an areal radius, in which cas
we may takeAs5r 2 sinu, wheres5detsij . It is easy to see
that this requiresZ52X in Eq. ~5.1!.

The scalar curvature of a round sphere of areal radiusr is
2/r 2. Since the metric in Eq.~5.1! differs from that of a
round sphere by a term one power lower inr, we immedi-
ately have that its scalar curvatureR is given by

R5
2

r 2 1
DR
r 3 , ~5.2!

where the remainder termDR is of order one.9 In our asymp-
totically flat spacetime the components of the Riemann t
sor fall off as 1/r 3, and so the same will be true ofssR, the
sectional curvature of (S,s). In the present context the ap

9In Ref. @38# it is shown thatDR5D•v1O,(1) for some vector
field v in S. In other words, to leading orderDR is a divergence.
This plays a crucial role in some of the results in Ref.@38#. How-
ever, we will not need to use this fact, except to provide so
insight into our discussion of the ‘solution’ of the Ricci embeddi
equation in Sec. V B.
8-12
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ANGULAR MOMENTUM AND AN INVARIAN T . . . PHYSICAL REVIEW D 62 124018
propriate reference spacetime is Minkowski space, and
ssRref50. The only other terms to consider in Eqs.~4.2!
and ~4.3! are the shear terms, (k̃22 l̃ 2) and (k̃22 l̃ 2)ref. We
will see below that these, too, fall off at least as fast as 1r 3

in both the spatial and null infinity limits. In the large sphe
limit the unreferenced IQE thus behaves as

IQEunref52
1

8p E
S
dSA2F 2

r 2 1
DR
r 3 2ssR1~ k̃22 l̃ 2!G

52
1

8p E
S
dS

2

r H 11
r 2

4 FDR
r 3 2ssR

1~ k̃22 l̃ 2!G1O~r 22!J . ~5.3!

The reference IQE behaves similarly, except we ha
ssRref50. Thus

IQEref52
1

8p E
S
dS

2

r H 11
r 2

4 FDR
r 3 201~ k̃22 l̃ 2!refG

1O~r 22!J . ~5.4!

In forming the difference of the previous two expressions
is important to observe that not only do the divergent ter
coming from the 2/r 2 piece ofR cancel, but also the~finite!
remainder termsDR are the same in both, and thus al
cancel, independent of whatDR is. Thus we find that the
large sphere behavior of the~referenced! IQE is given by

IQE5
1

16p E
S

dS r@ssR2~ k̃22 l̃ 2!1~ k̃22 l̃ 2!ref

1O~r 24!#. ~5.5!

Of course if the shear terms fall off as 1/r 4 or faster they get
absorbed into theO(r 24) remainder term. It is worth empha
sizing that in the large sphere limit the square root in the I
is eliminated by the fact thatR dominates over the othe
terms. The areal radius factorr outside the brackets in Eq
~5.5! is really A2/R.10 In Sec. VI we will see a similar
mechanism at work in the small sphere limit. But in t
intermediate regime the IQE is, in general, an integral of
difference of two radicals.

As a quick check of Eq.~5.5! let us evaluate the right
hand side for the Schwarzschild geometry. In the us
Schwarzschild coordinatesr is an areal radius, and it is
simple exercise to compute the sectional curvature of at, r
5const two-sphere. The result isssR54M /r 3. The shear

10This mechanism works even when the sphere is not asymp
cally round. In this case the shear terms contribute at a higher o
viz. 1/r 2, in an effort to keep what is under the square root s
positive, as discussed earlier. In other words, the factorA2/R is
modified in such a way that negativeR is likely not a problem. We
will not consider this more complicated case here.
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terms obviously vanish, and withdS5r 2 dV ~dV the mea-
sure on the unit round sphere! one immediately gets IQE
5M , the ADM mass of the black hole. Now the main task
to investigate in detail the shear terms in Eq.~5.5!, which we
will do separately for the spatial and null infinity limits, re
spectively.

A. The spatial infinity limit

Rather than proceed with complete generality, it is mo
instructive to consider an asymptotically flat metric that e
hibits angular momentum explicitly, and then see how t
angular momentum works its way into the shear terms.~We
will be completely general in the more interesting null infi
ity limit case.! The spacetime far from any isolated statio
ary ~nonradiating! rotating source is described asympto
cally by the Kerr metric~see Secs. 19.3 and 33.3 of Re
@29#!, so let us take~M,g! to be the Kerr spacetime. W
choose the following basis of orthonormal one-forms:

e05N dt, e15
r

AD
dr, e25rdu,

e35Agff~df2v dt!, ~5.6!

which are associated with locally nonrotating observers. T
corresponding basis of orthonormal vector fields is

e05
1

N
~] t1v]f!, e15

AD

r
] r , e25

1

r
]u ,

e35
1

Agff

]f . ~5.7!

The notation used is standard:xa5(t,r ,u,f) are Boyer-
Lindquist coordinates,v(r ,u)52gtf /gff is an observer’s
angular velocity as measured from infinity,N
5Av2gff2gtt is the lapse function, etc.~see, e.g., Sec. 33.
of Ref. @29#!. Let A,B, . . . beindices labeling the basis vec
tors and one-forms, ranging from 0 to 3, andI,J, . . . denote
the subset of these taking values 2 and 3. These indices
raised and lowered with the flat Lorentz metrichAB5hAB

5diagonal(21,1,1,1).
The vector fieldseI

a are tangent to anyr, t5constant
two-sphereS, and soua

ªe0
a andna

ªe1
a are, respectively,

timelike and spacelike unit vectors orthogonal toS. From
Eqs. ~2.8! we see that the orthonormal basis components
the extrinsic curvaturesl ab andkab are given by

l IJ5eI
aeJ

b¹aub52v0JI, ~5.8!

kIJ5eI
aeJ

b¹anb52v1JI . ~5.9!

Here vCBA52eA
aeB

b¹aeCb are Ricci rotation coefficients

ti-
er,
8-13
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Working out these coefficients11 I find that the trace-free
parts ofl IJ andkIJ are given by

l̃ IJ5aS 0 1

1 0D , where a5
Agff

2Nr
]uv, ~5.10!

k̃IJ5bS 1 0

0 21D , where b5
AD

2r
] r ln

r

Agff

.

~5.11!

Geometrically, the coefficienta is just e1•V~precess!, i.e., the
radial component of the angular velocity vectorV~precess! that
measures the precession of a gyroscope carried by a lo
nonrotating observer, relative to the observer’s orthonor
frame @see Eq.~33.24! of Ref. @29#; compare also with Eq
~3.2! above, and the discussion following it#. Thus, the un-
referenced shear term in Eq.~5.5! is given by

~ k̃22 l̃ 2!52~b22a2!5
a4

2r 6 sin4 u1OS 1

r 7D , ~5.12!

where the last expression on the right-hand side is the larr

asymptotic expansion. So clearly, being of order 1/r 6, (k̃2

2 l̃ 2) does not contribute to the large sphere limit of the IQ
at spatial infinity.

What about the reference term (k̃22 l̃ 2)ref? It is plausible
that the reference term is of the same order in 1/r as the
unreferenced term, viz. 1/r 6, or less, and so also does n
contribute. However, to be certain one needs to solve
embedding equations~4.6!–~4.8!, subject to the condition
Fref5F, as argued in Sec. IV. We will not attempt to do
here, but it is instructive to at least work out whatF is for the
Kerr geometry. From Eq.~2.11! we see that the orthonorma
basis components of the connection in the normal bundle
given by

AI5eI
bnc¹buc52v01I . ~5.13!

Evaluating these Ricci rotation coefficients reveals that
one-formA5AIe

I ~pulled back to the two-sphereS! is given
by

A5gdf,

where

g5
gffAD

2Nr
] rv52

3aM

r 2 sin2 u1OS 1

r 4D . ~5.14!

Recall thatv5v(r ,u) is a measure of the frame draggin
produced by the rotating geometry. While the shear in
time direction measures theu dependence ofv @seea in Eq.

11The easiest way to do this is to recognize that, withZ50 or 1,
vZJI5a (IJ)Z , whereaC

AB5 i eB
i eA

deC. Thus we need only com
pute the exterior derivative ofeI .
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~5.10!#, Eq. ~5.14! shows that the connection in the norm
bundle measures itsr dependence. Both are measures of a
gular momentum.

Calculating the exterior derivative ofA leads to the cur-
vature in the normal bundle:

F5
1

Agffr
]uS gffAD

2Nr
] rv D 52

6aM

r 4 cosu1OS 1

r 6D ,

~5.15!

which is of order 1/r 4. Inspection of the Ricci equation~4.8!,
or Eq. ~2.16! with the left-hand side set to zero, reveals th
a solution to the reference embedding equations, subjec
Eq. ~4.10!, requires thatl̃ IJ

ref and k̃IJ
ref be two matrices whose

commutator is of order 1/r 4. On the other hand, one migh
guess that the trace of the difference of their squares,k̃2

2 l̃ 2)ref, might be of order 1/r 6, as suggested above. It is n
difficult to convince oneself that these two conditions are
incompatible, so the reference embedding equations at l
do not obviously forbid the reference shear term (k̃22 l̃ 2)ref

from being of the same order of magnitude as (k̃22 l̃ 2), such
that neither contributes to the IQE.

In any case, assuming just that (k̃22 l̃ 2)ref is at most
O,(r 23), which is almost certainly true, we find that th
large sphere limit of the IQE at spatial infinity is given by

lim
r→`

IQE5 lim
r→`

1

16p E
S
dS rssR. ~5.16!

This limit of the IQE thus has a simple geometrical interp
tation: apart from a factor proportional to the areal radiusr, it
is just the average overSof the sectional curvature of (S,s)
as embedded in the physical spacetime~M,g!.

Now let us assume that~M,g! is vacuum (Rab50) near
spatial infinity, so that there the Riemann tensor reduce
the Weyl tensor,Cabcd. From the definition of the two-
surface metric given in Eq.~2.3!, and the fact that the Wey
tensor is traceless, one immediately gets

ssR52Eabn
anb. ~5.17!

Thus the sectional curvature of (S,s) is just ~twice! the
radial-radial~Coulomb! component of the electric part of th
Weyl tensor,Eabª2Cacbdu

cud. Inserting this result into
Eq. ~5.16! we see that in this limit the IQE is precisely th
coordinate-independent expression of the ADM mass gi
by Ashtekar and Hansen@39#.12

One more remark is in order here: Hayward’s work
quasilocal energy@8# resembles what is done here in th
sense that the Gauss embedding equation plays a central
and that the analysis is boost invariant in spirit, i.e., no r
erence is made to a spacelike three-surface spanningS, with

12In Ref. @39# a different definition ofEab is used, namelyEab

5Cacbdn
cnd, but accounting for this difference in notation the tw

results agree.
8-14
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its attendant preferred time direction onS, and so on. How-
ever, Hayward’s quasilocal energy is distinct from the IQ
here: it does not involve a square root. Basically, Hayw
starts with an integral overS of the 212 Hamiltonian den-
sity, which yields a dimensionless quantity, and then mu
plies this quantity by the areal radius ofS to correct this
defect, i.e., give it the dimensions of energy. This is in t
same spirit as the areal radius factor appearing in the Ha
ing mass@25#. For the large sphere limit at spatial infinit
Hayward arrives at the same result given in Eq.~5.16!, ex-
cept with r outside the integral, so to speak. His quasiloc
energy has the very appealing feature of not requiring a
erence subtraction term, at least when the sectional curva
ssR falls off as 1/r 3 @however it diverges if, e.g., the spac
time is asymptotically anti–de Sitter space—recall E
~4.5!#. In our case, the square root in Eq.~4.2! ensures that
the IQE has the dimensions of energy, but the price p
is that a reference subtraction term is needed.@Without
the square root the large sphere limit of the unreferen
IQE would just be~negative! the Euler number ofS, which is
finite, but carries no information about energy.# The areal
radius factorr in Eq. ~5.16! appears inside the integral: a
mentioned before, it arises from the dominant scalar cur
ture term R, and is reallyA2/R. I emphasize that this
is a geometrically natural mechanism—r is not put in by
hand. Finally, while one might feel that there is someth
unattractively ad hoc about a reference subtraction te
the flexibility it affords makes it possible to deal with th
wide range of boundary conditions possible in general re
tivity. In Sec. VII we will consider an interesting examp
of this.

B. The null infinity limit

We now suppose that the physical spacetime~M,g! is as-
ymptotically flat at future null infinity. As in the precedin
subsection we begin with the generic large sphere form
the IQE given in Eq.~5.5!, except now we take the largeS
limit in the future null direction. More precisely, onM we
introduce the Bondi coordinates@40# xa5(w,r ,u,f), and as
before, denote the subset~u, f! of spherical coordinates b
xi . The retarded timew labels a one-parameter family o
outgoing null hypersurfaces, andr is an areal radius~lumi-
nosity parameter! along the outgoing null geodesic gener
tors of these hypersurfaces. Thew,r 5constant surfaces ar
topologically two-spheres, any one of which we denote aS.
This setup is the same as discussed at the beginning of
V, wherew here is what we there called the time coordina
t. We are interested in the one-parameter family of tw
spheresS in the limit asr→`, with w arbitrary but fixed.

In the Bondi coordinates our asymptotically flat met
takes the standard form@41,42#

gab dxa dxb52UV dw222U dw dr1s i j ~dxi1Wi dw!

3~dxj1Wj dw!. ~5.18!
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We assume the following expansions for the various term
this metric:13

V5122mr211O,~r 21!, ~5.19!

U512 1
2 ~X21Y2!r 221O,~r 22!, ~5.20!

Wu5~2X cotu1]uX1cscu]fY!r 221O,~r 22!,

Wf5cscu~2Y cotu1]uY2cscu]fX!r 221O,~r 22!,
~5.21!

s i j 5r 2S 1 0

0 sin2 u D 12r S X Ysinu

Y sinu 2X sin2 u D 1O,~r !.

~5.22!

The functionV contains the mass aspect,m(w,u,f). Ob-
serve that the metric onS is of the same form given in Eq
~5.1! ~with Z52X becauser is an areal radius here!, except
now X(w,u,f) and Y(w,u,f) have a significant physica
interpretation: they are the real and imaginary parts of Sac
complex asymptotic shearc5X1 iY @41#. Thus the scalar
curvature of (S,s) will be given by Eq.~5.2!, and we can
begin our discussion of the IQE at Eq.~5.5!. Our first task is
to compute the unreferenced shear term (k̃22 l̃ 2).

Inspecting the metric in Eq.~5.18!, we choose the follow-
ing basis of one-forms:

e25 1
2 U dw, e15dr1 1

2 V dw, eI5g I
i~dxi1Wi dw!,

~5.23!

where indicesI,J, . . . take the values 2 and 3, andg I
i is

defined by demanding thats i j 5d IJg I
ig

J
j . A suitable choice

for g I
i is given by

g I
i5S r 1X 0

2Y ~r 2X!sinu D 1O,~1!. ~5.24!

In this matrix expression,I ( i ) is a row ~column! index. Let
the indicesA, B, ... take values in the set$2,1,I %. Then the
metric is given bygab5hABeA

aeB
b , where

13We are following closely the notation used in Ref.@38#, as well
as the spirit of the discussion in their footnote 2. The meaning of
notationO,(r 2n) was described following Eq.~5.1!. The motiva-
tion for this level of generality is that Chrus´ciel et al. @42# have
recently shown that one can allow polyhomogeneous terms of
form r 2n lnm r in these expansions and still have a consistent fram
work for solving the Bondi-Sachs–type characteristic initial val
problem. Allowing only expansions in powers of inverser is tanta-
mount to Sachs’ outgoing radiation condition@41#, which they ar-
gue is overly restrictive. However, besides making the calculati
tighter as regards remainder terms, and slightly more general
would get the same results had we assumed Sachs’ outgoing r
tion condition.
8-15
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hAB5S 0 22 0 0

22 0 0 0

0 0 1 0

0 0 0 1

D . ~5.25!

This matrix, and its inverse,hAB, are used to raise and lowe
the the basis indices. The vector fields dual to the one-fo
in Eq. ~5.23! are given byeA

a5hABgabeB
b , or explicitly

e25
2

U S ]w2
1

2
V] r2Wi] i D , e15] r , eI5g I

i] i ,

~5.26!

whereg I
i is defined byg I

i5d IJs i j gJ
j ,s i j being the inverse

of the matrixs i j .
Inspection ofeI in Eq. ~5.26! shows that these vectors a

tangent toS, and soe6 are two null normals toS. Since their
normalization is such thate1•e2522, we can setj6

a

5e6
a , wherej6

a was previously defined byj6
a
ªua6na @see

Eq. ~3.8!#. Thus, from Eqs.~2.8! we have the following re-
sult, in basis components:

l IJ6kIJ5eI
aeJ

b¹ae6b52v6JI . ~5.27!

Working out the required Ricci rotation coefficients14 I find

l IJ1kIJ5BIJ , l IJ2kIJ5
2

U S AIJ2
V

2
BIJ2D(IWJ)D ,

~5.28!

where

AIJ5g (I
i ġJ) i5

1

r S Ẋ Ẏ

Ẏ 2Ẋ
D 1O,~r 21!, ~5.29!

BIJ5g (I
igJ) i8 5

1

r S 1 0

0 1D 2
1

r 2 S X Y

Y 2XD
1O,~r 22!. ~5.30!

Here we use an overdot~prime! to denote differentiation
with respect tow(r ). Observe thatD(IWJ) in Eq. ~5.28! is of
order 1/r 2. Taking the trace-free part of Eqs.~5.28! gives us
the basis components of the shears in the two null directio
s6IJ5 l̃ IJ6 k̃IJ . Explicitly,

s1IJ52
1

r 2 S X Y

Y 2XD 1O,~r 22!,

s2IJ5
2

r S Ẋ Ẏ

Ẏ 2Ẋ
D 1O,~r 21!. ~5.31!

Thus the unreferenced shear term in Eq.~5.5! is given by

14See footnote 11, withZ56.
12401
s

s:

~ k̃22 l̃ 2![2s1IJs2
IJ5

4

r 3 ~XẊ1YẎ!1O,~r 23!

~5.32!

@cf. Eq. ~4.9!#.
We thus learn that, in contrast to the spatial infinity lim

@see Eq.~5.12!#, in the null infinity limit the unreferenced
shear term is of order 1/r 3, and sodoescontribute to the
IQE. We will argue below that the reference shear termk̃2

2 l̃ 2)ref is also of order 1/r 3, but that it is a total derivative
and therefore does not contribute. So as not to interrupt
flow or our discussion, for the moment let us assume thi
true, in which case Eq.~5.5! becomes

lim
r→`

IQE5 lim
r→`

1

16p E
S
dS rFssR2

4

r 3 ~XẊ1YẎ!G .
~5.33!

Because of thecċ̄1 ċc̄52(XẊ1YẎ) term, this result looks
like it could very well be the Bondi-Sachs mass@41#. To see
that in fact it is, a straightforward calculation of the Riema
tensor ofgab projected intoS gives the following sectiona
curvature of (S,s):

ssR5
4

r 3 ~m1XẊ1YẎ!1O,~r 23!. ~5.34!

Inserting this result into Eq.~5.33! we see that the shea
terms cancel, leaving only the mass aspect,m:

lim
r→`

IQE5
1

4p E
S
dV m~w,u,f!. ~5.35!

In obtaining this expression, recall that becauser is an areal
radius we can~and did! take As5r 2 sinu, and so dS
5r 2 dV, wheredV5sinu du df is the measure on the un
round sphere.15 Thus the future null infinity limit of the IQE
is the Bondi-Sachs mass@41#.

Now there is an important lesson to be learned from t
result. The unreferenced shear term (k̃22 l̃ 2) is solely re-
sponsible for producing the all-importantcċ̄1 ċc̄ term that
accounts for the mass loss due to gravitational radiat
Hence this term isnecessaryunder the square root in Eq
~4.2!, and so there is no natural way to avoid (k̃22 l̃ 2)ref in
IQEref, and its attendant embedding problem. Moreover,
learn that these shear terms are not only associated with
gular momentum, as I have been stressing, but also en
information about gravitational radiation. We will see pr
cisely the same phenomenon emerge in the small sp

15On this note, it might be helpful to point out an important det
in the calculation of the sectional curvature given in Eq.~5.34!. One
of the terms that arises in the calculation is the trace ofAIJ in Eq.
~5.29!, which appears to be of orderO,(r 21). If this were so it
would be problematic. But in fact it is zero, becauseAI

I5g I
i ġ I

i

5(1/2)ṡ/s50, sinces5r 4 sin2 u does not depend onw.
8-16
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limit in Sec. VI. Furthermore, it is emphasized in Ref.@43#
that it is easy to construct,ab initio, an integral expression
involving the Riemann tensor~e.g., an integral ofssR over
S! that is conserved under certain circumstances. One is
tempted to interpret such a conserved quantity as an ene
However, such attempts fail to produce, in the null infin
limit, the crucial null-surface-dependent shear terms see
Eq. ~5.33!, and it is difficult to see how to modify them in
covariant way to produce these terms@43#. The shear term
( k̃22 l̃ 2) is precisely such a covariant modification. Mor
over, it arises naturally from simply replacing the Brow
York k with the boost invariant quantityAk22 l 2. @Of course
a similar observation can be made concerning, say,
Hawking mass@25#, which has the same large sphere limit
in Eq. ~5.5!, except without thereferenceshear term.#

These clean results rely on our assumption that the re
ence shear term (k̃22 l̃ 2)ref does not contribute to the nu
infinity limit of the IQE. I claimed above that this is s
because it is a total derivative. To prove this would requ
solving the embedding equations~4.6!–~4.8!, which we
know is a very difficult task. However, I will now present
heuristic solution of the Ricci equation that leads to a s
stantiation of this claim. Moreover, we will see how deman
ing Fref5F plays a crucial role in achieving this resu
which provides our first bit of indirect but concrete eviden
that this condition is required to properly account for angu
momentum~and as we now see, also gravitational radiatio!.

To begin we need to calculate the connection in the n
mal bundle,Aa , and then its corresponding curvature,F.
Proceeding as we did in the spatial infinity case@see Eq.
~5.13!# we find that the basis components ofAa are given by

AI5
1

2
v12I5

1

rU
WI1

1

2
eI~ ln U !, ~5.36!

whereeI(ln U) denotes the derivative of lnU along the vec-
tor field eI . This term is pure gauge. As for the other ter
since we only knowWI to leading order we can putU51
here—see Eqs.~5.20! and~5.21!. Thus, up to a gauge trans
formation, the normal bundle connectionAI is just ~1/r
times! WI . And the curvature is thus proportional to the cu
of W:

F5
2

r
e IJDIWJ5

2

r
~D2W32D3W2!. ~5.37!

Keep in mind that the numerical indices here refer to ba
components, not coordinate components. It is easy to see
F is of order 1/r 3. It is interesting to compareF with the
scalar curvatureR, whose form was given in Eq.~5.2!. Us-
ing the metric in Eq.~5.22! it is not difficult to evaluate the
remainder term,DR . The net result is@38#

R5
2

r 2 1
2

r
D•W1O,~r 23!, ~5.38!

Note from Eq.~5.21! that Wi is of order 1/r 2, so the term
above involvingW is, indeed, of order 1/r 3, as it should be.
Thus we see thatR is associated with the divergence ofW,
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and F with its curl. This is an explicit example of a poin
made earlier, namely that both curvatures are on the s
geometrical footing: To capture the two pieces of inform
tion in W—its divergence and its curl—requires precise
both R andF.

Let us now turn to the null shears ofS as they appear in
the physical spacetime, Eq.~5.31!. The form of these shear
suggests we make the following ansatz for the null shear
S in the reference~Minkowski! spacetime:

s1IJ
ref 5

1

r 2 S a b

b 2a D 1O,~r 22!,

s2IJ
ref 5

1

r S g d

d 2g D 1O,~r 21!. ~5.39!

Observe that we might expect the pair~a,b! to play a role
distinct from the pair~g,d!. Comparing Eqs.~5.39! and
~5.31! suggests thata andb will be like X andY in that they
have something to do with theintrinsic geometry of (S,s).
The more important terms will beg and d, because they
occur at the dominant power of inverser. Also, we expect
them to be related to theextrinsicgeometry ofS, since their
counterparts,Ẋ and Ẏ, measure hows i j changes as a func
tion of the retarded timew—they are the two ‘‘news’’ func-
tions @41#.

With these observations in mind, we will now heuris
cally solve the Ricci embedding equation~4.8!. We first
compute~in basis components!

2
1

2
e I

J@s1
ref ,s2

ref#J
I5

2

r 3 ~ad2bg!5
2

r 3 detS a b

g d D .

~5.40!

Next we impose the conditionFref5F, and observe thatF in
Eq. ~5.37! can also be expressed as a determinant, i.e.,

Fref5F5
2

r
detS D2 D3

W2 W3
D . ~5.41!

The Ricci embedding equation instructs us to equate the
previous determinant expressions. One solution is to m
the identificationsa↔rD2 and b↔rD3 ~which are consis-
tent with our expectation thata and b be associated with
intrinsic geometry!, together with g↔rW2 and d↔rW3
~which are consistent withg and d being associated with
extrinsic geometry, sinceW is proportional to the connection
in the normal bundle—a measure of extrinsic geometry!. No-
tice that this meanss1IJ

ref is a derivative operator. To mak
this more palatable one may go to a Fourier transform sp
where the derivative operatorsDI become momenta,KI . Ac-
cepting these heuristic identifications, and recalling Eq.~4.9!,
the key point now is to observe that
8-17
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~ k̃22 l̃ 2!ref[2s1
refI

Js2
refJ

I

52
2

r 3 ~ag1bd!

52
2

r
~D2W21D3W3!52

2

r
D•W,

~5.42!

the result we desired: being a total derivative, (k̃22 l̃ 2)ref

does not contribute to the IQE.
Nevertheless, the result in Eq.~5.42! might seem peculiar

It has been stressed that by solving the reference embed
equations subject to the conditionFref5F, (k̃22 l̃ 2)ref will
carry information aboutF into IQEref @see Eq.~4.3!#, and it is
through this mechanism that important information about
gular momentum is envisioned to enter the IQE. But acco
ing to Eq.~5.42!, (k̃22 l̃ 2)ref not only does not contribute to
IQEref, it is in fact functionally independent ofF ~the former
depends on the divergence ofW, and the latter the curl ofW!.
The explanation is that in this simple case there is no n
for ( k̃22 l̃ 2)ref to carry any information about angular mo
mentum ~or gravitational radiation! because all of the rel
evant information is already carried in theunreferenced

shear term (k̃22 l̃ 2). This is not to say that the conditio
Fref5F has not played an important role here. It is precis
this condition that leads to (k̃22 l̃ 2)ref being a total deriva-
tive, without which (k̃22 l̃ 2)ref might have spoiled the deli
cate Bondi-Sachs mass result.

Thus the null infinity limit is a simple case that only min
mally exercises the consequences of the conditionFref5F.
In the generic strong field case (k̃22 l̃ 2)ref will almost cer-
tainly depend onF, and play a nontrivial role.

VI. THE SMALL SPHERE LIMIT OF THE IQE

Having considered the large sphere case, we now turn
attention to evaluating the IQE when (S,s) is a small sphere
The large and small sphere limits are similar in that in b
casesSapproaches an asymptotically flat region of~M,g!. In
the latter case, the asymptotically flat region is the infinite
mal neighborhood of a generic spacetime pointpPM , which
is the center of our shrinking sphere. For simplicity we w
suppose that (S,s) is asymptotically round. Another featur
in common with the large sphere limit is that in th
codimension-two setting, the limit can be approached fr
different directions, either spatial or null. More precisely,
a set of Riemann normal coordinates (t,xi) about the pointp,
set r 2

ªd i j x
ixj , and define S* by the condition (r ,t)

5(r * ,ar * ), wherea is a direction parameter. Then con
sider the limit ofS* asr * →0. As before, we will henceforth
omit the subscript* . The casea50 is a spatial limit, since
thenSalways lies entirely in thet50 spacelike three-surfac
containingp. a561 is the null limit, in whichS lies in the
future/past light cone of the pointp. The latter case was
considered by Horowitz and Schmidt@20# in their classic
work on the small sphere limit of the Hawking mass. Brow
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Lau, and York @19# also consider this same limit of th
Brown-York quasilocal energy. We will be borrowing som
results from these two references.

Explicitly, for a given value of the parameterr, S is de-
fined as a submanifold of~M,g! by embedding a topologica
two-sphere with coordinates~u,f! into the Riemann norma
coordinate system, as follows:t5ar , x15r sinu cosf, x2

5r sinu sinf, x35r cosu. Since~with t5ar ! the deviation
from the flat metric in Riemann normal coordinates isO(r 2),
the induced metricsab on Swill differ from that of the round
sphere to this same order, and so the scalar curvatur
(S,s) will have an expansion inr of the form

R5
2

r 2 1R~0!1rR~1!1r 2R~2!1O~r 3!, ~6.1!

where each of the coefficientsR(n) is a function ofu, f, and
the parametera. To evaluate the IQE we will also nee
similar expansions for the other quantities appearing in E
~4.2! and ~4.3!. These are written as follows:

ssR5ssR~0!1rssR~1!1r 2ssR~2!1O~r 3!, ~6.2!

~ k̃22 l̃ 2!5r 2~ k̃22 l̃ 2!~2!1O~r 3!, ~6.3!

~ k̃22 l̃ 2!ref5r 2~ k̃22 l̃ 2!~2!ref1O~r 3!, ~6.4!

where each of the coefficients on the right-hand side is si
larly a function ofu, f, anda. Since the appropriate refer
ence spacetime in this case is Minkowski space, we h
ssRref50. Substituting these expansions into Eq.~4.2! we
find that in the small sphere limit the unreferenced IQE b
haves as

IQEunref52
1

8p E
S
dS

2

r H 11
r 2

4 F ~R~0!2ssR~0!!

1r ~R~1!2ssR~1!!

1r 2S R~2!2ssR~2!1~ k̃22 l̃ 2!~2!

2
1

8
~R~0!2ssR~0!!2D G1O~r 5!J . ~6.5!

Similarly, the reference IQE behaves as

IQEref52
1

8p E
S
dS

2

r H 11
r 2

4 FR~0!1rR~1!

1r 2S R~2!1~ k̃22 l̃ 2!~2!ref2
1

8
~R~0!!2D G1O~r 5!J .

~6.6!

Notice that, unlike in the large sphere limit, neither the u
referenced nor reference energies diverge asr→0. Neverthe-
less, the reference subtraction procedure is still necessa
eliminate the leadingO(r ) term in IQEunref, which has noth-
ing to do with energy. Thus, forming the difference of th
8-18
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previous two expressions we find that the small sphere
havior of the~referenced! IQE is given by

IQE5
1

16p E
S
dS r@ssR2~ k̃22 l̃ 2!1~ k̃22 l̃ 2!ref

1 1
8 r 2ssR~0!~ssR~0!22R~0!!1O~r 3!#. ~6.7!

The sectional curvature and shear terms have been resum
according to Eqs.~6.2!–~6.4!, and the resulting expression
valid to the order indicated. Notice that, as in the lar
sphere limit, the scalar curvatureR dominates the othe
terms under the square root, allowing us to expand the r
cal aboutA4/r 252/r .16 And after the reference subtraction
performed what remains again is the sectional curvature
(S,s) as the dominant term contributing to the energy. Co
paring Eqs.~6.7! and ~5.5! we observe that both the sma
and large sphere limits of the IQE are very nearly forma
identical.

We will split the IQE into three pieces, each to be d
cussed separately: IQE5IQE11IQE21IQE31O(r 6), where

IQE15
1

16p E
S
dS r@ssR2~ k̃22 l̃ 2!#, ~6.8!

IQE25
1

128p E
S
dS r3@ssR~0!~ssR~0!

22R~0!!#, ~6.9!

IQE35
1

16p E
S
dS r@~ k̃22 l̃ 2!ref#. ~6.10!

We begin with IQE1, and show that this piece is essentia
the Hawking mass@25#. To see this, we combine Eqs.~4.1!
and ~2.10! to get

ssR2~ k̃22 l̃ 2!5R2 1
2 ~k22 l 2!5R22H•H.

~6.11!

Replacing the integrand of IQE1 with the last expression, an
using the Gauss-Bonnet theorem to integrate theR term, we
find

IQE15
1

4p
A A

4p F2p2
1

2 ES
dS H•HG , ~6.12!

where we pulledr outside the integral and replaced it wi
AA/(4p), whereA is the area of (S,s). This form of IQE1
is precisely the expression of the Hawking mass given
Ref. @20#. @Our Hc in Eq. ~2.10! is theirNc/2, and the sign of
their metric signature is opposite to ours.# Comparing Eq.
~6.12! with Eqs. ~3.7! and ~3.9! we observe that, while the

16As remarked in footnote 10, if the sphere is not asymptotica
round the shear terms will contribute at order 1/r 2, and the 2/r term
outside the braces in Eqs.~6.5! and ~6.6! will be modified accord-
ingly. We will not consider this more complicated case here.
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unreferenced IQE involves the mean curvature itself,AH•H,
the Hawking mass is constructed from the square of
mean curvature. As mentioned above, the square roo
AH•H effectively disappears in the small~and large! sphere
limits due to the presence of the dominant scalar curva
term, and consequently the leading order contribution to
IQE reduces to essentially the Hawking mass.

There are two subtleties worth mentioning:~i! Replacingr
with AA/(4p) is in general not valid because it requires th
r be an areal radius which, in general, it is not. However
certainly is to lowest order inr, which will be sufficient for
our purposes here. But to higher order, IQE1 and the Hawk-
ing mass will in general give different results.~ii ! It is well
known that the Hawking mass runs into difficulties wh
(S,s) is not a round sphere@8,20#, a problem that was ad
dressed by Hayward in Ref.@8#. It might be that this problem
is a result of having to insert by hand the factorAA/(4p)
outside the integral, versus havingr inside the integral gen-
erated automatically byA2/R. A related issue was discusse
at the end of Sec. V A in connection with Hayward’s defin
tion of quasilocal energy.

The connection between IQE1 and the Hawking mass al
lows us to borrow some results from Ref.@20#, which are
calculated for the null limit case (a51). When matter is
present Horowitz and Schmidt find that, to lowest order inr,
the Hawking mass is

IQE15S 4

3
pr 3DTab

matuaubup1O~r 4!. ~6.13!

Here Tab
mat is the stress-energy tensor of matter, and the

pression is to be evaluated at the pointp, where the unit
timelike vectorua is just (]/]t)a in our Riemann normal
coordinates. This is a standard result in the literature
quasilocal energy@19–24#, and a very significant one. A
emphasized in the Introduction, the quasilocal idea ass
that the time-time component of the stress-energy tenso
mattera priori has nothing to do with energy. It is only from
the small sphere limit of the quasilocal energy that we le
this quantity is an energy volume density, i.e., multiplying
by the volume factor 4pr 3/3 gives the energy in an infini
tesimal sphere of proper radiusr. However, integrating this
energy volume density over a finite volume to determine
total energy inside is not, in general, valid unless one wis
to ignore gravitational effects which, as we will see in m
ment, come at higher order inr.17 It is in this sense that the
quasilocal idea implies that even energy due to matter is
localizable in the context of general relativity.

y

17A well-established example of this phenomenon is the Tolm
density, which integrates to the Komar mass, and is defined in
special case that the spacetime is stationary and asymptotically
@1#. It is noteworthy that is notTab that appears in the Tolman
density, but rather the combinationTab2(1/2)Tgab . The extra term
involving the trace ofTab is associated with gravitational effects—
see Ref.@44#, and problems 4 and 5 in Chap. 11 of Ref.@1#.
8-19
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Now let us assume the spacetime is vacuum in the ne
borhood of p. Then the leading order contribution to th
Hawking mass is@20#

IQE15
1

90
r 5Tabcdu

aubucudup1O~r 6!, ~6.14!

whereTabcd is the Bel-Robinson tensor@45#. Thus gravita-
tional energy begins to appear atO(r 5). This same result is
obtained for the Brown-York quasilocal energy for a suita
choice of reference embedding@19#. However, this is not a
universal result in the literature@21–24#. For example, Hay-
ward’s quasilocal mass gives a similar result as above,
with the numerical factor 1/90 replaced with22/45 @22#.
Given that gravitational energy is such a difficult problem
is not surprising that a consensus has not yet been reac

We now turn our attention to the second contribution
the IQE, namely IQE2 given in Eq.~6.9!. This quantity rep-
resents a deviation from the Hawking mass due to the
that the IQE is roughly the square root of the former. Ac
ally, it is clearer to compare with the Brown-York quasiloc
energy, since in constructing the IQE we simply replaced
Brown-York k with Ak22 l 2. In the context of our generali
zation given in Eq.~3.4!, we therefore have the heurist
comparison:

m5AE22pW 25E2
pW 2

2E
2¯→ 1

8p
Ak22 l 2

5
1

8p S k2
l 2

2k
2¯ D . ~6.15!

Therefore IQE2 might be thought of as the analogue of t
term2 l 2/(2k), and as such would be expected to reduce
magnitude of the IQE from the result given in Eq.~6.14!.

In order to calculate IQE2 we need to evaluate the qua
tities R(0) and ssR(0) in Eq. ~6.9!. To do so we appeal to
the Gauss equation~4.1!. Up to zeroth order inr, this equa-
tion reads

ssR~0!5
2

r 2 1R~0!2
1

2
~k22 l 2!1O~r !, ~6.16!

where we made use of Eq.~6.1!. We will show later that

~k22 l 2!5
4

r 2 1
4

3
~112a2!Eabn

anb1O~r !, ~6.17!

wherea is the direction parameter introduced at the beg
ning of this section.Eabn

anb is the radial-radial componen
of the electric part of the Weyl tensor, which we saw earl
in Eq. ~5.17!. This quantity (Eabn

anb) is to be evaluated a
the pointp, where in our Riemann normal coordinates t
radial unit vectorna has only spatial components, given b
ni5xi /r . We also needdS to lowest order, which is jus
r 2 dV, dV being the measure on the unit sphere. Putt
these results together we have
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IQE252
1

96p
~514a2!r 5Ei j EklE dV ninjnknl .

~6.18!

By symmetry, the integral over the product of radial vecto
must be proportional tod ( i j dkl). Transvecting both this term
and the integral in question withd i j dkl , we easily obtain that
the proportionality constant is 4p/5. Using the fact thatEab
is symmetric, trace-free, and orthogonal toua, we find that

IQE252 1
180 ~514a2!r 5EabE

ab. ~6.19!

So IQE2 is negative, as expected, and this negative contri
tion is to be added to IQE1 in Eq. ~6.14!. Of course we can
only consider thea51 case, since this is the case assum
in Eq. ~6.14!. Recall that the time component of the Be
Robinson tensor can be expressed in terms of the electric
magnetic parts of the Weyl tensor@45#: Tabcdu

aubucud

5EabE
ab1BabB

ab, so IQE1 is non-negative. Inspection o
Eq. ~6.19! shows that adding to IQE1 thea51 value of IQE2
makes the energy have indefinite sign. It is positive~nega-
tive! if the magnetic~electric! part dominates. This seem
like a strange result, but it is only an intermediate result. W
have not yet considered the last contribution, IQE3, involv-
ing the reference shear term. But unfortunately at prese
do not know how to solve the embedding equations to de
mine this term.

Now one can construct a heuristic argument much like
one given at the end of Sec. V B, which suggests thatk̃2

2 l̃ 2)ref is a total derivative, and so does not contribu
However, the argument is much less believable in this ca
In contrast to Eq.~5.39! it turns out that, becauseF is O(1)
in r ~as we shall see later!, we must expand the referenc
shearss6

ref over threeorders of magnitude inr, from O(1) to
O(r 2). One might trust a heuristic argument working
leading order, but believing the higher order corrections
less palatable. In short, I do not know what energy predict
the IQE gives atO(r 5), and until a solution to the embed
ding equations is found there is no sense in speculating.

However, before leaving this section I will provide a
intriguing interpretation of how a definition of quasilocal e
ergy such as the Hawking mass~or the IQE! provides a mea-
sure of the gravitational energy contained inside a sm
sphere.

In the a51 null limit case, the lowest order contributio
to the gravitational energy, namely (1/90)r 5Tabcdu

aubucudup
in Eq. ~6.14!, originates in theO(r 2) terms inside the squar
brackets of the integrand of IQE1 in Eq. ~6.8!. In the termi-
nology of Eqs.~6.2! and ~6.3!, this means we are intereste
in the coefficientsssR(2) and (k̃22 l̃ 2)(2). Inspecting the
Appendix of Ref. @19# reveals that these two coefficien
differ only by a numerical factor. They are both proportion
to C0C̄0up ~in Newman-Penrose notation!, and the two nu-
merical factors conspire to produce the 1/90 factor in
final result. Thus, to understand how the integrand of IQ1
encodes information about gravitational energy it suffices
study the shear term (k̃22 l̃ 2)(2). We will now compute this
8-20
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term for arbitraryaP@21,1# to see how it behaves in bot
the spatial and null limit cases of the small sphere.

Denoting our Riemann normal coordinates (t,xi) collec-
tively asxa, the metric in these coordinates take the form

gab5hab2 1
3 Jabcdx

cxd1O~x3!, ~6.20!

whereJabcd5(Racbd1Radbc)/2 is the Jacobi curvature ten
sor@29#. We first construct a pair of mutually orthogonal un
normal vector fieldsua andna on S, with ua normal to the
t5const surface passing throughS. These are given by

u05
1

N
, ui52

1

3
r 2 b i01O~r 3!, u052N, ui50,

~6.21!

n050, ni5rFxi

r
1

1

3
r 2b i j

xj

r
1O~r 3!G ,

n052
1

3
r 2b0 j

xj

r
1O~r 3!, ni5r

xi

r
, ~6.22!

where

N511 1
6 r 2b001O~r 3!, ~6.23!

r512
1

6
r 2b i j

xixj

r 2 1O~r 3!,

~6.24!

bab5a2Jab0012aJab0 j

xj

r
1Jabi j

xixj

r 2 .

~6.25!

Since the Jacobi tensor in Eq.~6.20! is evaluated at the co
ordinate originp, its indices, and thus those ofbab , are
raised and lowered with the flat spacetime metrichab5hab

5diagonal(21,1,1,1). Similarly,xiªd i j x
j .

Now define onS a pair of mutually orthogonal unit tan
gent vector fieldseI

a , where indicesI,J, . . . take the values
2 and 3. The set$e0

a
ªua, e1

a
ªna,eI

a% thus comprises an
orthonormal basis adapted toS. Let basis indicesA,B, . . .
run from 0 to 3, anda,b, . . . from 1 to 3. Beginning with
this setup it is straightforward to compute the basis com
nents of the extrinsic curvatures defined in Eqs.~2.8!. I find

l IJ5eI
aeJ

b
“aub52 2

3 r @aJ00IJ1J01IJ#1O~r 2!,
~6.26!

kIJ5eI
aeJ

b
“anb5

1

r
d IJ2

1

3
r FJ11IJ2a2S J00IJ

2
1

2
J0011d IJD G1O~r 2!. ~6.27!

In these equations a quantity such asJ01IJ means
@e0

ae1
beI

ceJ
dJabcd#up , which is a function of only the angle

u andf on S.
12401
-

Since we are interested in purely gravitational energy
shall restrict ourselves to the vacuum case. In our basis c
ponents the electric and magnetic parts of the Weyl ten
are defined by@46#

Eab52C0a0b and Bab52* C0a0b , ~6.28!

where * CABCD5(1/2)eAB
EFCEFCD . These are symmetric

trace-free three-dimensional tensors associated witht
5const spacelike hypersurfaces. As such, each has five
dependent components, which together comprise the 10
dependent components of the Weyl tensor. In terms of th
fields, the components of the Jacobi curvature tensor rele
to Eqs.~6.26!–~6.27! read:

J001152E11, J00IJ52EIJ , J01IJ52* B̃IJ ,

J11IJ52EIJ2E11d IJ . ~6.29!

Here B̃IJ is the trace-free part ofBIJ , and* B̃IJ5e I
KB̃KJ is

its dual in (S,s), which is also trace-free. The trace ofEIJ is
d IJEIJ5dabEab2E1152E11, since Eab is trace-free.
Thus, the trace of the extrinsic curvatures in Eqs.~6.26!–
~6.27! is found to be

l 52 2
3 raE111O~r 2!, ~6.30!

k5
2

r
1

1

3
r ~112a2!E111O~r 2!. ~6.31!

Squaring these and forming their difference leads to
~6.17! written earlier. The trace-free parts are

l̃ IJ5 2
3 r ~aẼIJ1* B̃IJ!1O~r 2!, ~6.32!

k̃IJ5 1
3 r ~12a2!ẼIJ1O~r 2!. ~6.33!

Now ẼIJ and B̃IJ each have two independent componen
and it is useful to introduce the notation

ẼIJ5S 1
2 ~E222E33! E23

E23 2 1
2 ~E222E33!

D 5..S e2 e3

e3 2e2D ,

~6.34!

B̃IJ5S 1
2 ~B222B33! B23

B23 2 1
2 ~B222B33!

D 5..2S b2 b3

b3 2b2D ,

~6.35!

and thus define a pair of two-vectorseWªeIeI
a and bW

ªbIeI
a tangent toS. SinceeW andbW represent the pullbacks t

Sof Eab andBab , respectively, they are to be thought of
gravitoelectric and magnetic fields induced onSby the Weyl
curvature thatS is embedded in. It is easy to see that unde
rotation of the basis vectorseI

a through an angleg, the com-
ponents ofeW andbW rotate through an angle 2g, soeW andbW are
not true ~spin one! vectors, but rather spin two objects, a
one would expect.
8-21
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Thus we arrive at the results we are interested in.
lowest order inr we have

l̃ 25 4
9 r 2~aẼ1* B̃!25 8

9 r 2~a2eW•eW1bW •bW 22aeW3bW !,
~6.36!

k̃25 1
9 r 2~12a2!2Ẽ25 2

9 r 2~12a2!2eW•eW . ~6.37!

The difference of these two gives theO(r 2) piece of the
unreferenced shear term appearing in the integrand of I1

in Eq. ~6.8!. Notice that it is the appearance of* B̃IJ ~rather
than B̃IJ! that gives rise to the cross product termeW3bW
5e2b32e3b2 in Eq. ~6.36!.

We first consider the casea51, in which S lies in the
future light cone of the pointp. Thenk̃250 and so the shea
term (k̃22 l̃ 2) is proportional tor 2(Ẽ1* B̃)2. As a quick
check, it is easy to verify that (Ẽ1* B̃)2, in turn, is propor-

tional to C0C̄0up , in agreement with Ref.@19#. I mentioned
above that in this case thessR term in Eq.~6.8! also con-
tributes a term proportional tor 2C0C̄0up @19#. Putting in the
numerical factors I find that

IQE15E
S
dS

r 3

9 F 1

8p
~eW•eW1bW •bW !2

1

4p
eW 3bW G1O~r 6!.

~6.38!

Now (eW•eW1bW •bW )/(8p) looks like the energysurfacedensity
of the gravitoelectromagnetic field, but we must be care
about its dimension. (eW•eW1bW •bW )/(8p) has dimensionL24,
whereL means length, which is not correct. However, t
additional factor ofr 3/9 in the integrand suggests that it
reallyEªr 3(eW•eW1bW •bW )/(72p) that is the proper energy su
face density.E has dimensionL21, consistent with it being
interpreted as the gravitoelectromagnetic energy per unit
of S. Besides giving the right dimension, the additionalr 3

factor forces*SdSE to go to zero asr 5, consistent with the
fact that there can be no gravitational energy at orderr 3. We
interpret *SdSE as the total gravitoelectromagnetic ener
that was onS at t50, or equivalently, the total gravitationa
energy that was in the small volume spanningS at t50.

To further justify this interpretation we now turn to th
radiation term in Eq.~6.38!. Clearly eW3bW /(4p) might be
thought of as the gravitational analogue of the electrom
netic Poynting flux, directed radially outward fromS. But
again, its dimension is wrong. Of course the factor ofr 3/9
will fix this problem, as before, but the situation is mo
interesting this time. Multiplying byr 2/9 we get the proper
Poynting flux, Pªr 2eW3bW /(36p). P has dimensionL22,
consistent with interpreting it as the gravitoelectromagne
energy per unit time per unit area. So*SdSP gives the
gravitoelectromagnetic energy per unit time radiating fro
~or through! the surfaceS. The factor ofr 2 indicates that the
efficiency of a small volume to radiate gravitationally grow
in proportion to its surface area, in analogy with an elect
magnetic antenna. But there is one more factor ofr, which
one might imagine is ther outside the brackets in Eq.~6.8!,
12401
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i.e., A2/R. This distinction betweenrs is suggested by the
close analogy betweenP and the shear term responsible f
radiation in the null infinity limit—see Eqs.~5.32!–~5.33!.
This additional factor ofr has the interpretation of a tim
lapse, i.e.,r *SdSP is the amount of electromagnetic energ
radiated fromS between timet50 andt5r . Thus, the fol-
lowing picture has emerged regarding Eq.~6.38!. The gravi-
toelectromagnetic energy on the surfaceS ~or equivalently,
the gravitational energy in the volume spanningS! at time
t5r is the energy att50 minus the amount of energy rad
ated during this time interval.~Keep in mind thateW andbW are
evaluated atp, and hence att50.!

The casea521 is similar, except nowS lies in the past
light cone of the pointp. Inspection of Eq.~6.36! reveals that
the radiation term in Eq.~6.38! now appears with the oppo
site sign. The fact that this sign change comes out corre
is reassurance that our picture is correct: The energy at
t52r is the energy att50 plus the amount of energy that i
radiated from the sphere during the interval fromt52r to
t50.18

Finally, we consider the spatial limit case,a50. Accord-
ing to our discussion above we would expect IQE1 to be the
same as in Eq.~6.38!, except with the radiation term absen
Inspection of Eqs.~6.36!–~6.37! reveals that this is not the
case. However, it is only whena51 ~and presumably also
when a521! that we know thatssR(2) in Eq. ~6.8! is
proportional to (k̃22 l̃ 2)(2), in which case it suffices to con
sider only the shear term. Unfortunately, it is not possible
computessR to O(r 2) within the framework of ourO(r 2)
Riemann normal coordinates, so we cannot learn if t
simple proportionality between the two persists whenuau
,1. One might guess that it almost certainly does not, b
will leave this question for future work. Nevertheless, sin
we expectl̃ 2 to play the key role with regards to radiation
Eq. ~6.36! is still of some qualitative value whenuau,1.
From this equation we see that the radiation term is z
whena is zero, and turns on in proportion toa, precisely as
it should since the time lapse is nowar , instead ofr.

As satisfying as it might seem, the picture just given is n
truly quasilocal, in the sense thateW andbW are evaluated at the
point p. To be truly quasilocal we need gravitoelectroma
netic fields, call themEW andBW , evaluated onS. This is where
observers reside, and measurements are made, accordi
the quasilocal idea. Such a quasilocal picture is achie

18The reader may have noticed thatbW in Eq. ~6.35! was defined
with an awkward minus sign. This sign was chosen to give
picture just described. Reversing the sign is equivalent to repla

a with 2a. Insofar aseW andbW ~like EW andBW in electromagnetism!

are defined by their physical interpretation, choosing the sign obW

to give a result with the correct interpretation is legitimate. But t
assumes we know what the correct interpretation is, and it is
certain we do. For example, I mentioned above that atO(r 5) Hay-
ward’s quasilocal energy gives a negative gravitational energy@22#.

If this is correct, then we should replace the definition ofbW with

2bW .
8-22
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very naturally as follows. The basic idea is thateW andbW are
certain components of the Weyl tensor evaluated atp (r
50). But this information is contained in theO(r ) piece of
certain connection coefficients evaluated onS (r .0). Thus
we expect the desiredEW and BW fields to be associated wit
connection coefficients.

For simplicity we will restrict ourselves to the casea
51, which also allows us to borrow some results from R
@19#. We first observe that

C0up522@~e22b3!1 i ~e31b2!#. ~6.39!

On the left-hand side is a component of the Weyl tenso
Newman–Penrose~NP! notation. Using Eqs.~6.28! and
~6.34!–~6.35!, C0 is easily converted to the expression giv
on the right-hand side. From Eq.~B5b! of Ref. @19# we have

s5
r

3
C0up1O~r 2!, ~6.40!

wheres is one of the NP spin coefficients. Thus we find th

1

4
ss̄5

r 2

9
@eW•eW1bW •bW 22eW3bW #1O~r 3!. ~6.41!

Comparing this with the integrand in Eq.~6.38! we are led to
define

EW ª
r

3
eW 1O~r 2!, BW ª

r

3
bW 1O~r 2!, ~6.42!

or in other words,

s522@~E22B3!1 i ~E31B2!#1O~r 2!. ~6.43!

Thus, to O(r ), EW and BW are related to connection coeffi
cients, as we expected.

Substituting Eq.~6.42! into Eq. ~6.38! we have

IQE15E
S
dS rF 1

8p
~EW •EW 1BW •BW !2

1

4p
EW 3BW G1O~r 6!.

~6.44!

Observe that the mysteriousr 2/9 factor has disappeared, an
the analogy with electromagnetism is improved:EW and BW
now have their usual dimension (L21), as do the energy
density and Poynting flux terms. I emphasize again that
contrast toeW andbW in Eq. ~6.38!, EW andBW are fields measured
by observers residing onS, in the true quasilocal spirit.EW is
clearly associated with tidal forcestangentialto S, andBW is a
measure of frame dragging effects. Notice thatEW andBW van-
ish asr→0, in accord with the equivalence principle.

To conclude this section we consider the connection
the normal bundle and its associated curvature. I find tha

AJ5
2

3
r FaE1J1

1

2 * B1JG1O~r 2!, ~6.45!

where* B1J5eJ
KB1K , and
12401
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F52B111O~r !. ~6.46!

So to leading order the curvature of the normal bundle
~twice! the radial-radial component of the magnetic part
the Weyl tensor, and is thus associated with gravitatio
magnetic charge. There are both local and global dimens
to this result. Locally,F is associated with frame dragging,
ready example beingF for the Kerr black hole given in Eq
~5.15!, which is proportional to the angular momentum. Gl
bally, it is known that in exact analogy with the scalar cu
vatureR, the integral ofF overS is proportional to the Euler
number of the normal bundle@27#. For a Euclidean-signature
spacetime the normal bundle is an SO~2! @rather than SO~1,
1!# bundle, and there can be a nontrivial winding numb
corresponding to a gravitational magnetic monopole. In
case of the Kerr spacetime there is no monopole pre
since, as is obvious from inspection of Eq.~5.15!, the inte-
gral of F is zero. It might be interesting to explore topolog
cally nontrivial cases in the context of the IQE.

The result in Eq.~6.46! can actually be obtained immed
ately by inspection of Eq.~2.16!, assuming that the shea
terms are higher order inr thanF is. To lowest order inr we
then see thatF522R0123. But R01235C0123 is identically
true, and thus we are led to Eq.~6.46!. So this equation is
true whether or not matter is present, and is also indepen
of a. It is instructive to compare this result with the section
curvature ofS in vacuo:

ssR52E111O~r !. ~6.47!

This is essentially the same as the spatial infinity limit res
given in Eq.~5.17!, and is derived similarly. Comparing th
previous two equations we see a striking electric/magn
duality between the sectional curvature ofS ~electric!, and
the curvature of its normal bundle~magnetic!. When matter
is present, the right-hand side of the equation above acqu
an additional term, and it is precisely this term that is resp
sible for theO(r 3) matter contribution seen in Eq.~6.13!. So
the sectional curvature is the dominant term in the ene
that encodes information about the matter content of
spacetime. It seems reasonable to expect inertial eff
~frame dragging! produced by this matter to also play a ro
in the energy. But consideration of such effects is sub
because the magnetic part of the Weyl tensor has no N
tonian gravity analogue. I have argued that the proced
suggested in Sec. IV is a geometrically natural way to inc
porate such inertial effects into the energy: one dema
Fref5F, and then solves the embedding equations for
reference shear term, present in the reference energy. In
way the inertia information contained inF makes its pres-
ence felt in the energy. Moreover, by inspection of the pur
spatial (a50) case of Eq.~6.45!, one observes that the set o
magnetic quantities:F, AJ, andbW , precisely encode the five
independent components of the magnetic part of the W
tensor. It seems likely that the phenomenon of gravitatio
energy is subtle enough to be sensitive to this full set. Ou
this set, in this section we have seen only the role ofbW . To
8-23
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RICHARD J. EPP PHYSICAL REVIEW D 62 124018
see whether or not the other components play a role@via
( k̃22 l̃ 2)ref# will have to wait until a solution to the embed
ding equations is found.

VII. ASYMPTOTICALLY ANTI –DE SITTER SPACETIMES

In this last section we will explore the significance of t
ssRref term in Eq. ~4.3!. Suppose our physical spacetim
~M,g! is asymptotically anti–de Sitter space. ThessRref

term in IQEref gives us the freedom to specify the Riema
tensor of a reference spacetime, which in this case is n
rally the Riemann tensor of anti–de Sitter space. Thus,
cording to Eq.~4.5! we havessRref522/l 2, and so

IQEref52
1

8p E
S
dSA2F 2

l 2 1R1~ k̃22 l̃ 2!refG . ~7.1!

In the large sphere limit it is clear that the cosmologic
constant term will dominate, rather thanR, and the behavior
of the IQE is qualitatively different from that for asymptot
cally flat spacetimes.

Let us now specialize to the case that~M,g! is the
AdS4-Schwarzschild spacetime, so that our main argumen
not obscured by consideration of the shear terms, which
obviously be just zero. The line element in this case is giv
by

ds252N2 dt21
1

f 2 dr21r 2 dV2,

where

N~r !5 f ~r !5S r 2

l 2 112
2M

r D 1/2

, ~7.2!

and dV25du21sin2 u df2 is the line element on the un
round sphere. LetSbe at, r 5constant two-sphere. Its scala
curvature isR52/r 2, and a simple calculation shows that i
sectional curvature is given by

ssR52
2

l 2 1
4M

r 3 , ~7.3!

the dominant term coming from the anti-de Sitter ‘‘bac
ground.’’ Substituting these results into Eqs.~4.2! and ~7.1!
we find

IQE52
1

8p E
S
dSA2F 2

l 2 1
2

r 22
4M

r 3 G
1

1

8p E
S
dSA2F 2

l 2 1
2

r 2G5
M l

r
1OS 1

r 3D .

~7.4!

The divergent terms due to the cosmological constant can
so the limit of the IQE asr→` exists, and this limit is zero
This would be the expected result if the IQE had the int
pretation of anenergy, which should be redshifted to zero b
the cosmological horizon. In contrast, we do not expect
12401
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invariant mass to be redshifted. This is why the terminolo
invariant quasilocal energy was chosen rather than invar
quasilocal mass, even though the IQE is the analogue of
massm in the formula:m5AE22pW 2.

However, one can easily modify the definition of th
IQE—to give it the interpretation of mass—by multiplyin
the right-hand side of Eq.~3.4! by a lapse function. Thus on
replaces Eq.~4.2! with

IQE@NB#52
1

8p E
S
dS NBA2@R2ssR#

1
1

8p E
S
dS NB

refA2@R2ssRref# ~7.5!

~ignoring the shear terms!. Here the smearing function,NB ,
is the lapse function in the timelike three-boundary,B, swept
out by the two-parameter family of observers†cf. Eqs.~11!
and ~13! in Ref. @36#‡. In the AdS4–Schwarzschild example
B is an r 5const surface, andNB5N. The question arises
What are we to put forNB

ref? The answer that works isNB
ref

5NB , which is intuitively justified as follows: we are al
ready isometrically embedding (S,s) into (M ref,gref), and
the conditionNB

ref5NB represents the next would-be step t
wards an isometric embedding of~B,g! into (M ref,gref),
wheregab is the three-metric inB. @‘‘Would-be’’ step in the
sense that, while the lapse carries some information ab
gab , we still only need to embed (S,s) into (M ref,gref), not
~B,g! into (M ref,gref).# By comparing Eq.~7.5! with ~7.4!,
and using the fact that the lapse function goes asr /l for
large r, it is easy to see that withNB

ref5NB we get
limr→` IQE@NB#5M for the AdS4-Schwarzschild case. Thu
IQE@NB# has the interpretation of a mass, as claimed. Unl
the original IQE, it is not redshifted to zero, and is thus
different physical quantity. Regarding the comment at
end of the previous paragraph, since special relativity d
not know about lapse functions, the generalization given
Eq. ~3.4! is open to this ambiguity: one can define both
invariant quasilocal energy and an invariant quasilocal ma

It is instructive to evaluate IQE@NB# also at the horizon,
r 5r 1 @whereNB(r 1)50#, and compare with what one ge
using the unsmeared IQE. The following results for t
AdS4–Schwarzschild example are easily established:

IQE5HA2Mr 1 at r 5r 1,

0 at r 5`,
~7.6!

IQE@NB#5H 0 at r 5r 1 ,

M at r 5`.
~7.7!

We thus learn that the IQEdecreaseswith increasingr,
which can be interpreted as the result of negative bind
energy—another reason to think of the IQE as an energy.
the other hand, IQE@NB# increaseswith r, which might be
interpreted as saying that, for largerr, more mass is en-
closed; it starts from zero at the horizon~no mass in the
interior of the black hole! and accumulates toM at infinity.
This is reminiscent of the old notion that the substance
8-24
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mass is nothing but the curvature of spacetime itself. A si
lar behavior is observed for the usual Schwarzschild cas

IQE5H 2M at r 52M ,

M at r 5`,
~7.8!

IQE@NB#5H 0 at r 52M ,

M at r 5`.
~7.9!

The only qualitative difference occurs atr 5`, where
IQE@NB#5IQE in the Schwarzschild case because,
course, the lapse function goes to one in this limit. There
no cosmological horizon.

Despite these appealing features of IQE@NB#, it is unsat-
isfactory from the point of view taken here because the p
ence of the lapse function means it depends on a choic
three-surface passing throughS. The situation might be im-
proved by replacingk with NBk and l with NSl in Eq. ~3.4!,
and then proceeding as before. HereNB andNS are time and
radial lapse functions, respectively~equal toN and 1/f in the
AdS4-Schwarzschild example!. Admittedly such a procedure
is ad hoc, and unless it can be improved upon we are
particularly interested in IQE@NB#. It was introduced simply
to illustrate the distinction between mass and energy, but
the remainder of this section we will return to the origin
definition of the IQE.

The main point of this section is to draw attention to
remarkable similarity between the reference subtraction t
given in Eq.~7.1!, and a certain counterterm action recen
suggested in the context of the conjectured AdS/CFT co
spondence. We begin by observing that when the refere
shear term vanishes, Eq.~7.1! reduces to precisely the sam
reference subtraction term suggested by Lau@37#, in the con-
text of the Brown-York quasilocal energy~except that Lau’s
expression has a lapse function present in the manner
cussed above!. However, our derivations of this expressio
are different. Lau employs a light cone reference embedd
of (S,s), together with a rest frame assumption,l ref50, to
derive an expression forkref, which is then used to construc
his reference subtraction term. In our case we get the s
end result, but we get it without any recourse to an expl
reference embedding. This is because the cosmological
stant term in Eq.~7.1! comes from the direct dependence
IQEref on the Riemann tensor of the reference spacetime,
the termssRref in Eq. ~4.3!. An explicit reference embed
ding of (S,s) into (M ref,gref) is required only to evaluate th
reference shear term, (k̃22 l̃ 2)ref. This higher order
correction—which I have argued accounts for angu
momentum—is not present in Lau’s reference subtrac
term. Also, his additional rest frame assumption is not
quired here because the IQE is already naturally a rest fr
energy.

Let us now return to Eq.~1.5!. We know that when spac
is noncompact the boundary~or quasilocal! stress-energy
tensorTB

ab52Pab/(8p) diverges in general asB is taken to
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infinity.19 To render it finite, Brown and York suggest th
use of a reference subtraction term that involves an isome
embedding of~B,g! into a suitable reference spacetim
However, like their prescription to embed (S,s) into a suit-
able three-dimensional reference space, this prescription
fers from the drawback that such a codimension-one emb
ding does not always exist. Recently, Balasubramanian
Kraus @36# have proposed an alternative procedure: Sinc
is always possible to add to the action a local functional
the intrinsic geometry of the boundary without affecting t
equations of motion or the symmetries~but of course this
altersTB

ab!, their idea is to choose this functional such that
divergences cancel those of the originalTB

ab , rendering the
improved boundary stress-energy tensor finite asB is taken
to infinity. No recourse is made to a reference embedd
This procedure was first applied to spacetimes that are
ymptotically AdS space, in which case the required coun
terms amounted to a simple finite polynomial in the curv
ture invariants ofB @36#. This idea is exactly analogous t
the standard prescription for removing ultraviolet dive
gences in quantum field theory by adding to the Lagrang
a finite polynomial in the fields. Moreover, the conjectur
AdS/conformal field theory~CFT! correspondence@47# im-
plies that the two procedures are not merely analogous,
are one and the same@36#.

Now since flat spacetime is recovered from AdS space
taking l to infinity, one might expect that in this same lim
the counterterms found by Balasubramanian and Kr
would produce counterterms suitable for asymptotically
spacetimes. It is not obvious that this is so@36#. However,
Mann @48# has suggested the following generalization
their counterterm action:

I ct5
1

8p E
B`

d3xA2gA2F 2

l 2 1R~g!G , ~7.10!

whereR(g) is the scalar curvature of~B,g!, andB` indicates
that we are to take the limit asB goes to infinity. For smalll
Mann’s formula reduces to the one given by Balasubram
nian and Kraus, but in addition it has a smooth flat spacet
limit as l →`. Moreover, Mann showed that in many e
plicit examples it leads to a cancellation of all divergenc
and the remaining finite part agrees with that obtained us
the reference spacetime procedure@48,49#. While a counter-
term action and a reference energy are not the same th
the resemblance between the expressions in Eqs.~7.10! and
~7.1! is nevertheless striking.20

To see that the connection between IQEref in Eq. ~7.1! and
the AdS/CFT-inspired counterterm action is probably mu

19As elsewhere in this paper, we use the symbolB loosely to refer
to either a timelike three-surface in the interior ofM, bounding a
finite spatial region, or the boundary at infinity. The meaning sho
be clear from the context in which it is used.

20I am indebted to R. B. Mann for pointing out to me the signi
cance of thessRref term in IQEref, and emphasizing that it provide
at least some measure of geometrical motivation for his expres
in Eq. ~7.10!.
8-25
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deeper than mere resemblance, we now turn to recent w
done by Krauset al. @50#. Besides providing an independe
derivation of Mann’s formula, and its generalization
higher dimensions, of most interest to us here is their g
metrical argument suggesting what the counterterm forPab

in Eq. ~1.5! should be in order to cancel divergences. Th
result is an expansion in powers ofl . Denoting their coun-
terterm (P̃ab) as Pab

ct , and specializing their result to
three-dimensional boundaryB, they find

Pab
ct 52

2

l
gab1l ~Rab2 1

2 gabR!1l 3$ 1
2 gab~RcdR

cd

2 3
8 R2!1 3

4 RRab22RcdRacbd

1 1
4 DaDbR2hRab1 1

4 gabhR%1O~ l 5!. ~7.11!

The curvatures and covariant derivatives in this express
all refer to the induced timelike three-metricgab on B.

Now consider our usual two-surface (S,s) in the physical
spacetime~M, g!, the latter an asymptotically AdS space. A
we did at the end of Sec. IV, suppose thatS is such that
(k22 l 2).0 andk.0. Then we can always find a timelik
unit vectorua normal toS such thatl 50, and soAk22 l 2

5k5Pabu
aub is the Brown-York energy surface densi

@modulo the factor of21/(8p)#. In other words, our unref-
erenced IQE reduces to the unreferenced Brown-York C
which would be called the unrenormalized energy in R
@50#. The counterterm required to renormalize the ene
surface density is thusPab

ct uaub, which we will denote at
Ect . Hence, our task is to compareEctªPab

ct uaub with the
integrand of IQEref in Eq. ~7.1!; we expect to see at leas
some measure of agreement between the two.

This comparison will not be straightforward, however, b
cause on the one hand we expect the integrand of IQEref to
depend onR, F, and their derivatives inS, as discussed
previously, whereas on the other handEct depends on the
three-metricgab . Nevertheless, let us see how far we c
get. LetB be a three-surface in~M,g! passing throughS in a
direction tangent toua on S. Different choices ofB satisfying
these conditions will lead to different induced metricsgab ,
but this ambiguity will not affect our considerations. At lea
gab on S is uniquely determined, and some informatio
about gab in the neighborhood ofS is determined by the
condition l 50. Our choice ofB means thatl ab defined in
Eqs.~2.8! is the extrinsic curvature of (S,s) as embedded in
~B,g!, and so the corresponding codimension-one Gauss
bedding equation reads

Pa
ePb

f Pc
gPd

hRe f gh5Rabcd1~ l acl bd2 l bcl ad!. ~7.12!

This is just a truncated version of Eq.~2.14!, except here
Re f gh is the Riemann tensor of~B,g!, not ~M,g!.

Now let Ect
(n) denote the term inEct of order l n. Inspec-

tion of Eq. ~7.11! shows thatEct
(21)52l . The termEct

(1) can
be written in terms ofGab , the Einstein tensor of~B,g!, and
we have
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Ect
~1!5l Gabu

aub5
l

2
sacsbdRabcd5

l

2
~R2 l̃ 2!.

~7.13!

The second equality is an easily derived identity~valid in
any codimension-one setting! relating theuu component of
the Einstein tensor to the sectional curvature of the hyper
face orthogonal toua ~in this case the hypersurfaceS in B!.
The third equality follows from contracting Eq.~7.12! with
sacsbd, and using the fact thatl 50 by our choice ofua ~and
as usual,l̃ 2 is shorthand forl̃ abl̃ ab!. Thus, to orderl we have

Ect5
2

l
1

l

2
~R2 l̃ 2!1O~ l 3!

5A2F 2

l 2 1R2 l̃ 21O~ l 2!G . ~7.14!

Comparing the last expression with Eq.~7.1! suggests the
correspondence:

~ k̃22 l̃ 2!ref↔2 l̃ 21O~ l 2!. ~7.15!

Immediately we see something odd: we are identifying
boost invariant quantity with one that is not, i.e., it see
that ak̃2 is missing from the right-hand side. I will commen
on this shortly. Let us assume for the moment that the rig
hand side reads (k̃22 l̃ 2)1O( l̃ 2), in which case Eq.~7.15!
seems reasonable: it suggests that, if we solve the embed
equations~4.6!–~4.8! for ( k̃22 l̃ 2)ref we will find that, to
lowest order inl , the reference shear term is the same as
unreferenced shear term, the difference to be seen at a h
order in l . On the other hand, this seems like a proble
Would it not mean, e.g., that the shear terms in Eq.~5.5!
basically cancel, thus ruining the Bondi-Sachs mass resu
Eq. ~5.35!, which depends so crucially on (k̃22 l̃ 2)? The
answer is No, because Eq.~5.5! is valid in the asymptotically
flat case, not the asymptotically AdS case. To make a st
ment that is valid in the asymptotically flat case (l →`) we
need to knowEct to all orders inl , then sum the infinite
series, and finally take the limitl →`. So being at the othe
end of the series, Eq.~7.15! has nothing to say about th
asymptotically flat case. But we also expected (k̃22 l̃ 2)ref to
depend onR, F, and their derivatives. Why do we not se
these quantities on the right-hand side of Eq.~7.15!? The
answer is, we will—we just have to calculateEct to the next
order in l .

But before doing so I will comment on the missingk̃2 in
Eq. ~7.15!. Kraus et al. @50# have devised an algorithm t
compute the extrinsic geometrical quantityPab

ct from the in-

trinsic geometry ofB. Insofar asl ab ~and thusl̃ 2! depends
only on the metricgab , there is no doubt that the2 l̃ 2 term
in Eq. ~7.15! is correct. On the other hand,kab ~and thusk̃2!
depends on the extrinsic geometry ofB, being just a certain
projection ofPab into S. The algorithm of Krauset al. relies
on the fact@51# that thedivergentpart of the derivative of
Pab in the direction normal toB can be expressed in terms o
8-26
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just the intrinsic geometry ofB. In essence, their algorithm i
designed precisely to compute thedivergentpart of Pab .
The correctness of the accompanying finite part is a su
issue. For example, in a slightly different context they d
cuss two different counterterm actions that both prope
cancel divergences, but that lead to different finite terms
the action. Furthermore, they point out that their algorith
when carried to all orders inl , might imply singularities in
the bulk spacetime, but that this is of no concern beca
they truncate their counterterm expressions to a finite n
ber of terms, enough at least to cancel the divergences. In
case we have the quasilocal idea in mind, and so are in
ested inall of the finite terms—it matters what happens
the bulk. But going further with this discussion will take u
beyond the scope set for this simple comparison. I will j
conclude by saying that, insofar as the shear terms alm
certainly represent a finite contribution to the energy, we
not necessarilyexpect the algorithm of Krauset al. to pro-
duce ak̃2 term on the right-hand side of Eq.~7.15!. Our
goals are slightly different, and it is too much to expect ex
agreement betweenEct and the integrand of IQEref.

Nevertheless, it is still instructive to proceed with th
comparison to the next order inl . In light of my previous
remarks, we will make the simplifying assumption that t
metric onB has a product structure:gab dxa dxb52N2 dt2

1s i j (x)dxi dxj , wherexa5(t,xi) are local coordinates on
B, N is a constant lapse, ands i j (x) is the metric on anyt
5const two-surfaceS. The idea is thatEct and the integrand
of IQEref should agreeat least in their dependence on th
intrinsic geometry of (S,s). Assuming such a product struc
ture for gab is a convenient was to isolate this dependen
and ignore everything else.

In this case the only nonvanishing components of the R
mann tensor ofgab areRi jkl 5Ri jkl , the Riemann tensor o
s i j . And clearly l ab50. ThusEct

(1) in Eq. ~7.13! reduces to
l R/2, and it is a simple exercise to work outEct

(3) . The net
result is

Ect5
2

l
1

l

2
R2

l 3

16
~R224DR!1O~ l 5!

5A2F 2

l 2 1R2
l 2

2
DR1O~ l 4!G , ~7.16!

whereD is the Laplacian in (S,s). Comparing the last ex
pression with Eq.~7.1! we now have the higher order corre
spondence:

~ k̃22 l̃ 2!ref↔2
l 2

2
DR1O~ l 4!, ~7.17!

Thus we begin to see how a solution to our embedding eq
tions might yield an expression for (k̃22 l̃ 2)ref in terms ofR,
F, and their derivatives, as we have expected all along.

To conclude this section we make two general obser
tions. First, it is especially clear from the higher order e
pression in Eq.~7.16! that the AdS/CFT-inspired counte
term energy is, in fact, the square root of some quantity. T
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is not surprising, since the algorithm of Krauset al. @50# is a
means of solving a Gauss embedding equation forPab

ct , and
this equation is quadratic inPab

ct . But it is significant. Be-
ginning simply with the definition of the quasilocal stres
energy tensor as the functional derivative of the action w
respect to the boundary metric@7#, in which there is no
square root in sight, the counterterm energy required to c
cel divergences unmistakably involves a square root. Mo
over, it concurs with the square root introduced here, in
context of the IQE, as the general relativistic analogue of
special relativistic formula:m5AE22pW 2. I believe it is un-
likely this is a mere coincidence. Given that it is nonanalyt
a square root is too unusual an object to occur without g
reason.

Second, under the square root~in our case! is 2/l 21R
1( k̃22 l̃ 2)ref. In the case of the AdS/CFT-inspired counte
term energy@50#, it is 2/l 21R1X, whereX is an infinite
series in increasing powers ofl . That X is clearly not zero
lends strong support for our additional term (k̃22 l̃ 2)ref,
which is thus seen to be a necessary generalization of L
suggestion@37#. I have argued that its necessity is close
linked to the proper inclusion of angular momentum in t
energy. Given that angular momentum is a subtle notion
general relativity, especially so at the quasilocal level
envision here, it is not surprising that our biggest difficu
lies in evaluating (k̃22 l̃ 2)ref. In light of the algorithm given
by Krauset al. @50#, work is currently in progress to try to
apply similar techniques to solve the embedding equati
~4.6!–~4.8!. Since these embedding equations are manife
boost invariant, I expect at least to recover the missingk̃2

term in Eq.~7.15!, and hopefully the entire series.

VIII. SUMMARY AND DISCUSSION

In this paper I have introduced a new definition of qua
local energy that is a simple modification of the Brown-Yo
quasilocal energy. I just replace their energy surface den
k with Ak22 l 2, where l is the radial momentum surfac
density.@For ease of exposition here I will omit the21/~8p!
factors.# The principle motivation for doing this stems from
an analogy with the formula:m5AE22pW 2 in special relativ-
ity. Identifying E with k ~which are both energies!, and pW
with l ~both momenta!, identifiesm with Ak22 l 2. Like m,
Ak22 l 2 is a boost invariant quantity, and hence the integ
of Ak22 l 2 over a spacelike two-surfaceS gives rise to an
invariant quasilocal energy, or IQE. In what follows I wi
refer to the Brown-York quasilocal energy as the CQE
canonical quasilocal energy.

There are several important consequences of replacink
with Ak22 l 2:

~1! While k is always well defined for any spacelike two
surfaceS, Ak22 l 2 is not. Roughly speaking, it is real whenS
lies in the exterior region of a black hole, zero when it is
the horizon, and imaginary in the black hole interior. Th
~again roughly speaking! the IQE asserts that energy is re
only outside of a black hole.

~2! Both the CQE and the IQE require a reference ene
subtraction procedure. Sincek is associated with a spacelik
8-27
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three-surface spanningS, the reference space into whichS is
to be isometrically embedded is inherently thre
dimensional. Such a codimension-one embedding does
always exist, but when it does, it is essentially unique. T
means the CQE, when it is defined, is unique. In contr
Ak22 l 2 makes no reference to a three-surface spanninS,
and so the reference space~time! is inherently four dimen-
sional. Such codimension-two embeddings~at least of a ge-
neric nonround sphere into Minkowski space! always exist
@35#, but are not unique. However, in this situation there
two curvatures associated withS: its scalar curvatureR, and
the curvature of its normal bundle,F. A necessary condition
for an isometric embedding is thatRref5R. I argued that
demanding alsoFref5F is both a means to make the embe
ding essentially unique, and at the same time, a geom
cally natural way to properly incorporate angular moment
into energy at the quasilocal level. Indeed, since angular
mentum is associated with rotational kinetic energy, itshould
contribute to the energy in some way.

~3! While CQEref is associated with a referenceenergy
densitykref, IQEref is concerned with a referenceshearterm
( k̃22 l̃ 2)ref. ~k̃ab and l̃ ab are the trace-free parts of the tw
extrinsic curvatures ofS.! In a certain sense, the IQE alread
inherently contains the correct reference energy, without
course to a reference embedding. The reference embed
is required only to determine the reference shear term, wh
is a higher order correction to the energy associated w
angular momentum.

~4! The CQE is sensitive to the sign ofk, whereas since it
involvesAk22 l 2, the IQE is not. Thus one can easily co
struct simple examples for which the two energies give d
ferent results, even whenl 50. Thus the IQE is not simply
the rest energy version of the CQE. Note: the IQE natura
assigns zero energy toanytwo-surface in flat spacetime. Thi
is because the natural reference spacetime in this case i
very same spacetime, namely flat spacetime. So obvio
one can always reference-embed the two-surface identic
~up to Poincare´ transformations! to the way it is embedded in
the physical spacetime, and get IQE50. The only subtlety
that may arise is if the two conditions: isometric embedd
andFref5F do not uniquely determine (k̃22 l̃ 2)ref. Then the
flat spacetime result (IQE50) may be reduced to a choice
rather than a necessary fact. To properly address this sub
requires an in depth understanding of the embedding e
tions. But in any case, the fact that IQE50 in flat spacetime
is independent of the motion of the observers. In contr
moving observers in flat spacetime could measure non
energy in the Brown-York approach@31#. This is because
under a radial boost the Brown-York energy surface den
dilates by a Lorentz factor, as in special relativity, where
the reference energy surface density does not. Accordin
Ref. @7# the latter depends only on the intrinsic geometry
S, and therefore does not know about the time derivative
this geometry.21

21Thanks to R. B. Mann and I. S. Booth for this remark on t
Brown-York case.
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We examined both the large and small sphere limits of
IQE, takingS to be asymptotically round for simplicity. In an
asymptotically flat spacetime, the large sphere limit of t
IQE in a spatial direction yields the ADM mass. In the futu
null direction it reduces to the Bondi-Sachs mass, provid
the reference shear term is a total divergence. Short of s
ing the embedding equations, I gave a heuristic argum
which shows that is. It is significant that this argument rel
on the conditionFref5F, since this provides evidence tha
the curvature of the normal bundle is involved in quasilo
energy, albeit its involvement in this simple example is mi
mal.

The quantityAk22 l 2 is proportional to the mean curva
ture of S as a two-surface embedded in the physical spa
time, and so the IQE is a natural geometrical invariant ofS.
Since the Hawking mass@25# is constructed using (k2

2 l 2), the IQE can be thought of roughly as the square r
of the Hawking mass. In the small sphere limit the squ
root disappears, and to leading order the IQE reduces to
Hawking mass~but differs from it at higher order!. Thus,
when matter is present, the lowest order contribution to
IQE gives the standard result: (4pr 3/3)Tab

matuaub, i.e., the
expected matter energy contained in a small sphere of pr
radiusr. Note thatua here is not necessarily the four-veloci
of any observer onS, since the IQE is boost invariant, and s
independent of the observers’ velocities onS. Rather,ua is
the four-velocity that observers would haveif they were in
the rest frame determined byS. More precisely, in the smal
sphere limit we considered, namely at,r 5const two-sphere
in Riemann normal coordinates~with t}r !, ua5(]/]t)a

evaluated at the center of the sphere. In the limitr→0, the
four-velocity (]/]t)a corresponds to observers who at ea
point onShave zero radial momentum, i.e.,l 50. In general,
since the IQE is an energy rather than a mass, the ques
arises, In whose rest frame is the energy measured?22 The
answer is, The quasilocal rest frame determined by the c
dition l 50 at each point onS. Whenever (k22 l 2).0, ob-
servers onS can always achieve this state of motion by a
propriate local radial boosts. This@or more precisely, (k2

2 l 2)>0# is the same condition required for the unreferenc
IQE to be well defined in the first place—refer to the pa
graph numbered~1! above.

Returning to the small sphere case, in vacuo the lead
order contribution due to gravitational energy occurs at or
r 5. At this order the IQE results are inconclusive becaus
is expected that the reference shear term will play a sign
cant role, and without a solution to the embedding equati
~which is an extremely difficult problem! this term cannot be
determined. Nevertheless, it was possible to show that in
small sphere limit, the Hawking mass, which in this case
closely related to the IQE, can be understood as a measu
the gravitational energy contained inSby considering certain
tangential gravitoelectromagnetic fieldsEW andBW induced on
Sby the Weyl curvatureS is embedded in. In terms ofEW and
BW , gravitational energy and radiation are essentially ident

22I thank A. Ashtekar for posing this question.
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in nature to their counterparts in electromagnetism, exc
for one crucial difference: the densityr (EW •EW 1BW •BW )/(8p)
is integrated over thesurface Sto determine the gravitationa
energy contained in the spatial volume thatS encloses
~which necessitates the additional factor of areal radiusr!.
Notice that this measurement of gravitational energy in
volume is truly quasilocal, taking place on the surface of
volume,S.

The IQE was analyzed in the context of asymptotica
anti–de Sitter spacetimes. The fact that IQEref depends ex-
plicitly on the Riemann tensor of the reference spacet
~naturally taken to be anti–de Sitter space! was seen to play
a significant role. A connection was established betw
IQEref and a certain counterterm energy that has rece
been proposed@50# in the context of the conjecture
AdS/CFT correspondence. Two similarities are striking:~i!
Both energies involve a square root, and~ii ! the two leading
terms under the square root match. The remaining term
der the square root in our case is the reference shear t
( k̃22 l̃ 2)ref; in the case of Ref.@50# it is an infinite series in
increasing powers ofl , wherel is the radius of curvature o
the AdS space. It was shown that the first two nontriv
terms of this series~i.e., to the highest order given in Re
@50#! can plausibly be identified with (k̃22 l̃ 2)ref. This agree-
ment is impressive because IQEref and the AdS/CFT-inspired
counterterm energy are independently motivated, and
rived quite differently. It might be possible to use techniqu
developed in Ref.@50# to solve our embedding equations f
( k̃22 l̃ 2)ref. The present lack of a solution to these equatio
is the main outstanding obstacle to further understanding
nature of the IQE.
s:
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A final remark is in order. Most definitions of quasiloc
energy, including the IQE, assume that energy is associ
with a closed spacelike two-surface,S. Given such a two-
surface one can always find a timelike unit normal vec
field ua, which at each point onS is supposed to correspon
to an observer’s instantaneous four-velocity. But this m
not be a general enough setting. While a two-parameter f
ily of observers will always sweep out a timelike thre
surfaceB, the two-surface elements orthogonal to their wo
lines in B are not, in general, integrable. Thus a shift
emphasis fromS to B, i.e., from Eulerian to Lorentzian ob
servers@28#, might lead to a deeper understanding of qua
local energy, in particular of gravitational radiation at th
quasilocal level. This shift would also bring the quasiloc
energy idea closer in line with the conjectured AdS/C
correspondence. Whether or not this is the right direction,
results in Sec. VII strongly suggest that this is the direct
the IQE is pointing in.
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