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Frequency-domain P-approximant filters for time-truncated inspiral gravitational wave signals
from compact binaries
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Frequency-domain filters for time-windowed gravitational waves from inspiraling compact binaries are
constructed which combine the excellent performance of our previously developed time-domainP approxi-
mants with the analytic convenience of the stationary phase approximation without a serious loss in event rate.
These Fourier-domain representations incorporate the ‘‘edge oscillations’’ due to the~assumed! abrupt shutoff
of the time-domain signal caused by the relativistic plunge at the last stable orbit. These new analytic approxi-
mations, the SPP approximants, are not onlyeffectualfor detection andfaithful for parameter estimation, but
are also computationally inexpensive to generate~and arefaster by factors up to 10, as compared to the
corresponding time-domain templates!. The SPP approximants should provide data analysts the Fourier-
domain templates for massive black hole binaries of total massm&40M ( , the most likely sources for LIGO
and VIRGO.

PACS number~s!: 04.30.Db, 04.25.Nx, 04.80.Nn, 95.55.Ym
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I. INTRODUCTION AND SUMMARY

The discovery of the first binary pulsar in 1974@1# has
had a very important impact on gravitational wave resea
First, it proved the reality of gravitational radiation by me
suring the orbital period decay@2# entailed by the propaga
tion at the velocity of light of the gravitational interactio
between the two neutron stars making up the system@3#.
Second, it provided the first experimental evidence that g
eral relativity correctly describes gravity in the strong-fie
regime@4#. Third, it led to a shift in perception regarding th
most promising sources for future gravitational wave~GW!
detectors, away from the then assumed, violent—but
predictable—gravitational collapse associated with supe
vae, to the more predictable, final inspiraling phase of co
pact binaries of neutron stars and black holes driven
gravitational radiation reaction. This also led to the thrus
the laser interferometric gravitational wave detectors wh
are inherently broadband rather than in the narrow-band
detectors.

A. Data analysis algorithms for inspiral wave searches

Consider a compact binary system such as the binary
sar after it has been inspiraling inwards for 300 million
due to gravitational radiation-reaction. The inspiral wa
form enters the detector bandwidth during the last few m
utes of evolution of the binary. Our ability, in principle, t
compute the wave form very accurately, allows us to tra
the gravitational wave phase and enhance the signal-to-n
ratio by integrating the signal for the interval during which
lasts in the detector band. This, in turn, requires a temp
with which the detector output may be filtered. Though te
plate wave forms should, optimally, be exact copies of
expected signal, in practice they are constructed by so
approximation scheme and will differ from the actual sign
0556-2821/2000/62~8!/084036~34!/$15.00 62 0840
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in the detector output. Consequently, the overlap of temp
and signal wave forms will be less than if they had exac
matched, leading to a loss of potential events. Data anal
issues such as these for inspiraling compact binaries of n
tron stars and black holes have been formulated and
dressed for the last 12 yr@5,6#, even though interferometric
gravitational wave detectors such as the GEO600@7# or La-
ser Interferometer Gravitational Wave Observatory~LIGO!
@8# and VIRGO@9# are a year or three in the future. Much o
the work in this area has addressed practical issues of d
relevance to data analysis strategies. These include: cons
tion of templates for detection@10#, the number of templates
their placement, spacing, the required computing power
the storage or memory requirement@11#, the order of post-
Newtonian~PN! approximation adequate for detection@12–
14#, parameter estimation by covariance matrix@15–17# and
Monte Carlo simulations@18#, determination of cosmologica
parameters@19#, tests of general relativity@20#, one step ver-
sus hierarchical searches@21#, effects of precession@22#, and
of eccentricity@17,23#. For the time-domain wave form, a
of these works use the restricted PN approximation to q
sicircular inspiral. This keeps the crucial phase informat
to the best order of approximation then available@24#, but
restricts the amplitude to be Newtonian and the harmonic
the second harmonic of the orbital frequency. Such an
proximation should be adequate for the on-line search
gravitational wave signals@25#. Evidently, it is assumed tha
the offline analysis of the data will use the best availa
~unrestricted PN! representation of the inspiral signals.

B. Modeling inspiral wave forms

The PN approximation is basically a Taylor expansion~in
powers ofv/c! and all the above treatments use as build
blocks the straightforward Taylor expansions inv/c of some
intermediate quantities~orbital energy and gravitational
©2000 The American Physical Society36-1
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wave flux!. We shall refer to the templates based on su
straightforward PN expansions as ‘‘Taylor approximant
~or simplyT approximants!. The very slow convergence an
oscillatory behavior of the PN expansion, and therefore
the sequence of Taylor approximants, made imperativ
search for better approximants for phasing. This prompte
@13# @Damour, Iyer, and Sathyaprakash~DIS!# to propose
new approximants, with much improved convergence pr
erties, for application to gravitational-wave data analy
problems.

DIS @13# showed how to construct a new type oftime-
domainapproximant, called ‘‘P approximants,’’ which not
only converged faster and more monotonically, but were a
more effectual ~larger overlaps for detection! and faithful
~smaller biases for parameter estimation! than the standardT
approximants. Our construction was two pronged: on the
hand, it introduced new basic energy and flux functions,
on the other hand, it made systematic use of Pade´ techniques
~a well-known convergence-acceleration technique! to con-
struct successive approximants of our new basic energy
flux functions. These new functions form a pivotal aspect
our construction and successfully handle issues relate
appearance of non-rational functions in the energy func
and logarithmic terms in the flux function that for lon
proved to be hurdles to the application of well-known Pa´
techniques to this problem. For initial LIGO, the 2.5 PNP
approximants are likely to provide overlaps in excess
96.5% with exact wave forms1 so that more than 90% of th
potential events can be detected. In contrast, the corresp
ing 2.5 PN Taylor approximants can only detect about 5
of the potential events for massive systems~at the price of
large biases;15%). Later studies have confirmed the pe
formance of theseP approximants@27# and assessed@28#
their need in related contexts of space based interferome
such as the Laser Inteferometer Space Antenna.

C. Fourier representation of inspiral signals and validity
of the stationary phase approximation„SPA…

Independent of the choice betweenT andP approximants,
another desirable approximation in data analysis for inspi
ing compact binaries is the stationary phase approxima
~SPA!, which is a simple, explicit analytic approximation
the Fourier transform of the time-domain chirp~see, e.g.,
Ref. @29#!. In fact, most work on inspiral wave forms~except
DIS! has used only SPA approximants to the frequen
domain chirps. In the course of ourP approximant work we
noticed a progressive worsening of the overlap between
SPA and the ‘‘exact’’ Fourier transform—numerically com
puted by a fast Fourier transform~FFT! of the time-domain

1This statement was proven by DIS by quantifying the conv
gence of the sequence ofP approximants toward some ‘‘fiducia
exact’’ wave form. In the test-particle case this wave form used
known Schwarzschild’s energy functionE(v) and Poisson’s nu-
merically computed GW flux@26#. In the comparable mass case,
was constructed by modeling theh- dependent higher PN correc
tions to the best known analytical results.
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signal—~see Table II of DIS! and commented on these ‘‘in
accuracies of the SPA.’’ In the above by SPA one means
only the problem of the formal accuracy of the stationa
phase estimate to the Fourier transform of an analytic
extended, mathematical signal but also some issues linke
the physics, and observability, of the real signal. In partic
lar, in DIS, we were considering templates which are s
off, in the time domain, at the last stable orbit~LSO!. The
present paper will also consider suchtime-truncated inspiral
signals. We shall discuss this point in more detail below, b
the idea is that the postinspiral signal~plunge1 merger! will
have a frequency content very different from the inspiral o
~probably pushed to much higher frequencies!. It should,
therefore, make sense to try to construct filters that repre
as best as possible an inspiral signal which lasts only up
some maximum time~time windowing!. For such signals,
DIS noted a worsening of the usual~frequency-windowed!
SPA approximation, both as the total mass of the sys
increases and as the PN approximation order is increa
and mentioned that this worsened performance was du
the fact that ‘‘such systems emit many less wave cycles
the effective detector bandwidth’’ centered~for initial LIGO!
nearf det5167 Hz. In this paperf det denotes the frequency a
which the noise power spectrum per logarithmic bin of t
detector is the least~or equivalently the frequency at whic
the detector is most sensitive to a broadband burst!. To avoid
irrelevant, uncontrolled sources of inaccuracy, DIS used
FFT of the time-windowed chirp rather than its SPA to ge
erate the frequency-domain wave form and make comp
sons between theT andP approximants.

The use of FFT rather than SPA in DIS makes theP
approximant computationally expensive. As will be di
cussed in detail in Sec. VI, the use of SPA or simi
frequency-domain representations is far less expensive.
obvious need to incorporate this desirable feature makes
gent and mandatory a critical investigation of the possibi
of marrying together the excellent performance of theP ap-
proximants to the relative inexpensiveness of the SPA w
out a serious loss in event rate.

Recently, some issues related to the accuracy of the S
have been investigated. For general chirps, Chassa
Mottin and Flandrin@30# have studied whether the usual co
ditions assumed for the validity of the SPA are necessary
sufficient and attempted a quantitative control of the appro
mation. Droz, Knapp, Poisson, and Owen@31# have exam-
ined other issues related to the accuracy of the SPA of
ticular relevance to gravitational wave data analysis. Unl
DIS, by SPA, Droz, Knapp, Poisson, and Owen imply on
the stationary phase estimate of the Fourier transform
discuss separately the issue of windowing—the fact that
signal in the time domain lasts only fromtmin to tmax or a
time-window. To improve the SPA estimate of aNewtonian
chirp, they compute the next order contribution2 ~to the Fou-
rier integral! by the method of steepest descent, show tha
is of ordervM

10 relative to the leading order SPA estimat

-

e

2We shall give below the general result for any chirp.
6-2
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and conclude that it is small enough to be justifiably n
glected.@HerevM is an invariantly defined ‘‘velocity’’3 re-
lated to the instantaneous gravitational wave frequencF
and chirp massM by vM5(pMF)1/3. The chirp mass is
related to the total massm5m11m2 and dimensionless
mass ratio h5m1m2 /(m11m2)2 by M5h3/5m.# They
point out the importance of windowing, estimate the amp
tude and phase modulations induced in the frequency dom
by the time window and conclude thatin all cases these
modulations have a negligible effect on overlaps. Howev
their analytic expression for the effects of windowing is on
valid for values of frequencieswell away from the bound
aries of the natural frequency window induced by the tim
window, denoted byFmin5F(tmin) andFmax5F(tmax)—the
gravitational wave frequencies at timestmin andtmax, respec-
tively. In this paper we provide a formalism allowing one
compute analytic approximations to the Fourier transform
a time-windowed signal in the most crucialedge-frequency
domains f;Fmin and f ;Fmax ~including f ,Fmin and f
.Fmax). As first noticed in DIS and discussed in detail in t
present work, the effect of window oscillations on overla
~claimed to be negligible in Ref.@31#! starts to be noticeable
when the total massm*13M ( and becomes very significan
for m*20M ( . ~Here we consider equal mass systemsh
51/4.! Since the difference between the statements in D
and Droz, Knapp, Poisson, and Owen@31# can be disconcert
ing and a serious source of confusion to the potential u
community, we discuss this in further detail next.

In DIS, what was meant in Table II~the only place where
it was used! by ‘‘stationary phase approximation’’ was th
product of the usual SPA by a simple Heaviside step fu
tion u(Fmax2 f ) i.e., h̃( f ) was truncated above a Fourie
frequencyf 5Fmax whereFmax is the instantaneous gravita
tional wave frequency at which the time-domain signal
itself terminated, assumed to be~in DIS and here! the fre-
quency at the LSOFLSO. @In the following, we shall, for
brevity, refer to this frequency windowed usual stationa
phase approximation as the ‘‘USPAW.’’# We were moti-
vated to do this from the stationary phase result itself. T
SPA ~to the Fourier transform of the chirp! says that the
dominant contribution to a certain Fourier amplitudeh̃( f )
comes from a neighborhood of time~in the Fourier integral!
when the instantaneous frequencyF(t) numerically reaches
the corresponding Fourier frequencyf. It is therefore to be
expected that the signal essentially terminates atf 5FLSO,
i.e., that there is no significant power in the Fourier tra
form of the signal beyondFLSO. This is indeed true in the
first approximation, as is evident from Fig. 6 below, whi
shows that the power in the exact Fourier transform of
time-windowed signal@computed via a discrete Fourie
transform~DFT!# falls off much faster than the SPA forf
.FLSO. Moreover, as is discussed in detail below, in t
relativistic case the usual SPA breaks down atFLSO and

3Note that, following DIS, we shall usev[(pmF)1/3, instead of
vM5h1/5v, in all our analysis. We also use units such thatG5c
51.
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cannot be meaningfully extended forf .FLSO. Hence the
values quoted in Table II of DIS were obtained by comp
ing the overlap of the DFT of the truncated time-doma
waves with the truncated SPA representation of the wav

On the other hand, a critical examination of Droz, Knap
Poisson, and Owen@31# reveals that their claim regarding th
adequacy of the SPA in fact has only a restricted domain
validity. It is relevant to SPA considered as amathematical
algorithm to be applied to a generic smooth signal and l
mass binaries (m&13M (). As acknowledged by the au
thors, they do not address physical issues related to an e
tual time-domain cutoff of the signal atFLSO. What they call
‘‘Newtonian signals’’ are unphysical, formally define
chirps whose instantaneous frequencies are extende
Fmax5FNyquist@FLSO, in fact, better described as ‘‘analyt
cally extended Newtonian signals.’’ It is the SPA of th
formal, analytically extended signal which is shown to pr
duce overlaps with exact FFTs better than 0.99 even for m
sive binary systems of chirp massM510M ( , correspond-
ing to a total mass ofm;23M ( for an equal mass system
(h51/4). These large overlaps, in our view, arenot proof of
the validity of the SPA to compute, physically relevant, a
curate frequency-domain inspiral templates, as they do
address the important issue of inspiral-signal termination
or near theFLSO when FLSO; f det, the frequency at which
the broadband noise of the detector is the least. It turns
that for binary systems of total massm*28M ( the power in
the Fourier domain beyondf 5FLSO for a relativistic signal,
is a significant fraction (.10%) of the total power. If the
usual ~frequency-windowed! SPA is used in constructing
frequency-domain inspiral waves we are risking the loss
more than 30% of the events from binaries with mas
*28M ( . ~This will be illustrated in Fig. 1 below.! This is in
addition to the losses induced by the inaccuracy of the
wave forms and the discreteness of the bank of templ
used in data analysis.

D. Massive black hole binaries and first detections
in LIGO ÕVIRGO

Let us first establish our notation. We define the Four
transform~FT! h̃( f ) of a time-domain signalh(t) by

h~ t !5E
2`

`

d f e22p i f t h̃~ f !; h̃~ f !5E
2`

`

dte2p i f th~ t !.

~1.1!

We write the~suitably transformed! output of the detector as

hout5h~ t !1n~ t !, ~1.2!

whereh(t) is the signal andn(t) the noise. The correlation
function of the noise reads

n~ t1!n~ t2!5Cn~ t12t2!5E
2`

`

d f Sn~ f !e2p i f (t12t2),

~1.3!
6-3
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DAMOUR, IYER, AND SATHYAPRAKASH PHYSICAL REVIEW D 62 084036
whereSn( f )5Sn(2 f ) is the two-sided noise power spectr
density. In all the present work, we shall consider a no
curve of the type expected for initial interferometers. F
initial LIGO we take@32#

Sn~ f !5
S0

2 F212S f

f 0
D 2

1S f

f 0
D 24G , f > f s ~1.4a!

5`, f , f s . ~1.4b!

with f s540 Hz, f 05200 Hz, andS051.47310246Hz21. In
the above we have included a factor of 1/2@Sn

one-sided

[2Sn
two-sided# because Eq.~1.4a! gives thetwo-sidednoise;

the one-sidednoise would be given by the same formu
without the factor of 1/2. The minimum ofSn( f ) is at f
5 f 0 and is equal toSmin52.5S0. However, a physically
more relevant quantity is the minimum of the dimensionle
quantity hn

2( f )[ f Sn( f ) ~effective GW noise, see below!.
This is reached at thecharacteristic detection frequency
5 f det50.8347f 0, and is equal to (hn

min)252.2761f 0S0. The

FIG. 1. Comparison of the signal-to-noise ratio~SNR! for an
inspiral signal searched by means of two different filters, in t
different interferometers@initial LIGO, Eq. ~1.4a! or VIRGO, Eq.
~1.5a!#. The exact signalh is assumed to be a time-truncated Ne
tonian chirp~sufficiently well approximated by the INSPA!. The
solid lines represent the optimal SNR, obtained when the filterk is
identical to the exact signalh. The dotted lines represent the su
optimal SNR, obtained when the filterk is the frequency-windowed
usual SPA~USPAW!. In the case of LIGO, for low mass binarie
USPAW extracts the full SNR, but at higher masses, which are
most crucial ones for initial interferometers, it loses SNR up to
factor of 1.5 leading to a loss in the number of detectable event
to 70%. In the case of VIRGO, USPAW performs quite well wh
the total massm,50M ( , and requires INSPA for heavier binarie
The loss in the number of events caused by USPAW for hea
mass binaries in the rangem.50M ( is unacceptable.
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above numerical value forf 0 and S0 leads tof det5167 Hz
and corresponds tohn

min52.5868310222.
For VIRGO on the other hand, the corresponding no

curve is given by

Sn~ f !5
S0

2 F103S f s

f D 5

12S f 0

f D111S f

f 0
D 2G , f > f s

~1.5a!

5`, f , f s , ~1.5b!

In this case, f s520 Hz, f 05500 Hz, while S053.24
310246Hz21 @33#. The minimum of hn( f )5Af Sn( f ) is
reached atf 5103 Hz and is equal tohn

min54.2902310222.
It should be noted that the VIRGO noise curve is used o
in this section, while discussing Fig. 1. In the rest of t
paper and all the figures and tables, the scalar produc
defined using the LIGO noise curve.

Anticipating on formulas to be discussed in Sec. II B, t
square of the signal to noise ratio~SNR! is given by

r25S S

ND 2

5
^k,h&2

^k,k&
, ~1.6!

where the scalar product is defined by

^k,h&[E
2`

1`

d f
k̃* ~ f !h̃~ f !

Sn~ f !
. ~1.7!

Here,h denotes the exact signal, andk the filter used in the
data analysis. We assume in this paper that the signalh is
given by a time-truncated adiabatic inspiral signal.@For sim-
plicity, we consider in this subsection Newtonian wa
forms, and we approximate the Fourier transform of a tim
truncated Newtonian signal by the very accurateimproved
Newtonian stationary phase approximation~INSPA! to be
constructed below.# In computingr2 we average over all the
angles~determining both the detector and the source ori
tations!, and we place the source at a fiducial distance of 1
Mpc. ~Note that a coalescence rate of 1025 per galaxy and
per year implies that in 2 yr one event should happen wit
100 Mpc.!

In most of the literature one uses as Fourier-domain fi
k̃( f ) the frequency-windowed USPAW to estimate the SN
for an inspiral signal. We illustrate in Fig. 1 the loss in sign
strength extracted by using as a filter the USPAW in LIG
and VIRGO@cf. Eqs.~1.4a! and~1.5a!#, instead of using the
optimal filter k5h ~leading to the optimal SNRr25^h,h&).
The plot also shows on the top horizontal axis the last sta
orbit frequency corresponding to the total mass in quest
The left vertical axis shows the SNR extracted and the ri
vertical axis shows the sensitivity,hn

21[@ f Sn( f )#21 ~both of
which are dimensionless! of LIGO-I and VIRGO instru-
ments. While reading the sensitivity curve one should use
top and right axes and while reading the SNR curve o
should use the bottom and left axes. The SNR values plo
in Fig. 1 have been computed numerically by inserting
relevant values ofh̃( f ) and k̃( f ) in Eq. ~1.6!. Although we
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did not use it, it might help the reader to see theanalytical
expression ofr2 obtained in the simple approximation whe
k̃( f ).h̃( f ).h̃uspaw( f ). Using the equations of Sec. II belo
~and averaging over angles as explained in Sec. IV A bel!
leads to

^r2&.
h

15p S m

d D 2E
0

FLSO d f

f

1

v~ f !

1

f Sn~ f !
, ~1.8!

where^ . . . & denotes the angular average,d the distance to
the source,v( f )5(pm f)1/3, and Sn( f ) the two-sidednoise
given by Eq. ~1.4a!. We indicated no precise detectio
threshold in Fig. 1 because this depends on many param
~like the number of detectors involved!. The reader should
however, keep in mind that a reasonable detection thres
is, at least,r threshold;5.

We note that theeffectivesensitivity of LIGO-I peaks
near a frequency of 167 Hz which is the last stable o
frequency for a binary of total mass of about 27M ( . The
effective sensitivity of VIRGO peaks at a much lower fr
quency of 103 Hz. This low-frequency sensitivity of VIRG
means two important things: First, lighter binaries~i.e., m
&30M (! are integrated for a longer time in the low
frequency regime and, therefore, the corrections to the
introduced in this paper are less important for such syste
This means that the USPAW is quite good in extracting
full signal power of such binaries as evidenced in Fig.
Notice that, for VIRGO, the USPAW curve follows th
INSPA curve form&30M ( . On the contrary, LIGO’s lower
sensitivity to lower frequencies makes it important to inclu
the corrections to the FT of LSO-truncated signals from
naries of massm*15M ( . In LIGO’s case USPAW extracts
only 75% of the full SNR, implying a loss of more than 40
of all massive binary coalescences. On the other hand,
low-frequency peak of VIRGO sensitivity means that w
will have to employ the accurate Fourier domain mod
discussed in this paper for more massive binaries, i.e.m
*30M ( . @Note, however, that the low-frequency sensitiv
of VIRGO means that, for low-mass and medium-mass
naries, it is even more crucial to useP approximants~instead
of the usually consideredT approximants! than for LIGO, in
order to accurately keep track of the phasing of the m
cycles accumulated at low frequencies.#

It is fair to say that at present the most well-understo
gravitational wave form is the inspiral one and thus the o
reliable templates correspond to inspiral signals. It is a
generally believed that binary black holes are better ca
dates for gravitational wave sources than binary neutron s
due to their larger masses~the average mass of observe
black hole candidates is around 8M ( @34#!. Theoretical com-
putations based on stellar evolution indicate that binary bl
holes with individual masses&15M ( may be the only
known sources that exist~hopefully! in sufficient numbers
@35–38#. When looking at Fig. 1, one clearly sees the imp
tance of dealing with binary black holes with total masses
the range of 28-30M ( . They lead to signals with the bes
SNR. However, it is precisely for such systems that theFLSO
is around the middle of the detection bandwidth for init
08403
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LIGO, i.e.,FLSO; f det. The most likely sources to detect a
in the problematic region discussed in this paper. This ma
it imperative not to lose SNR when dealing with such sign
and provides the other major motivation for our work. If o
assumption that the best models of inspiral wave forms m
be abruptly shut off in the time domain holds, it is essen
to use the improved SPA formulas discussed in this work
order to maximize our chances of detecting inpiralling bin
ries. The analysis presented in this paper provides insig
and techniques to deal with binary black hole signals
probably the most crucial mass range.

E. Summary of the present paper and proposals
for data analysis groups

In this paper we propose analytical approximations to
FT of the LSO-truncated time-domain inspiral waves that
very accurate even for the massive black hole binaries,
most likely sources for LIGO and VIRGO~overlaps with
FFT .0.99 form&40M () and are at the same timecompu-
tationally inexpensive. We call our final new, frequency
domain filters the SPP approximants because they com
the computational convenience of stationary phase appr
mants with the accuracy of the~time domain! P approxi-
mants. Our strategy is twofold: On the one hand we int
duce a correction factorC( f ) to the usual SPA forf , f up
<FLSO, which improves the SPA by taking into account th
‘‘edge’’ oscillations present whenf & f up. ( f up will be de-
fined below. For Newtonian-like signalsf up5FLSO, while
for relativistic signalsf up,FLSO.! On the other hand, we
introduce a new approximation to the FT forf . f up which
efficiently recovers the signal power around and beyond
frequency corresponding to the last stable orbit. These
tures are important new steps forward as there was no
malism until now that could compute~especially forrelativ-
istic signals! Fourier transforms analytically forf ;FLSO,
and in particularf .FLSO. These new features now make
possible to generate templatesdirectly in the Fourier do-
main, leading to a saving on the computational cost of te
plate generation by a factor of 10 or more.

Our concrete proposal to the interferometer data anal
groups that are building the gravitational wave search s
ware and wish to have Fourier-domain filters, which are b
accurate and fast-computed, is thus the following: First,
confirm that foraccuratepost-Newtonian template genera
tion of binary systems of total massm&40M ( one needs to
use a frequency-domain version of theP approximant~pre-
viously defined only in the time domain!. For m,5M ( a
straightforward~uncorrected for edge effects! SPA of theP
approximants is sufficient.~They match with the exact DFT
of the same time signal with overlaps.0.999.! On the other
hand, in the total mass range 5M (&m&40M ( , andassum-
ing that one wishes an accurate frequency-dom
( f -domain! representation of a time-windowed signal it
crucial to use our new SPP approximants. Form*40M ( a
straightforward DFT is recommended~but, anyway, the sig-
nal is not known with enough precision in this high ma
range, where the plunge and merger signals become ob
vationally important!.
6-5
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It is important to stress the position we assume in t
paper: Given the absence of any detailed and precise in
mation about the plunge signal today, we suggest that a ti
truncated chirp~time-windowed signal! is currently our best
bet and the modified SPA presented in this paper is the
propriate Fourier-domain representation one must use. H
ever, this should not be taken to imply that we are claim
to have logically excluded the other possibility that thef
window may turn out to be the better choice, when we ha
further details about the transition from inspiral to plun
and, about the plunge wave form. Even so, we empha
that a definitive contribution of the present work is to pr
vide explicitly for the first time the frequency-domain ve
sion of the time-domainP approximants which were show
in DIS to bring indispensible improvements over the usua
consideredT approximants. Consequently, even in the u
likely case where a straightforward frequency window tu
out to be a better model than the time window assumed
most of this work, one will still require the formulas given
this paper@with the trivial change of replacing the correctio
factorsC(z) by a u function u(FLSO2 f )# to generate suffi-
ciently accuratef-domain filters. Thus this work may not b
the complete final answer but only a step ahead and a pa
contribution toward defining goodf-domain filters. Assump-
tions that seem the best we can accept require special
for their analysis and this paper provides them.

This paper is organized as follows: In Secs. II A, II B, a
II C as a prelude to later technical material, we introdu
several useful physical notions and employ them to giv
preliminary discussion of the questions raised by the det
ability of massive-binary signals. In Sec. II D we summar
the mathematical tools used in the paper to estimate the t
truncated chirps. In Sec. III we consider time-window
Newtonian-like signals. Section III A provides a short su
mary of the well known SPA. Section III B sets up the ba
equations to discuss the FT of time-windowed signals. S
tion III C estimates the edge contribution to the FT comi
from the nonresonant integral. This is followed by Se
III D and III E where we elaborate in detail the constructi
of optimal analytic approximations to the FT of the tim
windowed gravitational wave chirp~improved Newtonian
SPA!. In Sec. III F we compare and contrast in detail t
usual SPA with our improved SPA for Newtonian-like si
nals. Section IV A addresses the new issues related to th
of time-windowed relativistic signals. In Sec. IV B we
present a new method to estimate the small nonresonant
tribution in the relativistic case. In Sec. IV C we construc
new form of improved SPA for such signals~improved rela-
tivistic SPA!. Combining this improved relativistic SPA with
the P approximants of DIS leads to the construction of t
frequency-domain SPP approximants. In Sec. V we use
SPP approximants constructed earlier and investigate
faithfulnessandeffectualnessin detail for the test mass cas
Based on this we comment on the corresponding situatio
the comparable mass case. In Sec. VI we compare the c
puting costs for template generation using the time-dom
FFT with corresponding costs for the frequency-domain S
and improved SPA both for Newtonian and relativistic cas
Section VII contains our concluding remarks.
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II. PRELIMINARY DISCUSSION

As a preface to the technical treatments of the followi
sections in which we shall construct optimal analytic a
proximations to the FT of the gravitational wave inspir
signalh(t) let us start by discussing some general issues
are central to this paper.

A. Wiener filters and time-truncated inspiral signals

We briefly recall the principle underlying the optimal lin
ear filter technique~Wiener filter!. A ~real! linear filter is a
linear functional of the detector’s output,hout, Eq. ~1.2!, say

K@hout#5E
2`

`

dtK~ t !hout~ t !5E
2`

`

d f K̃~2 f !h̃out~ f !

5E
2`

`

d f K̃* ~ f !h̃out~ f !.

~2.1!

Let us associate to anyK(t) the time-domain functionk(t)
such that its FT equalsk̃( f )[Sn( f )K̃( f ) and let us introduce
the Wiener scalar product~defined on real time-domain func
tions!

^g,h&[E
2`

` d f

Sn~ f !
g̃* ~ f !h̃~ f !

5E
2`

` E
2`

`

dt1dt2g~ t1!w1~ t12t2!h~ t2!, ~2.2!

where,

w1~t!5E
2`

` d f

Sn~ f !
e2p i f t5w1~2t!, ~2.3!

is the convolution inverse of the noise correlation functi
Cn(t)5Cn(2t), i.e.,

~w1* Cn!~ t !5d~ t !. ~2.4!

@Here * denotes the convolution product: (g* h)(t)
[*2`

` dtg(t)h(t2t)#. With this notation the action of the
filter K on hout reads

K@hout#5^k,hout&[S1N, ~2.5!

whereS is the filtered ‘‘signal’’ andN the filtered ‘‘noise’’
defined by

S[K@h#5^k,h&; N[K@n#5^k,n&. ~2.6!

The definition of the symmetric Wiener scalar product E
~2.2! is such that the statistical average of a product of
tered noises simplify: ^k1 ,n&^k2 ,n&5^k1 ,n&^n,k2&
5^k1 ,k2&. In particular, the variance of the filtered noiseN

readsN̄25^k,n&25^k,k&, so that the square of the SNR fo
the filter defined by any functionk(t) reads
6-6
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r2[
S2

N̄2
5

^k,h&2

^k,k&
5uO~k,h!u2^h,h&, ~2.7!

where we have defined the ‘‘overlap,’’ or normalized am
guity function, betweenk andh

O~k,h![
^k,h&

A^k,k&^h,h&
. ~2.8!

Schwarz’s inequality guarantees thatuO(k,h)u<1, the equal-
ity being reached only whenk(t)5lh(t). ~We work here in
the space of real signals.! For a given signalh(t), the choice
of filter K↔k which maximizesthe SNRr is, in view of Eq.
~2.7!, k(t)5lh(t), where the proportionality constant is un
important and can be taken to be one~Wiener theorem!. This
optimal linear filter theorem applies when the full time d
velopment of the signalh(t) is known, the noise is station
ary, and has a known spectral distributionSn( f ).

It is important to note the following: The statement th
the best ‘‘associated’’ filterk(t) is simplyk(t)5h(t) means
that the best time-domain filterK(t), which must be directly
correlated with the detector’s output K@hout#
5*2`

` dtK(t)hout(t), is a nonlocal~in time! functional of
h(t). Explicitly,

K~ t !5~w1* h!~ t !5E
2`

`

dtw1~t!h~ t2t!. ~2.9!

This poses the question whether, for an off-line analysis
the data, one would like to store a bank of these nonlo
time-domain filtersK(t), which densely cover the expecte
parameter space. In the present paper, we shall assume
one computes~nearly! on-line the FFT of the detector’s ou
put ~which is needed to factor out the frequency depend
effect of the interferometer on the GW signal!, and we shall
set ourselves the task of providing the best possible ana
cal representations of the FT of the expected signalsh̃( f ).
Moreover, the availability of a fast Fourier algorithm mak
the filtering problem computationally less intensive in t
Fourier domain. It is well-known that the computation of
discrete correlation for all~discrete! time lags between the
output and the filter, i.e., the discrete version of Eq.~2.1!
requiresO@N2# operations in the time domain while it take
only O@N log2(N)# operations in the Fourier domain@because
a time lagt adds a factor exp(2pift) in the f-domain version
of Eq. ~2.1!, which is equivalent to computing a certain in
verse Fourier transform#. Discrete correlation in thef domain
suffers from spurious correlations for nonzero time lags
this is easily taken care of by padding the tail part of
template with a large number of zeros~see, e.g., Ref.@6# for
details!.

As the problem of the locality/nonlocality in time will b
crucial to our discussion of the inspiral signals, we wish
give an alternative discussion of Wiener’s optimal linear
ter theorem. Indeed, another proof of the theorem can
obtained by introducing a ‘‘whitening’’ transformation sa
w1/2, which simplifies the properties of the noise. We defi
the ‘‘whitening kernel’’ w1/2(t) by
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w1/2~t!5E
2`

1` d f

ASn~ f !
e2p i t f ; w̃1/2~ f ![

1

ASn~ f !
.

~2.10!

For any functiong(t), the action of the kernelw1/2 on g ~i.e.,
the ‘‘whitened’’ version of the functiong) can be denoted by

g1/2~ t ![~w1/2* g!~ t !5E
2`

`

dtw1/2~t!g~ t2t!.

~2.11!

The name ‘‘whitening kernel’’ comes from the fact that th
transformed noisen1/2(t) is ‘‘white,’’ i.e., uncorrelated

n1/2~ t1!n1/2~ t2!5E
2`

`

d f e2p i f (t12t2)5d~ t12t2!.

~2.12!

Note thatw1/2 is simply the convolution square root of th
Wiener kernelw1 introduced above:w1/2* w1/25w1. The
Wiener theorem states then that, after having whitened
the functions, the optimal filter is simply the usual straigh
forward correlation between the~whitened! output and the
~whitened! signal, i.e.,

Koptimal@hout#5E
2`

`

dt h1/2~ t !h1/2
out~ t !, ~2.13!

whereh1/25w1/2* h, h1/2
out5w1/2* hout. In other words, we can

think of the optimal filter as being local-in-time after th
application, to all signals, of the convolution kernelw1/2.
When working with the transformed time-domain functio
h1/2(t), h1/2

out(t)•••, we shall say that we work in the ‘‘whit-
ened time domain.’’ In this language, the best filter in t
whitened time domain is to simply correlate~as when trying
to visually superpose two time functions! the output with a
copy of the signal. This ‘‘whitened time domain’’ is concep
tually useful in the present context because it introduces o
a small nonlocality~by small we mean much smaller than th
nonlocality introduced by the Fourier transformation!. In-
deed, as the function 1/ASn( f ) has a rather flat maximum, it
Fourier transformw1/2(t) is nearly a delta function as see
in Fig. 2 wherein we have plotted the whitening kernel f
the initial LIGO interferometer. More precisely,w1/2(t) is an
even function made of a positive spike aroundt50, fol-
lowed ~on each side! by a slightly negative wing, which de
cays fast toward zero asutu→1`. The half width at half
maximum of the central spike is 0.18 ms. The location of
wings is aroundt560.002 s. Therefore the nonlocality con
tained in the whitening transformation is only between 0
and 2 ms~depending on the function on which it acts!. This
nonlocality together with the one and a half cycle inw1/2 is
sufficient to efficiently damp both high and low frequenci
so thath1/25w1/2* h is a chirp whose amplitude is importan
only when the instantaneous frequency is aroundf p5165 Hz
~see below!. We shall use below this whitened time-doma
picture to discuss the important features of the expec
chirp that we should try to model it as well as possible.
6-7
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In the present paper, we are primarily interested in m
sive compact binaries with total massm5m11m2 in the
approximate range 3M (&m&40M ( . We recall that the
GW signal from a compact binary is made of an inspi
signal followed, after the last stable orbit is reached, b
plunge signal that leads to a final merger signal. Thank
the analytical work on the motion@3# of and GW emission
@24,39# from general relativistic binary systems we ha
quite a good analytical control of the inspiral signal. In t
present paper, we shall further argue that we have als
rather good analytical control on the location of the LS
i.e., on the transition between the inspiral and plunge. F
DIS @13# introduced a new, more robust approach to
determination of LSO based on the invariant functione(v).
More recently@40#, a new approach to the dynamics of b
nary systems has confirmed the result of DIS~stating that the
LSO was slightly more ‘‘inwards’’ for comparable mass sy
tems than as predicted by the test-mass limit! and predicts
values for the important physical quantities at the LSO~no-
tably the orbital frequency! which are even nearer to th
~Schwarzschild-like! ones obtained in the test-mass lim
We anticipate that further analytical progress in the probl
of motion of binary systems@41#, combined with the LSO-
determination techniques given in@13# and@40,42# will soon
allow one to know with more certainty and more precisi
the gravitational wave frequency at the LSO. Pending suc
determination, we shall use as a fiducial value for the G
frequency at the LSO—when we need it for simple analyti
estimates—the usual ‘‘Schwarzschild-like’’ approximation

FIG. 2. The whitening kernel,w1/2(t), Eq. ~2.10!, is shown@for
the initial LIGO noise curve, Eq.~1.4a!# plotted as a function of
time. We see that it is quite sharply peaked att50. The peak drops
quite rapidly as we move away from the origin, thus indicating t
we have almost local-in-time filters. The curve also indicates
importance of knowing the plunge signal over a time scale of s
eral 10’s of milliseconds so that the inspiral signal can have a g
overlap.
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FLSO54400S M (

m D Hz. ~2.14!

However, in our actual numerical calculations and plots
shall use theh-dependentFLSO corresponding to the ap
proximation used for the energy functionEA(v). For in-
stance, in the case of the 2PNP approximantP4 we have
@13#

FLSO
P4 54397.2S 11 1

3 h

12 35
36 h

D 3/2

3F 22
11 1

3 h

A12 9
16 h1 1

36 h2G 3/2
M (

m
Hz. ~2.15!

In the equal-mass case (h51/4) this yields FLSO
55719.4M ( /m Hz. Note that the most recent determinatio
of the LSO@40# suggests that whenhÞ0 the GW frequency
at the LSO lies between Eqs.~2.14! and ~2.15!

FLSO54397.2~110.3155h!S M (

m D Hz. ~2.16!

Preliminary studies indicate that the plunge signal, em
ted during the fast fall of the two masses toward each ot
following the crossing of the LSO, will last~when 4h;1)
only for a fraction of an orbital period~see Refs.@40# and
@43#!.4 As usual, one can also assume that the subseq
merger signal linked to the formation of a black hole of to
mass;m contains significantly higher frequencies than t
inspiral ones. Indeed, the characteristic frequency of
merger signal may be taken to be given by the real part of
most slowly damped quadrupolar normal mode of a bla
hole ~which when neglecting the black hole spin, has a co
plex circular frequencyv1mbh50.373 67–0.088 96i @44#!,
i.e., ~with mbh;m)

f merger; f bh.
0.374

2pm
.12 000

M (

m
Hz. ~2.17!

Equations~2.14! and ~2.17! lead us to accept that there is
significant frequency separation between the inspiral
plunge signals and the merger one:f merger/FLSO;2.75.
Therefore, if we restrict our attention to systems such that
characteristic detection frequencyf det, defined by the noise
curve, stays logarithmically nearer toFLSO than to f merger, it
seems plausible that a good filter to use for GW detect
can neglect the~ill-known! merger signal, but should try to
model as accurately as possible the inspiral and plunge
nal. For the initial LIGO noise curve, Eq.~1.4a!, the charac-
teristic detection frequencyf det is 167 Hz. It is then for a
total massm<43.5M ( that f det/FLSO< f bh/ f det.

4We assume here that we are in the generic case where the
of the coalescing objects are small compared to their maximal K
value.
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We shall see below that, just before reaching the LSO,
inspiral signal is still significantly ‘‘quasiperiodic’’~with *6
cycles before a significant change in instantaneous
quency!. By contrast though the plunge signal may not dec
monotonically and may be oscillating, it seems reasonabl
assume that the plunge lasts for only a fraction of the orb
period TLSO52FLSO

21 . Thus, in the absence of a preci
knowledge of the plunge signal, a good model of the tim
domain signal consists in abruptly shutting off by a st
functionu(tLSO2t) the~adiabatic! inspiral signal beyond the
time tLSO when the last stable orbit is reached. We also f
mally tested the robustness of our approach by showing
our model~discussed above! has a good overlap with a sig
nal that decays smoothly on a time scale of a few~up to 3!
FLSO

21 beyond the LSO. Because of the likely oscillatory b
havior of the plunge signal, details of the oscillations a
necessary for any further improvements and we are curre
working toward improving our understanding of the tran
tion between the inspiral and the plunge@43#.

These considerations motivate us to propose that, in
absence of knowledge of the optimal filter which should
koptimal(t)5kexact(t), our best bet is to use the time-truncat
inspiral signalhinspiral(t)u(tLSO2t) as a~suboptimal! filter.
In other words, we think that the best strategy is to use all
information available about the signal in the time doma
and to replace the transient plunge and higher freque
merger signals by zero as a measure of our current ig
rance. But having settled on this tactic in the time doma
the aim of this paper is to provide the best possi
frequency-domain description of such a time-windowed s
nal. We shall see in detail~below! that the Fourier transform
h̃tw( f )5FT@htw(t)# of the time-windowed signalhtw(t)
[hinspiral(t)u(tLSO2t) has a nontrivial structure that is no
captured by the usually considered frequency-windowed
tionary phase approximationh̃spaw( f ). In particular, for mas-
sive systems, a significant fraction of the total power is c
tained in the ‘‘tail’’ of h̃tw( f ) beyondf 5FLSO. The general
result @Eq. ~2.7!# for SNR obtained with any filter then as
serts that the Fourier-domain filterh̃tw( f ), although subopti-
mal, should still be significantlybetterthanh̃spaw( f ) because
~under our assumptions about the plunge1 merger signal! it
has better overlaps with the exact signal. We shall ret
below to this important issue and give further arguments~in
the time domain! to confirm the superiority ofh̃tw( f ) over
h̃spaw( f ) ~see Figs. 9 and 10 and text around it!.

B. The number of useful cycles

Often one mentions that, in the total time developmen
an inspiral signal, the total number of gravitational wa
cycles

Ntot5
1

2p
~fend2fbegin!5E

Fbeg

Fend
dFS 1

2p

df

dFD ~2.18!

is very large. Heref is the gravitational wave phase,fend is
the phase at the end of the inspiral regime~defined by the
last stable orbit for sufficiently massive systems, i.e., for
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black-hole–neutron-star and the black-hole–black-hole s
tems!, while fbegin is the phase when the signal enters t
lower frequency~seismic! cutoff of the detector bandwidth
We have also rewrittenNtot as an integral over the runnin
instantaneous gravitational wave frequencyF. However, the
large numberNtot @Eq. ~2.18!# is not significant because th
only reallyusefulcycles are those that contribute most to t
SNR. To have a clearer idea of what one might mean by
notion of auseful number of cycles, let us first introduce the
instantaneous number of cyclesspent near some instanta
neous frequencyF. It is naturally defined by multiplying the
integrand in Eq.~2.18! by F, considered as the length of a
interval 6DF56F/2 aroundF, i.e.,

N~F ![
F

2p

df

dF
[

F2

dF/dt
, ~2.19!

where we have useddf/dt[2pF(t). Note that the instan-
taneousN can be considered either as a function of the ru
ning frequencyF(t) or, directly, of time.

The instantaneous number of cycles plays an impor
role both in defining the observability of a signal, and
controlling partially the validity of the stationary phase a
proximation. The square of theoptimal SNR reads

r2[S S

ND 2

5E
2`

1`

d f
uh̃~ f !u2

Sn~ f !
. ~2.20!

In the stationary phase approximation~discussed at length
and improved below; but here we use standard results
orientation! the modulus of the FT of the real signalh(t)

52a(t)cosf(t) readsuh̃( f )u.a(t f)/AḞ(t f), wheret f is the
time when the instantaneous frequencyF(t) reaches the
value f.5 Therefore, the squared modulus can be written a

uh̃~ f !u2.
a2~ f !

d f /dt
[

1

f 2
N~ f !a2~ f !. ~2.21!

Finally, the SNR can be rewritten as

r2[S S

ND 2

5E
2`

1`d f

f

N~ f !a2~ f !

f Sn~ f !
5E

2`

1`d f

f

hs
2~ f !

hn
2~ f !

,

~2.22!

where we have introduced the notationhs
2( f )[N( f )a2( f )

andhn
2( f )[ f Sn( f ). Here,hn

2( f ) is the usual squared ampl
tude of theeffective gravitational wave noiseat the fre-
quency f, i.e., the minimum gravitational wave amplitud

5In the following, it will be necessary to distinguish careful
between the instantaneous frequencyF and the Fourier variablef. In
the present section this distinction is not very important and
shall freely change notationf↔F. Similarly, the gravitational wave
flux and factored flux functions which, following standard notatio
was denoted byF(v) and f (v) in Ref. @13# are denoted byF(v)
and l (v) in this paper to avoid confusion with the instantaneo
gravitational wave frequency and Fourier variable, respectively
6-9



nd

fo
va

h

il-

n
ta

or

i
ve
se
O
e

o

on

he

R

an
The

ell
en
aling
bit,

-
n
oise
O

en-

s-
d

lin

e
l is

DAMOUR, IYER, AND SATHYAPRAKASH PHYSICAL REVIEW D 62 084036
detectable in a bandwidth6 f /2 around frequencyf. Equation
~2.22! exhibits that the squared amplitude of the correspo
ing effective gravitational wave signalis hs

2( f )[N( f )a2( f )

5 f 2uh̃( f )u2, i.e., that the ‘‘bare’’ amplitudea( f )[a(t( f )) is
effectively multiplied byAN( f ) @5,6#. Equation~2.22! also
exhibits the relative weight with which each cycle counts
detectability purposes. Per logarithmic frequency inter
this weight is simply

w~ f ![a2~ f !/hn
2~ f !. ~2.23!

Therefore it is natural to define the number ofusefulcycles
as

Nuseful[S E
Fmin

Fmax d f

f
w~ f !N~ f ! D S E

Fmin

Fmax d f

f
w~ f ! D 21

,

~2.24!

whereFmin is the low-frequency seismic cutoff below whic
hn

2( f ) is essentially infinite and where the upper cutoffFmax

is the frequency at which the signal itself shuts off. For
lustration, we list in Table I the number ofusefulcycles and
the total number of cycles for representative systems a
orders of approximation. For Newtonian chirps the to
number of cycles is

Ntot
Newt5

~pm fs!
25/32~pm fmax!

25/3

32ph
, ~2.25!

wheref s is the seismic cutoff. The total number of cycles f
relativistic chirps is always smaller thanNtot

Newt. From Table I
it is clear that the numberNuseful is usually much smaller than
Ntot , Eq. ~2.18!. Note that for massive systemsNuseful be-
comes quite small. The number of useful cycles given
Table I have been computed for the initial LIGO noise cur
Eq. ~1.4a!. The corresponding numbers for the VIRGO noi
curve@Eq. ~1.5a!# would be larger both because the VIRG
sensitivity curve peaks at a lower frequency, and becaus
is flatter.

To explore the case of systems with a small number
useful cycles in more detail we display in Fig. 3~on a linear–
log plot! the various factors of the logarithmic integrand

TABLE I. Number ofusefulcycles for some representative sy
tems and approximants. For each of the cases the correspon
total number of cycles is listed within rounded brackets on the
below.

System Newtonian Relativistic:P4

1.4M ( –1.4M ( 173 169
~1588! ~1586!

1.4M ( –10M ( 51 37
~348! ~320!

10M ( –10M ( 12 7.6
~57! ~47!

20M ( –20M ( 9.2 3.4
~15! ~10!
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the right-hand side~RHS! of Eq. ~2.22! for two different
binary systems. The instantaneous number of cyclesN( f ) in
the Newtonian approximation is plotted, together with t
square of the amplitudea2( f ), their product of theeffective
gravitational wave amplitudehs

2( f )5N( f )a2( f ), the recip-
rocal of effective noisehn

2( f )5 f Sn( f ) ~cutoff after Fmax

5FLSO), and the power per log bin of the square of the SN
dr2/d(log f). On the left, the scale on they axis corresponds
to N( f ). On the right it corresponds to the amplitude on
arbitrary scale. Other quantities are on an arbitrary scale.
top panel is for a lighter mass binary (m151.4M ( , m2
510M () and the bottom panel for a heavier one (m15m2
510M ().

The last figure exhibits two useful lessons that are w
known, but are particularly important to keep in mind wh
reading the present paper. First, because of the mass sc
of the gravitational wave frequency at the last stable or
given in the lowest~Schwarzschild-like! approximation by
Eq. ~2.14!, it is only for systems with total massm5m1
1m2*13M ( that the peak of the SNR logarithmic
frequency-distribution fp becomes comparable, within a fac
tor of 2, toFmax5FLSO. This statement critically depends o
the characteristic frequency entering the considered n
curve. For instance, in Fig. 3 we have used the initial LIG
curve@Eq. ~1.4a!# for which f p50.825f 05165 Hz. Note that
the peak of the logarithmic SNR integrandf p is very close to
the minimum of the effective noise amplitudehn

2( f )
5 f Sn( f ), which is located~as mentioned above! at f det
50.8347f 0.167 Hz. This is because, the frequency dep

ing
e

FIG. 3. The Newtonian instantaneous number of cyclesN( f ),
the square of the amplitudea2( f ), their productN( f )a2( f ), the
reciprocal of the effective GW noisehn

2( f )5 f Sn( f ), and
d(SNR)2/d(log f) are plotted as a function off. The scale on they
axis corresponds toN( f ) on the left and all other functions ar
plotted on an arbitrary scale indicated on the right. The top pane
for a lighter mass binary (m151.4M ( , m2510M () and the lower
one for a heavier mass system (m15m2510M ().
6-10
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dence of the factorN( f )}(hv5)21} f 25/3 @which in the ef-
fective signalhs

2( f )5N( f )a2( f ), favors lower frequencies#
is nearly compensated by the frequency dependence o
bare amplitudea2( f )}v4} f 4/3 ~which favors higher frequen
cies!.

A second lesson to be drawn from Fig. 3 is that the nu
ber of useful cycles also becomes small in the same p
lematic case of massive systems. To see this more clearly
us write down the explicit expression for the instantane
number of cycles. In the Newtonian case~for which the basic
formulas are recalled in Sec. III A below!, one has

NNewtonian~ f !5
5

24p

1

4h

1

v5
, ~2.26!

wherev5(pm f)1/3. The lowest value ofN is physically that
formally reached at the upper frequency cutofff 5Fmax

5FLSO. For vLSO51/A6 ~the ‘‘Schwarzschild’’ value!, the
above equation reads

NNewtonian~FLSO!5
5

24p
65/2

1

4h
.

5.8477

4h
, ~2.27!

where we recall thath<1/4 and that the upper valuehmax
51/4 is reached for equal mass systemsm15m2. Therefore
for comparable-mass, massive systems, the Newtonian
proximation suggests that the useful number of cycles will
rather small (;6) and concentrated near the LSO. As w
shall see later, if we were interested in estimating the FT
an analytic Newtonian-like signal, even such a small num
of cycles~and even a smaller one, down toN;1) would be
enough to ensure that the leading correction to the statio
phase approximation is small. However, the complicat
comes from the combination of two facts:~i! the signal es-
sentially terminates at the LSO crossing timetLSO, and ~ii !
one crucially needs a relativistic description of the evolut
near the LSO. Using the formulas and the notation of Sec
we find that the relativistic prediction for the instantaneo
number of cycles~in the adiabatic inspiral approximation! is

Nrelat~ f !52
1

3p
v4

E8~v !

F~v !
. ~2.28!

By definition of the LSO~see, e.g., the discussion in DIS! the
derivativeE8(v) vanishes atv5vLSO. Therefore, the instan
taneous number of cycles is smaller in the relativistic c
than in the Newtonian one and actually tends tozeronear the
LSO. In Sec. IV we will tackle the problem that this vanis
ing of N(FLSO) causes for the stationary phase approxim
tion. In this introductory section let us only illustrate th
problem by plotting the Newtonian and relativistic values
N(F(t)). In Fig. 4 we plot the instantaneous number
cycles for the Newtonian and second post-Newton
P-approximant wave forms in the last few cycles of the
nary inspiral for a (20M ( , 20M () system. We also show
the development of the wave form in this interval on
arbitrary scale. These plots demonstrate how the numbe
useful cycles diminishes as one gets close to the LSO
lead us to anticipate the subtleties in the detectability of s
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nals whose LSO is near the most sensitive part of the
quency response of the detector.

C. Loss of SNR due to edge effects

As we already mentioned, in addition to the problem o
vanishing instantaneous number of cycles near the LSO
the relativistic case, the main problem with the acccuracy
the stationary phase approximation comes from the fact
the FT of a time-windowed signalh̃tw( f )5FT@htw(t)# dif-
fers from the frequency-windowed SPAh̃spaw( f )5u(Fmax

2 f )h̃spa( f ) because of some ‘‘edge effects’’ in the fre
quency domain, linked to the abrupt termination of the sig
in the time domain. These edge effects comprise some a
tional oscillatory behavior inh̃( f ) for f ,FLSO, as well as a
decaying oscillatory tail in the usually disregarded frequen
domain for f .FLSO.

Let us anticipate the results below and use a first-or
approximation to discuss the main features of the correcti
brought by the time windowing. Roughly~see below! the
exact Fourier transform can be written as

h̃X~ f !.h̃win
spa~ f !1«~ f !, ~2.29!

whereh̃win
spa( f )5h̃spa( f )u(Fmax2 f ) is the usually considered

frequency-windowedSPA. The difference«( f ) is approxi-
mately of the form

«~ f !.D~ f !h̃spa~ f !, ~2.30!

where

D~ f ![C~ f !2u~Fmax2 f !, ~2.31!

FIG. 4. Instantaneous number of cycles, Eq.~2.19!, near the
LSO as a function of time for the Newtonian case, Eq.~2.26!, and
the relativistic cases, Eq.~2.28!, defined by the 2PN approximan
P4. Also plotted is the development of the wave formhP4

(t) on an
arbitrary scale. The plots show how the number of useful cyc
diminishes as one gets close to the LSO (m15m2520M ().
6-11
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DAMOUR, IYER, AND SATHYAPRAKASH PHYSICAL REVIEW D 62 084036
with the correction factorC( f ) given by Eq.~3.23! below
@with any choice ofz( f ) in the present approximation# and
whereh̃spa( f ) is some smooth continuation ofh̃win

spa( f ) from
the domainf ,FLSO to the domainf .FLSO. @For the present
purpose one can assume thath̃spa( f ) is simply given by the
Newtonian approximation.#

Starting from Eq.~2.29! one can compute the overlap b
tween the exacth̃( f ) and the usually considered frequenc
windowed SPAh̃win

spa( f )

O5
^hX ,hwin

spa&

A^hX ,hX&^hwin
spa,hwin

spa&
. ~2.32!

As seen above@see Eq.~2.7!# this overlap, if it is signifi-
cantly smaller than one, represents a loss in SNR. To low
order in« the overlap Eq.~2.32! differs from 1 by

12O.
1

2ihXi2
~ i«i22u^«,ĥX&u2!, ~2.33!

where i«i2[^«,«&, and ĥX[hX /ihXi . In inserting the ex-
plicit result Eqs.~2.30! and ~2.31! for « one sees that the
second term on the RHS of Eq.~2.33! is much smaller than
the first @because the oscillations inD( f ) are integrated
against the smooth variation ofh̃spa( f )#. Finally, if we define
the weight function

s~ f ![
f uh̃spa~ f !u2

Sn~ f !
.

N~ f !a2~ f !

hn
2~ f !

5
hs

2~ f !

hn
2~ f !

, ~2.34!

which is the full logarithmic weight function appearing in th
squared SNR,@Eq. ~2.22!#, we can write

12O.
1

2E0

`d f

f
s~ f !uD~ f !u2S E

0

Fmax d f

f
s~ f ! D 21

.

~2.35!

As will be discussed later~see Fig. 5! the functionD( f )
5C( f )2u(Fmax2 f ) is concentrated in an interval of orde
AḞ(tmax) around f .Fmax and decays on both sides@like
1/z( f )}1/( f 2Fmax)# whenf gets away fromFmax. The total
integral of uD( f )u2 is finite and of order unity. Thus, we se
from Eq. ~2.35! that when the characteristic frequencyf p
around whichs( f ) is concentrated satisfiesf p!Fmax we
shall have a rough estimate

12O;
s~Fmax!

s~ f p!

AḞ~ tmax!

Fmax
5

s~Fmax!

s~ f p!

1

AN~Fmax!
,

~2.36!

while in the opposite limit wheref p@Fmax, we get the rough
estimate

12O;
AḞ~ tmax!

Fmax
5

1

AN~Fmax!
. ~2.37!
08403
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In the case wheref p!Fmax the factors(Fmax)/s( f p) on the
RHS of Eq.~2.36! is very small. Therefore, even if the num
ber of cyclesN(Fmax) is not very large, Eq.~2.36! predicts
that a simple frequency-windowed SPA will have excelle

overlap with the exacth̃( f ). On the other hand, Eq.~2.37!
shows that in the reverse limitf p@Fmax, which means in
fact when f p*Fmax, the overlap will become bad i
AN(Fmax) is not very large. As we have seen thatAN(Fmax)
becomes as low asA5.85.2.4 in the Newtonian case, an
reaches smaller values in the relativistic case, we expect
the cases where the frequency-windowed SPA has a

overlap withh̃( f ) are those wheref p becomes comparable
say within a factor of 2, toFmax5FLSO. We come to the
same conclusion as above, which was the conclusion alre
pointed out in DIS: namely the signal frommassive system
@m*13M ( if f p5165 Hz, corresponding tof 05200 Hz,
more generally,m*13(165 Hz/f p)M (], when treated~as
they should be! relativistically will be badly represented by
the usual frequency-windowed SPA. This conclusion o
tained from an analytical approximation is borne out by t
numerical computations shown in Fig. 1 above~see also
Table II!. It is mainly for such systems that the work pr
sented in the following sections will be mandatory. But ev
for lower mass systems, we shall construct here for the
time the Fourier-domain version of the~time-domain! P ap-
proximants introduced in DIS. SinceP approximants provide
better templates than the usually consideredT approximants
@13#, the work of this paper will be useful for all types o
systems, even the less massive ones.

FIG. 5. The real and imaginary parts of the complex correct
factorC(z)—in terms of which the new frequency domain approx
mants are represented in the Newtonian-like cases—as a functio
z. The real part is a ‘‘softened step’’ while the imaginary part is
oscillatory function vanishing at the origin and at large positive a
negative values of its argument.
6-12
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TABLE II. Accuracy of the various approximations to the Fourier transform of the chirp signal
Newtonian wave forms. The accuracy is estimated via the overlap, Eq.~2.8!, of a wave form generated in th
time domain and then Fourier transformed using an FFT algorithm, with wave forms of exactly the
parameters generated directly in the frequency domain via one of the following approximations: The
stationary phase approximation truncated atf max5FNyquist ~USPAN, column 3!, the usual stationary phas
approximation truncated atf max5FLSO ~USPAW, column 4!, the corrected SPA~CSPA, column 5!, and the
improved SPA~INSPA, column 6!, both extended up tof Nyquist for different values of the total mass~column
1!. The correspondingFLSO is listed in column 2.~We deal only with equal mass binariesh51/4.! In the last
column we also list the total overlap ‘‘intot’’ to exhibit the relative importance of the ‘‘nonresona
contribution. In this table and all others the smooth time window starts at 30 Hz; the seismic cutoff for
is at f s540 Hz.

m/M ( FLSO/Hz ^h̃N
FFT,h̃N

USPAN& ^h̃N
FFT,h̃N

USPAW& ^hN
FFT,h̃N

CSPA& ^h̃N
FFT,h̃N

INSPA& ^h̃N
FFT,h̃N

intot&

70.0 63 0.1536 0.6361 0.9231 0.9763 0.9944
60.0 73 0.2294 0.7302 0.9489 0.9721 0.9873
50.0 88 0.3336 0.8062 0.9724 0.9824 0.9934
40.0 110 0.4708 0.8589 0.9862 0.9952 0.9993
30.0 147 0.6682 0.9214 0.9964 0.9987 0.9977
20.0 220 0.8811 0.9681 0.9968 0.9974 0.9986
15.0 293 0.9431 0.9838 0.9999 0.9998 0.9997
14.0 314 0.9528 0.9868 0.9995 0.9997 0.9993
13.0 338 0.9641 0.9900 0.9986 0.9989 0.9993
12.0 366 0.9700 0.9912 0.9996 0.9997 0.9995
10.0 440 0.9839 0.9953 0.9989 0.9990 0.9994
5.0 880 0.9983 0.9988 0.9991 0.9991 0.9992
3.0 1466 0.9987 0.9987 0.9985 0.9985 0.9984
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D. Fourier transform of time-truncated chirps

To introduce the detailed analysis that we shall give in
following sections, let us start by delineating some gene
mathematical facts about the integrals we have to deal w
We will be interested in evaluating the FTh̃( f ) of a time-
truncated chirph(t)52a(t)cosf(t)u(tmax2t). After decom-
posing the cosine into complex exponentials, the Fourier
tegral leads to a sum of two integrals of the for

*
2`
tmaxdta(t)eic f

6(t) with phasesc f
652p f t6f(t). Let us

then, for generality, discuss the properties of integrals of
type

I ~«!5E
ta

tb
dta~ t !ei (c(t)/«). ~2.38!

Here, we have introduced a formal ‘‘small parameter’’« ~set
to unity at the end of the calculation! to formalize the fast
variation of the phase compared to that of the amplitude

Let us first note that:~i! if the phase has no stationar
point ċ(t)Þ0 for tP@ ta ,tb#, ~ii ! if the amplitude vanishes
smoothly at the edge pointsta and tb , which might be
pushed to6`, and ~iii ! if the functionsa(t) and c(t) are
smooth (C `) within the interval @ ta ,tb#, the integralI («)
tends to zero with«, faster than any power. This can be se
by integrating by parts. To simplify the calculation we c
@thanks to assumption~i!# usec as an integration variable
This yields

I 5E
ca

cb
dcA~c!eic, ~2.39!
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where A(c)5@a(t)/ċ(t)# t(c), where t(c) denotes the
~unique! solution in t of c5c(t) and whereca5c(ta), cb
5c(tb). Using eic/«5(«/ i )(d/dc)(eic/«), integrating by
parts, and using@thanks to assumption~ii !# the vanishing of
A(c) at the edges, leads to

I ~«!5 i«E
ca

cb
dc A8~c!eic/«. ~2.40!

Using @assumption~iii !# the vanishing of all the derivative
of A(c) at the edges, we can iterate the result Eq.~2.40! to
any order

I ~«!5~ i«!nE
ca

cb
dc A(n)~c!eic/«. ~2.41!

The result @Eq. ~2.41!# means that, when«→0, I («)
5O(«n) for any integern, i.e., I («) vanishes faster than an
power of«. It does not mean thatI («) is zero for any finite
~but small! value of«. For instance, under stronger assum
tions about the existence and properties of an analytic c
tinuation of the functionA(c) in the complexc plane it
follows thatI («);Ae2(B/«) for some constantsA andB. For
reasonably small values of« such exponentially small con
tributions are numerically negligible.@We shall see later tha
the ‘‘small parameter’’« ~or better«/B) is typically of order
1/(2pN), where N[F2/Ḟ is the instantaneous number o
cycles.#

Therefore, we conclude that the integralI will be ~in most
relevant cases! numerically non-negligible only if the as
6-13
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DAMOUR, IYER, AND SATHYAPRAKASH PHYSICAL REVIEW D 62 084036
sumptions above are violated. In other words, the value
I («) will be dominated by the contributions coming fro
either: ~i! stationary-phase pointsċ(ts)50; or ~ii ! the edge
points ta and/ortb . Let us~for simplicity! assume that there
is ~at most! one stationary-phase pointts , and that it is of the
normal parabolic type, i.e.,c(t)5cs11/2!c̈s(t2ts)

2

1O((t2ts)
3) with c̈sÞ0. Let us also assume thata(ta)

Þ0, a(tb)Þ0. @We maintain here for the moment assum
tion ~iii ! above about the regularity of the functionsa(t),
c(t) in the closedinterval @ ta ,tb#.# Then, assuming analyt
icity of the involved functions, the mathematically most ri
orous way of decomposingI as the sum~modulo nonpertur-
bative small contributions of the type discussed above! of a
stationary-point contributionI stationary and of edge contribu-
tions I edge5I edge

a 1I edge
b is to deform the original~real! con-

tour of integration into the complex plane@45,31#. The de-
formed contour must be such that nearts it leads to a basic
integral of the type *2a

b dx e2bx2
@c01c1x1c2x21•••#,

while near each end point it leads to integrals of the ty
*0

gdy e2cy@d01d1y1d2y21•••#. It is then easy to find the
structure of the expansion of bothI stationaryand I edgein pow-
ers of «, as «→0. For instance, it is convenient nearts to
introduce a scaled variable:t2ts5«1/2t ~before rotatingt to
complex valuest5e6( ip/4)x), so that the phase scales as

c

«
5

cs

«
1

1

2!
c̈st

21
A«

3!
cs

(3)t31•••, ~2.42!

wherecs
(3)[d3cs /dt3. Expanding then the integrand of th

t integral in powers of«1/2 leads to an integral of the sym
bolic type

I stationary;«1/2E dx e2x2
@11«1/2xodd1«xeven

1«3/2xodd1•••#, ~2.43!

wherexodd (xeven) denotes a sum of terms;x2k11 (x2k).
This yields~using the fact that the terms*2a/A«

b/A« dx e2x2
xodd

are exponentially small! an expansion of the type

I stationary;«1/2@C01C1«1C2«21•••#. ~2.44!

The structure of the ‘‘edge’’ contributionI edge can be ob-
tained by a similar technique. Now the appropriate scalin
different, e.g.,t2ta5«t, and one ends up with integrals o
the type*0

g/«dy e2yyn. This yields

I edge;«@D01D1«1D2«2
•••#. ~2.45!

The aim of this preliminary discussion is to point out t
structures@Eqs.~2.44! and~2.45!# of the two main contribu-
tions to a generic oscillatory integral of the form Eq.~2.38!.
Note that while the leading contribution is given by th
lowest-order term in the stationary-point or saddle-point
pansion@Eq. ~2.44!#, the next-to-leading contribution come
from the lowest-order edge correction Eq.~2.45!. One gen-
erally expects thatI edge will be only A«, i.e., 1/A2pN,
smaller thanI stationary. We shall give below the explicit ex
08403
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pressions for the first two terms in both expansions, E
~2.44! and ~2.45!. We shall see that each coefficie
C0 ,C1 ,C2••••••D0 ,D1 ,••• in Eqs. ~2.44! and ~2.45! is a
combination of derivatives~of increasing total order! of a(t)
andc(t) evaluated atts for Eq. ~2.44! and atta or tb for Eq.
~2.45!. We note in advance that, for actual calculations,
simplest way to evaluate the explicit forms of the expansio
Eqs. ~2.44! and ~2.45! is not necessarily to follow the
complex-contour route sketched above. In the case of
~2.44! one can deal directly with the original stationar
point-expanded integral written as}«1/2*dt ei c̈st

2
@t01c1t

1•••#, and in the case of Eq.~2.45! the simplest is to keep
the boundary terms in the integration-by-parts approach, E
~2.40! and~2.41!, given above for the simple case where th
were neither stationary phase points nor boundary contr
tions.

To put in context the analysis that we shall perform b
low, let us finally mention two serious limitations of th
assumptions leading to Eqs.~2.44! and ~2.45!. First, in the
analysis above, based on the introduction of the formal
rameter«→0, we have assumed that the stationary-ph
point ts was parametrically separated from the edgesta or
tb , i.e., thatuts2tau and uts2tbu were much larger than the

characteristic Gaussian widthDt5A«/c̈s5O(A«) associ-
ated to the stationary point. As we shall see, this limitation
unacceptable for the application we have in mind and
shall have to introduce new tools to overcome it. A seco
limitation ~which compounds with the first and will lead t
an unavoidable complexity of our treatment! is the seem-
ingly innocent assumption~iii ! above, namely the hypothes
that the functionsa(t) andc(t) are infinitely differentiable
within theclosedinterval @ ta ,tb# ~i.e., including also the end
points!. As we shall see, in the physically relevant case o
relativistic ~adiabatic! chirp the functionsa(t) andc(t) will
not beC ` at the physically imposed upper cutofftb5tLSO.
This will require us to introduce new types of expansio
and new tools to deal with the relativistic edge contributi
in addition to the modification of the stationary-phase a
proximation needed in the case wherets is near the edge, in
the sense thatuts2tbu5O(A«).

III. IMPROVED STATIONARY PHASE APPROXIMATION
FOR TIME-WINDOWED NEWTONIAN-LIKE

SIGNALS

A. The usual stationary phase approximation

Let us begin by a quick recall of the usual treatment of
stationary phase approximation to a chirp. Consider a sig

h~ t !52a~ t !cosf~ t !5a~ t !e2 if(t)1a~ t !eif(t),
~3.1a!

where

df~ t !

dt
[2pF~ t !.0. ~3.1b!

We shall say that a signal is ‘‘Newtonian-like’’ if the
instantaneous frequencyF(t), defined by Eq.~3.1b!, in-
6-14
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creases without limit whent runs over its full~mathemati-
cally allowed! range.~Note that we conventionally conside
only positive instantaneous frequencies.! For instance, at the
Newtonian order, the explicit forms for the chirp amplitud
phase, and frequency of the gravitational waves are, res
tively, given by

a~ t !5CM~pMF~ t !!2/3, ~3.2a!

f~ t !5fc22F ~ tc2t !

5M G5/8

, ~3.2b!

pMF~ t !5F 5M
256~ tc2t !G

3/8

, ~3.2c!

whereM is the chirp mass given byM5h3/5m in terms of
the total massm and the symmetric mass ratioh; fc the
gravitational wave phase at instant of coalescencetc andCM
is the product of a function of different angles, characteriz
the relative orientations of the binary and the detector, w
the ratio M/d, whered is the distance to the source~see
below!. Note that the functionF(t) increases without limit as
t tends to the formal coalescence timetc .

Coming back to a general signal, the FT is defined by
~1.1!. Because the signalh(t) is real, we have the identity
h̃(2 f )[(h̃( f ))* . It therefore suffices to compute the FT fo
positive values of the frequencyf. @Note that we use a lowe
case letter to distinguish the Fourier variablef from the in-
stantaneous frequencyF(t).# The Fourier transform of a ge
neric signal of the form Eq.~3.1a! reads

h̃~ f !5h̃2~ f !1h̃1~ f !, ~3.3a!

where

h̃2~ f ![E
2`

`

dta~ t !ei (2p f t2f(t)), ~3.3b!

h̃1~ f ![E
2`

`

dta~ t !ei (2p f t1f(t)). ~3.3c!

The integrands ofh̃6( f ) are violently oscillating and thus
their dominant contributions come from the vicinity of th
stationary points of their phase~when such points exist!.
When f .0 ~which we shall henceforth assume!, only the
h̃2( f ) term has such a saddle point. Therefore, we can w
the approximation

h̃~ f !.h̃2~ f !.E
2`

`

dta~ t !eic f (t), ~3.4a!

where

c f~ t ![2p f t2f~ t !. ~3.4b!

The saddle-point of the phasec f(t) is the value, sayt f , of
the time variablet wheredc f(t)/dt50, i.e., it is the solution
of the equationF(t f)5 f . The dominant contribution to the
integral Eq.~3.4a! now comes from a time interval neart
08403
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5tf . When the second time derivative of the phase at
saddle point does not vanish, i.e., whenḞ(t f)Þ0, one can
estimate Eq.~3.4a! by replacingc f(t) @and a(t)# by trun-
cated Taylor expansions neart5t f , namely,

c f~ t !.c f~ t f !2pḞ~ t f !~ t2t f !
2, ~3.5a!

a~ t !.a~ t f !. ~3.5b!

@The zeroth-order term in Eq.~3.5b! is enough because th
first-order termȧ(t f)(t2t f) vanishes after integration ove
t.# This leads to a Gaussian integral

h̃~ f !.E
2`

`

dta~ t f !e
ic f (t f )2 ipḞ(t f )(t2t f )

2
. ~3.6!

Evaluating this Gaussian integral, one finally obtains
well-known expression for theusual SPA ~hereafter abbre-
viated as USPA!

h̃uspa~ f !5
a~ t f !

AḞ~ t f !
ei [c f (t f )2p/4], ~3.7!

wherec f(t f) is the value ofc f(t) at t5t f .
The conditions for the validity of the SPA are usual

assumed to be«1!1, «2!1, where

«1[U ȧ~ t !

a~ t !ḟ~ t !
U ; «2[U f̈~ t !

ḟ2~ t !
U5U 1

2p

Ḟ~ t !

F2~ t !
U5

1

2pN
.

~3.8!

One can assess in a more precise quantitative manne
accuracy of the SPA by computing the leading correction
the integral Eq.~3.6!. This leading correction will be given
by keeping more terms in the Taylor expansions@Eqs.~3.5a!
and ~3.5b!#. To keep track of what one means by the ‘‘ne
order term’’ in the SPA expansion it is convenient~as in Sec.
II D ! to formalize the fast variation of the phasesf(t) and
c(t) by considering an integral of the formI
5*dt a(t)exp„ic(t)/«… with a ‘‘small’’ parameter« ~set to
unity at the end of the calculation!. It is then easy to see@e.g.,
after the introduction of a rescaled time variablet2t f
5«1/2t, wheret f denotes, as above, the saddle point of
phasec f(t)# that the leading correction to the result of E
~3.7! will be of fractional order« @as exhibited in Eq.~2.44!#
and will come from keepingtwo more termsin both the
Taylor expansions@Eqs. ~3.5a! and ~3.5b!#. Expanding in
powers of«1/2 leads to integrals of the form

*2`
` dttn exp~2 ipḞ~ t f !t

2!

with n<6. Finally, one finds that the sum of the usual SP
and of its leading correction is equivalent to multiplying E
~3.7! by the correcting phase factoreid, where (F (3) denotes
d3F/dt3)
6-15
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d5
1

2pḞ~ t f !
F2

1

2

ä

a
1

1

2

ȧ

a

F̈

Ḟ
1

1

8

F (3)

Ḟ
2

5

24S F̈

Ḟ
D 2G

t5t f

.

~3.9!

Therefore, a quantitatively precise criterion for thelocal va-
lidity of the SPA is« loc[udu!1. In the case of power-law
chirps, « loc is equal to one-fifth of the criterion explicitly
given in the recent study@30# of the validity of the SPA. In
the case of Newtonian chirps, Eq.~3.9! yields

d5
23

24S 1

9p

Ḟ

F2D 5
23

24S 1

9pND . ~3.10!

Written in terms ofv5(pmF)1/3 this readsd5(92/45)hv5,
which agrees with the corresponding result in Ref.@31#. It is
interesting to note that Eq.~3.10! formally predicts, at the
LSO, dLSO5(4h)30.58%, which is quite small. Alterna
tively, one can say that Eq.~3.10! predicts that even if the
instantaneous number of cycles were as small asN;1, the
local correction to the SPA would be small (d50.0339/N).
This result doesnot mean, however, that we can use t
usual SPA@Eq. ~3.7!# to estimate with sufficient accuracy th
FT of a real inspiral signal. Indeed, even if we were cons
ering a Newtonian-like signal~whereN stays away from zero
at the LSO! the correcting phase factor@Eq. ~3.9!# represents
just thelocal correction to the SPA, i.e., the correction due
higher terms in the local expansion near the saddle po
There are alsoglobal corrections to the SPA coming from
the entire integration domain and, most importantly~as em-
phasized in Ref.@30#!, from the end points of the time inte
gration. In addition, there is also a correction coming fro
the neglected contributionh̃1( f ) in Eq. ~3.3b!. Before con-
sidering them in detail, let us also note that Eq.~3.9! indi-
cates thatd blows up to infinity, at the LSO, in the case of
relativistic GW chirp @becauseF(t);FLSO2a(tLSO2t)1/2

there; see below#. This shows again that, independently
the problems linked to the time windowing, relativistic si
nals will pose special difficulties. But let us start by studyi
the simpler case of time-truncated Newtonian-like signa
by which we mean thatN[F2/Ḟ stays away from zero at th
upper time cutoff.

B. Beyond the usual stationary phase approximation

We therefore consider time-domain signals of the form

h~ t !52a~ t !cosf~ t !u~ tmax2t !, ~3.11!

whereu denotes the Heaviside step function, (u(x)51, for
x.0 and u(x)50, for x,0). This time windowing has
three effects:~i! it induces oscillations in the usually consid
ered frequency domainf ,Fmax; ~ii ! it generates a tail in the
usually disregarded frequency domainf .Fmax; and ~iii ! it
renders non-negligible the ‘‘nonresonant’’ contributio
h̃1( f ). Here, Fmax denotes the instantaneous gravitation
wave frequency reached att5tmax, i.e., Fmax[F(tmax). The
main purpose of the present paper is to analytically mo
and estimate as accurately as possible all these effects.
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case where the saddle-pointt f is ~below and! far away from
the upper cutofftmax has been recently considered in Re
@31#. However, this case is not the physically relevant o
As pointed out in DIS, the case where the usual SPA
comes unacceptably inaccurate is the case of massive
tems for which the signal emits very few cycles in the det
tor’s bandwidth before crossing the last stable orbit. In t
case the most important frequencies are located around
effective cutoff frequencyFmax;FLSO ~and as we shall see
below, it is important to estimate the FT accurately, both
f ,Fmax and for f .Fmax). Here, we shall provide a valid
approximate analytical treatment in this crucial range of f
quencies.

Let us first state clearly our notation. We decompose
FT of the time-windowed signal Eq.~3.11! as

h̃~ f !5h̃2~ f !1h̃1~ f !, ~3.12a!

where

h̃2~ f !5E
2`

tmax
dt a~ t !eic f

2(t), ~3.12b!

h̃1~ f !5E
2`

tmax
dt a~ t !eic f

1(t), ~3.12c!

c f
2~ t ![c f~ t ![2p f t2f~ t !, ~3.12d!

c f
1~ t ![2p f t1f~ t !. ~3.12e!

We shall refer to the contributionh̃2( f ) as the ‘‘resonant’’
contribution because the equation defining the saddle poi
contains,F(t f)5 f , corresponds to a resonance between
Fourier frequencyf and the instantaneous gravitational wa
frequencyF(t).

C. Edge contribution to the nonresonant integralh̃¿„f …

Before dealing with the oscillatory and tail corrections
the resonant contributionh̃2( f ) of h̃( f ), we shall first deal
with the nonresonant contributionh̃1( f ). When f .0, the
phasec f

1(t) in contrast toc f
2(t) has no stationary point. Le

us therefore consider the general problem of approxima
an integral of the form

I 5E
ta

tb
dta~ t !eic(t), ~3.13!

where c(t) is always monotonically varying (ċÞ0). We
can then usec as the integration variable. This yields, a
above,

I 5E
ca

cb
dcA~c!eic, ~3.14!

where A(c)5@a(t)/ċ(t)# t(c) , where t(c) denotes the
~unique! solution in t of c5c(t) and whereca5c(ta), cb
5c(tb). One can treatc as a fast varying phase, so that b
6-16
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comparison, the amplitudeA(c) varies slowly whenc var-
ies by 2p ~as above this could be formalized by the form
replacementc→c/«). In other words, instead of a SPA, w
are in a Wentzel–Kramers–Brillouin like approximatio
where one can expand in the slowness of variation ofA(c),
i.e., we can expand in successive derivativesdnA(c)/dcn.
This expansion is obtained by successively integrating
~2.39! by parts@usingeic[(d/dc)(eic/ i )#. Contrary to Sec.
II D above we now keep the edge contribution coming fro
the boundaries. For instance at second order this leads

I 5Feic

i
@A~c!1 iA8~c!#G

a

b

1 i 2E
ca

cb
dcA9~c!eic.

~3.15!

It is easy to re-express this result in terms of the original ti
variable t by replacing A(c)[a(t)/ċ(t) and d/dc

5(ċ)21d/dt. We deduce from Eq.~3.15! the full ‘‘edge’’
contribution to the integralI ~as explained in Sec. II D, the
‘‘bulk’’ contribution is exponentially small!

I edge5Feic

i
~A~c!1 iA8~c!1•••1 i nA(n)~c!1••• !G

a

b

.

~3.16!

This is the explicit form of the parametric expansio
sketched in Eq.~2.45!. It can be expressed in terms of th
time derivatives ofa(t) andc(t) by using the replacemen
rules just mentioned. In particular, at the leading and ne
to-leading order it reads explicitly

I edge5F a~ t !

i ċ~ t !
eic(t)H 11

1

i ċ~ t !
S c̈~ t !

ċ~ t !
2

ȧ~ t !

a~ t !D J G
ta

tb

.

~3.17!

If we apply this general result toh̃1( f ), Eq. ~3.12c!, we get
the estimate

h̃1~ f !.h̃1
edge~ f !

.
a~ tmax!

i ċ f
1~ tmax!

eic f
1(tmax)

3F11
1

i ċ f
1~ tmax!

S c̈ f
1~ tmax!

ċ f
1~ tmax!

2
ȧ~ tmax!

a~ tmax!
D G ~3.18a!

.
a~ tmax!

2p i ~ f 1Fmax!
eic f

1(tmax)F11
1

2p i ~ f 1Fmax!

3S Ḟmax

~ f 1Fmax!
2

ȧ~ tmax!

a~ tmax!
D G . ~3.18b!

Note that, in the approximation where the amplitude is tak
as Newtonian-like, i.e.,a(t)5CvF

2}(F(t))2/3, the last term

in Eq. ~3.18b! readsȧ(tmax)/a(tmax)5 2
3 Ḟmax/Fmax.
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D. Improved stationary phase approximation whenfËF max

Let us now consider the dominant contributionh̃2( f ), Eq.
~3.12b!. We start by considering the case where the Fou
variable f @of the Fourier transform of the time-windowe
signal Eq.~3.11!# is smaller thanFmax, but nearFmax. As
will become clear from the formulas below, the interv
aroundFmax where it is needed to improve the usual SPA,
the range

u f 2Fmaxu& ~ few ! AḞ~ t f !. ~3.19!

In the case wheref is in the range Eq.~3.19! with f
,Fmax, there is a saddle pointt f in the first term of the exac
integral Eq.~3.3b!, and one can still use the parabolic a
proximation Eq.~3.5a! to the phasec f(t), and the lowest
approximation Eq.~3.5b! to the amplitudea(t). @Indeed, the
work of the previous section has shown that thelocal cor-
rections to the integral Eq.~3.4a!, coming from the inclusion
of more terms in Eqs.~3.5a! and~3.5b!, were quite small as
long asN*1#. Therefore, in this case, the resonant contrib
tion to the Fourier transform becomes

h̃2~ f !.E
2`

tmax
dta~ t !eic f (t) ~3.20a!

.a~ t f !e
ic f (t f )E

2`

tmax
dte2 ipḞ(t f )(t2t f )

2
. ~3.20b!

The crucial difference between Eqs.~3.6! and~3.20b! is that
the full Gaussian integral has become a complex Fresne
tegral, which may be evaluated in terms of the complem
tary error function. Let us recall that the complementary
ror function erfc(z)[12erf(z) is defined by

erfc~z!5
2

Ap
E

z

1`

e2x2
dx. ~3.21!

It takes on the real axis the particular values erfc(1`)50,
erfc(0)51, and erfc(2`)52. By rotating the integration
contour in the complex plane (x52eip/4j) and shifting the
new integration variablej, we get the following useful inte-
gration formula:

E
2`

tm
dte2 i (at212bt1c)

5
1

2
Ap

a
e2( ip/4)ei „(b22ac)/a…erfcF2eip/4AaS tm1

b

aD G .
~3.22!

The formula Eq.~3.22! motivates us to define the following
auxiliary function:

C~z![ 1
2 erfc~e

ip
4 z!. ~3.23!

It is useful to note thatC(1`)50, C(0)51/2, andC(2`)
51. Moreover, the leading terms in the asymptotic exp
sions ofC(z) asz→6` are
6-17
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z→2`, C~z!;11
e2( ip/4)

2Ap

e2 i z2

z
, ~3.24a!

z→1`, C~z!;
e2( ip/4)

2Ap

e2 i z2

z
.

~3.24b!

As the auxiliary functionC(z) plays an important role in
our work we plot it in Fig. 5. From the figure we note th
the real part of the above complex function is a soften
version of a step functionu(2z) and the imaginary part an
oscillating function vanishing in the limits6`, as well as at
z50.

Armed with this definition one finds that the RHS of E
~3.20b! yields the approximation

h̃2~ f !.C~z0~ f !!h̃uspa~ f !, ~3.25a!

where

z0~ f ![ApḞ~ t f !~ t f2tmax!. ~3.25b!

In other words, whenf ,Fmax one can correct for the ‘‘edge
effects’’ caused by the cutoff attmax by multiplying the usual
SPA h̃uspa( f ) given in Eq. ~3.7! by a complex ‘‘correction
factor’’ C(z0( f )). The expression@Eq. ~3.25a!# gives very
good overlaps with the exact DFT of the time-window
signal, Eq.~3.11!. However, it is possible to do even bett
by a slight modification of the argumentz0( f ), Eq. ~3.25b!.

To understand how a slight modification of the argum
z( f ) of the auxiliary functionC(z) can improve both the
visual agreement~even quite far away fromFmax) and the
overlap with the exact DFT of the time-windowed signal, E
~3.11!, we have to take into account the asymptotic exp
sion, Eq.~3.24a!. Indeed, on the one hand, when inserti
the expansion Eq.~3.24a! into Eq. ~3.25a!, using Eq.~3.7!
for h̃uspa( f ), and allowing for a more general frequency d
pendent argumentz( f ), we find that h̃( f ) differs from
h̃uspa( f ) @in the domainz( f )→2`, i.e., f !Fmax# by a cor-
rection term proportional toe2 ip/2ei [c f (t f )2z2] /z. On the
other hand, a different way of estimating this edge correct
consists of writing Eq.~3.20b! as an integral between2`
and 1` minus a ‘‘correcting’’ integral betweentmax and
1`. As was discussed in Sec. III D the latter integral can
estimated by successive integration by parts. This gives@see
Eq. ~3.17!# a first-order correction term proportional t
e1 ip/2a(tmax)e

ic f (tmax)/ċ f(tmax). The phasing of this edge
correction can be made to agree perfectly with the phas
predicted by the form Eq.~3.25a! written with a generalized
argumentz( f ) if ( c f(t f)2z2)5c f(tmax). This leads us to
define, in the domainz,0, i.e., f ,Fmax, the new argumen

z,[2Ac f~ t f !2c f~ tmax!. ~3.26!

In the left part of the crucial region, Eq.~3.19!, the argument
z,( f ) @Eq. ~3.26!# is nearly identical to the previous resu
z0( f ) @Eq. ~3.25b!#, as is seen from Eq.~3.5a!. However, we
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have verified that the replacement ofz0 by z, improves both
the visual agreement and the overlap with the exacth̃( f ). Let
us also note in passing that an amplitude proportional toz21

of the correction term to h̃uspa( f ) derived from the
asymptotic expansion of Eq.~3.24a! is consistent with the
different analytical treatment used in Ref.@31# which was
valid only for f !Fmax, i.e., large, negativez. By contrast
our approach based on the functionC(z) is adequate in the
full range 2`,z<0 without exhibiting any fictitious
blowup at z50 @rememberC(0)51/2#. @Our approach is
also valid in the regionz.0, i.e., f .Fmax, but for an im-
proved treatment of this domain, we shall find it convenie
to modify further the argumentz( f ) in the following sec-
tion.#

In summary we propose as a final result for theresonant
part of our improved SPA for Newtonian-likesignals ~or
INSPA!

f <Fmax: h̃2,
inspa5C~z,~ f !!

a~ t f !

AḞ~ t f !
ei (c f (t f )2p/4).

~3.27!

The corresponding total improved approximationh̃intot to the
Fourier transformh̃5h̃2( f )1h̃1( f ) is the sum of Eqs.
~3.18b! and ~3.27!. Note that the ratioh̃2 /h̃1 is ~when t f is

neartmax) of order 4pFmax/AḞmax54pANmax @this is con-
sistent with the« scaling of Eqs.~2.44! and ~2.45!, remem-
bering that«;1/2pN#. The contribution ofh̃1 is expected
to be non-negligibleonly for signals that are really discon
tinuous in time. As the real signal~whatever the subsequen
plunge signal may be! will be continuous~and even smooth!
it is clear that one shouldnot add any contribution fromh̃1

when applying our above treatment to real signals. In fa
we shall see below that, even for discontinuous signals,
addition ofh1 has only a minute effect on overlaps.

E. Approximate Fourier transform when fÌF max

Let us now consider the evaluation ofh̃2( f ) in the case
when the Fourier variablef is larger thanFmax @but near
Fmax, in the sense of Eq.~3.19!#. In that case the integra
@Eq. ~3.12b!# giving h̃2( f ) no longer has a saddle poin
However, it ‘‘nearly’’ has a saddle point and therefore w
expect that

h̃2~ f !5E
2`

tmax
dta~ t !eic f (t) ~3.28!

will still dominate overh̃1( f ). One could think of two ways
of analytically approximating the integral@Eq. ~3.28!#. One
way is to still use the fact that@for Newtonian-like signals
where the mathematical functionF(t) continues to exist and
increase beyondt5tmax# though there is no saddle point i
the domain of integration@2`,tmax#, there exists a nearby
saddle point of the analytically continued phase funct
c f(t). More precisely, for Newtonian-like signals the mat
ematical equationF(t f)5 f still defines a unique valuet f
6-18
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~with t f.tmax when f .Fmax). Capitalizing on the existenc
of this nearby saddle-point one can still try to insert the
pansions, Eqs.~3.5a! and~3.5b!. This leads to a result of the
form Eq. ~3.27! with the correction factor Eq.~3.25b!, i.e.,
now considered for positive values of the argumentz0( f )

[ApḞ(t f)(t f2tmax). In other words, a simple uniform ex
pansion toh̃2( f ) on both sides off ;Fmax would seem to be
simply

h̃2
cspa~ f !5C~z0~ f !!

a~ t f !

AḞ~ t f !
ei [c f (t f )2p/4], ~3.29a!

with

z0~ f !5ApḞ~ t f !~ t f2tmax!. ~3.29b!

Here ‘‘cspa’’ means~zeroth-order! correctedSPA. Note that
when f .Fmax, t f , and therefore all the quantities evaluat
at t f are defined by using the~supposedly existing! analytic
continuation of the mathematical functionF(t) beyond t
5tmax.

In our first attempts at improving the SPA in the presen
of time windowing we came up with the simple propos
@Eqs. ~3.29a!–~3.29b!# and it gave excellent overlaps wit
the exact FT. However, we realized later that we could f
ther improve on this simple proposal. We already stated
for f ,Fmax our best proposal is to modify the argument E
~3.29b! into Eq. ~3.26!. In the case wheref .Fmax our best
proposal is neither to use the straightforward argument
~3.29b!, nor the ‘‘improved-phasing’’ argument Eq.~3.26!
with a positive sign in front of the square root@which, how-
ever, still improves over the choice Eq.~3.29b!# but to follow
a different tack, which will turn out to be useful when co
sidering the case of relativistic-like signals in the next s
tion.

To motivate our proposal in the casef .Fmax, let us re-
mark that the integral to be approximated, i.e., Eq.~3.28!,
having no saddle-point in the domain of integration, is fo
mally of the general type Eq.~3.14! with the phasec(t)
5c f(t) being a monotonically increasing function oft. The
important information we wish to deduce from Eqs.~3.15!
and ~3.17! is that there exists an expansion@valid when f

@Fmax, i.e., z0( f ) is large and positive# in which h̃2( f ) is
entirely expressed in terms of the values of the functio
c f(t) anda(t), and their derivatives,evaluated at the edge
point t5tmax. This contrasts with the ‘‘corrected’’ resu
Eqs. ~3.29a!, ~3.29b!, which relied on the existence of th
functions c f(t) and a(t) in the ‘‘unphysical’’ region t
.tmax. This motivates us to look for an approximation
Eq. ~2.39! valid all over the domainz0( f ).0 @and not only
whenz0@1, which will be seen to be the domain of validit
of Eqs.~3.15! and ~3.17!# but expressedentirely in terms of
the edge values ofc f(t) anda(t). We propose to define suc
an approximation by replacing the phase and amplitude
Eq. ~3.28! by
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c f~ t !.c f~ tmax!12p~ f 2Fmax!~ t2tmax!

2pḞ~ tmax!~ t2tmax!
2, ~3.30a!

a~ t !.a~ tmax!. ~3.30b!

Thanks to the parabolic nature of the approximation E
~3.30a! this again leads to an incomplete complex Gauss
integral ~i.e., a Fresnel integral! which can be evaluated a
before in terms of the complementary error function. Usi
Eq. ~3.22!, this leads to our final proposal for the~nearly!
resonant part ofh̃2( f ) for Newtonian-like signals

f >Fmax:h̃2.
inspa~ f !

5C~z.~ f !!
a~ tmax!

AḞ~ tmax!

3expi Fc f~ tmax!1
p~ f 2Fmax!

2

Ḟ~ tmax!
2p/4G ,

~3.31a!

z.~ f !5
Ap~ f 2Fmax!

AḞ~ tmax!
. ~3.31b!

Note that, in the parabolic approximation where Eqs.~3.5a!
or ~3.30a! hold, the functionz.( f ) is approximately equa
both toz0( f ), Eq.~3.29b!, and to the analytic continuation o
Eq. ~3.26!, i.e., z,( f )[sign(f 2Fmax)Ac f(t f)2c f(tmax).
Note also that the phase factor in Eq.~3.31a! ~which is ex-
plicitly expressed in terms of edge quantities! is nearly equal
to the analytic continuation of the usual SPA phase fac
appearing in Eq.~3.27!, i.e., exp@icf(tf)2ip/4#. Finally, as
required, the expressions, Eqs.~3.27! and ~3.31a!, match
continuously atf 5Fmax with common value

h̃2,
inspa~Fmax!5h̃2.

inspa~Fmax!5
1

2

a~ tmax!

AḞ~ tmax!
ei (c f (tmax)2p/4).

~3.32!

In summary, our best analytical estimate for the FT of d
continuous Newtonian-like signals is the sum

h̃intot~ f !5h̃2
inspa~ f !1h̃1

edge~ f !, ~3.33!

where h̃1
edge( f ) is approximated by Eq.~3.18b! and where

h̃2
inspa( f ) is given, whenf <Fmax by Eq. ~3.27! and for f

>Fmax by Eq. ~3.31a!. As stated earlier, we shall in fac
recommend that the edge correctionh1

edge not be included
when applying our result to real signals~we also see that it
brings only a negligible improvement to the overlaps
time-windowed signals!.
6-19



th
rk
no
th

a

he

fre

de
y
l

e

l

1/

of
a

s
r

nc
-

e

m
r

s

n
t

tt
of

d

fo

hy
W
the

ller

er

t
this

,
our
re-

nd
wer.

the
e

the
p
ith
ally
eis-
e
ng
n-

e

he
d

R

ep-
N,

ies,
he
cies

-
al

DAMOUR, IYER, AND SATHYAPRAKASH PHYSICAL REVIEW D 62 084036
F. Comparison between the improved SPA, the usual SPA,
and the ‘‘exact’’ SPA „numerical DFT…

Before proceeding to a quantitative comparison of
various approximants in Table II, it is important to rema
that one needs to be more specific when using the termi
ogy USPA. One could compute the USPA truncated at
FLSO that we refer to as USPAW~where W stands for win-
dowed! or the USPA truncated at the Nyquist frequency th
we designate as USPAN~where N stands for Nyquist!. In
Table II we have listed the overlaps, as defined by Eq.~2.8!,
of a signal model generated in the time domain and t
Fourier transformed using a numerical DFT algorithm6 with
the same signal model but directly generated in the
quency domain using the USPA, the corrected SPA~CSPA!,
and the INSPA discussed earlier. For simplicity, we consi
only equal-mass systems (h51/4) and parametrize them b
the total massm5m11m2. The total mass is the crucia
parameter that measures the location of theFLSO with respect
to the bandwidth of the detector. The parameterh is also
important because it determines the number of cycles n
the LSO@Eq. ~2.27! shows thatN(FLSO) scales as 1/h#. The
worst case~for the sensibility to the shutting off of the signa
after the LSO! is h5hmax51/4, and this is why we focus on
this case.@We are also motivated by the fact that because
is the maximum value of the functionh(m1 ,m2), the ob-
served values ofh, corresponding to a random sample of
m1 and m2, are expected to have an accumulation point
hmax51/4.# As we have numerically checked, if our filter
exhibit good overlaps forh51/4 they will have even bette
overlaps forh,1/4 and the same value form.

The error function needed in computingC( f ) is numeri-
cally computed using the NAG~the Numerical Algorithms
Group Limited, Oxford, United Kingdom! library S15DDF.
The overlaps are shown for the usual SPA with a freque
windowing ~USPAW! together with the overlaps for the US
PAN, CSPA, and INSPA, computed up toFNyquist. Table II
shows that the improvements on the SPA that we propos
this paper~both the simple CSPA and our final INSPA! suc-
ceed very well in modeling the edge effects due to ti
windowing. The overlaps in the case of CSPA/INSPA a
better than 0.99 for equal-mass systems with total masm
,40M ( . For a system ofm540M ( USPAW gives an
overlap of 0.8589, resulting in a loss in the number of eve
by 37%. Although the overlaps of CSPA and INSPA seem
always be about the same, we think that INSPA is a be
representation ofh̃( f ); it has better overlaps in the case
the most massive systems~see the first lines of Table II! and,
as shown by Fig. 6, it better captures the decay ofh̃( f )
beyondFmax. In the table for the usual SPA we have liste
the overlaps for USPAW i.e., USPA terminated atf 5FLSO
54400(m()21 Hz and the overlap~USPAN! up to the Ny-
quist frequencyf Nyquist52 kHz. As is very clear from these
entries, windowing of the SPA improves the overlaps

6This defines for us the ‘‘exact’’ Fourier representation of t
signal, after due care has been taken to use a smooth time win
below f s , and a high enough sampling rate.
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massive systems very much. As remarked earlier, this is w
in DIS, while comparing the DFT to the SPA, the USPA
was used. On the other hand, computing overlaps up to
Nyquist frequency, i.e., USPAN, produces much sma
overlaps.

To understand this further in Fig. 6 we plot the pow
per logarithmic bin of the squared SNR,dr2/d log f
5fuh̃(f)u2/Sn(f), which is the Fourier-domain quantity of mos
significance when discussing overlaps. We compare
quantity for various approximations to the FT of an~arbi-
trarily normalized! time-windowed signal: DFT, USPA
CSPA, and INSPA. In the important range of frequencies
best analytical approximant INSPA agrees with the exact
sult ~FFT! quite well, the USPA grossly overestimates a
CSPA somewhat underestimates the actual signal po
This is why, although analytically continued up tof Nyquist,
the USPAN returns a smaller overlap as compared to
windowed SPA ~USPAW! because it overestimates th
power in the signal beyondFLSO @46#.

In all the comparisons above, it is worth stressing that
FFT calculation is delicate: the ‘‘exact’’ time-domain chir
contains an infinite number of cycles in the far past, w
instantaneous frequencies tending to zero. It is not physic
important as to what happens to frequencies below the s
mic cutoff f s540 Hz and therefore we wish to simplify th
numerical calculation of the FFT by essentially discardi
the~infinite! part of the signal, having instantaneous freque
ciesF(t), f s[F(ts). We started doing that by simply tim

ow

FIG. 6. The power per logarithmic bin of the squared SN

d(r2)/d(log f)5fuh̃(f)u2/Sn(f) for an arbitrarily normalized Newton-
ian signal computed from its DFT and its various approximate r
resentations computed up to the Nyquist frequency: USPA
CSPAN, and INSPAN. In the most sensitive range of frequenc
our final proposal INSPAN agrees with the FFT quite well. T
USPAN grossly overestimates the true signal power at frequen
f .FLSO. The last stable orbit frequency in this case (m15m2

510M () is at about 220 Hz~the vertical line!. Observe that, there
fore, even USPAW would significantly overestimate the sign
power up toFLSO.
6-20
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FREQUENCY-DOMAIN P-APPROXIMANT FILTERS FOR . . . PHYSICAL REVIEW D 62 084036
windowing the signal fort,tmin,ts by a sharp, lower-time
window u(t2tmin). However, this method introduces phys
cally spurious oscillations~which are the lower-cutoff ana
logue of the physically important upper-cutoff oscillation!

present in bothh̃1( f ) and h̃2( f ). One way to deal with this
problem is to subtract from the FFT these spurious e
oscillations by using the general formula Eq.~3.17!, which in
the present context, can be applied both toh̃1

FFT( f ) and

h̃2
FFT( f ). For instance, to lowest order the FFT corrected

these oscillations would read

h̃corrected
FFT 5h̃FFT1Dmin

1 1Dmin
2 , ~3.34a!

where

Dmin
6 5

a~ tmin!

2p i ~ f 6Fmin!
eic f

6(tmin),

~3.34b!

whereFmin5F(tmin), f s @a better approximation can be d
rived from Eq.~3.17!#. However, it seems better to use a
alternative approach which does not require one to correc
hand the FFT. The alternative approach we have actu
used in our calculations consists of imposing asmooth
~rather than a sharp! lower time window on the exact chirp
acting belowts and in a smooth enough manner that it do
not introduce spurious edge oscillations in the frequency
main. The smooth time window that we used consists
multiplying the chirp by the function

s~ t,t1 ,t2!5
1

ez11
, z5

t22t1

t2t1
1

t22t1

t2t2
, ~3.35!

which smoothly interpolates between 0 whent5t110 and 1
whent5t220. We usedt1 such thatF15F(t1)530 Hz and
t25ts i.e., F(t2)5 f s . Moreover, we need to be careful wit
sampling and phase factors to correctly reproduce the e
correction toh̃1

edge.
In addition to the comparative evaluation of the vario

approximants, Table II also provides numerical proof rega
ing the effect ofh1

edgeon the overlaps. It is quite important t
note that the inclusion of the nonresonant edge termh1

edgehas
only a very minute~but positive! effect on overlaps. This is
good news for our formal time-windowing ansatz, becau
we expect that this contribution will be~exponentially! neg-
ligible in the case of real~continuous! signals. We interpret
the fact that even for our formal discontinuous modelh1

edgeis
negligible7 as a confirmation that our improved SPA c
adequately model not only signals that vanish after the LS
but also signals that shut off rather quickly~on theFLSO

21 time

7Note that our statement here is only thath1
edge( f ) can be effec-

tively omitted without significantly worsening the overlaps. We a
not claiming thath1

edge( f ) is pointwise numerically negligible com
pared toh2( f ). Indeed, because the instantaneous number of cy
is rather small near the LSO, our analytical estimates above s
that h1

edge( f ) is not much smaller thanh2( f ) near f 5FLSO.
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scale! after the LSO. It leads us also to propose~finally! that
we use as an analytical representation of the FT of real
nals theh2

inspa part of our formula above~without the edge
term!. ~To simplify the notation, we shall henceforth drop th
extra subscript minus onhinspa.!

In computing the above overlaps we have matched all
parameters of the two wave forms, including the time
arrival and the starting phase.8 The overlaps in this table a
well as all other tables in this paper are found to be inse
tive to the sampling rate at the level of a fraction of a p
cent, provided that it is large enough to obey Shannon’s s
pling theorem.

IV. IMPROVED STATIONARY PHASE APPROXIMATION
FOR RELATIVISTIC SIGNALS IN THE ADIABATIC

APPROXIMATION: THE SPP APPROXIMANTS

Although one mighta priori think that it is a simple mat-
ter to generalize the improved SPA discussed above
Newtonian-like signals to the relativistic case, it does n
turn out to be so. What complicates matters is that there
serious qualitative, ‘‘nonperturbative’’ differences betwe
the two cases: first, the value ofḞ(t) formally tends to1`
at the LSO which physically defines the upper-cutofftmax of
the inspiral signal, and, second, the mathematical func
F(t) does not admit a unique real analytic continuation b
yond tmax5tLSO. @These two facts are evidently related; i
deed we shall see thatF(t) behaves in the nonanalytic man
ner F(t);c11c2(tLSO2t)1/2 when t→tLSO

2 .# Remembering

the crucial role of a finiteḞ(t) in the results Eqs.~3.27! and
~3.31a!, it is clear that we need to tackle afresh the proble
of finding a good, analytic approximation toh̃2( f ). Simi-
larly, in view of the appearance ofḞ11(tmax) in the next-to-
leading contribution toh̃1( f ) Eq. ~3.18b!, we shall also need
to revisit the calculation ofh1( f ) ~although we shall, again
find that it makes only a negligible contribution to the ove
laps.!

A. The phasing formula for relativistic signals in the adiabatic
approximation

To extend the treatment of the previous section and
beyond the Newtonian approximation, let us begin with t
phasing formulas for gravitational waves from compact
naries written in a parametric form in terms of the variab
vF[(pmF)1/3 defined by the total massm5m11m2 and
instantaneous gravitational wave frequencyF

t~vF!5tLSO1mE
vF

vLSO
dv

E8~v !

F~v !
, ~4.1!

f~vF!5fLSO12E
vF

vLSO
dvv3

E8~v !

F~v !
, ~4.2!

es
w

8The lag is set equal to zero in testing the accuracy of the Fou
representation but chosen optimally when testingfaithfulnessof a
family of templates, e.g., in Sec. V.
6-21
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DAMOUR, IYER, AND SATHYAPRAKASH PHYSICAL REVIEW D 62 084036
whereE(v) is the dimensionless energy function related
the total relativistic energy or Bondi mass byEtotal5m(1
1E), F(v) is the flux function denoting the gravitationa
wave luminosity of the system, andtLSO is the time andfLSO
is the phase of the signal whenv5vLSO. The parametric
representation Eqs.~4.1! and ~4.2! of the phasing formula
f5f(t) holds under the assumption of ‘‘adiabatic inspiral
i.e., that gravitational radiation damping can be treated a
adiabatic perturbation of a circular motion. See Ref.@43# for
a treatment of radiation damping going beyond this appro
mation.

In the restricted post-Newtonian approximation, one u
a Newtonian approximation for the amplitude@25#. How-
ever, in order to extract an inspiral signal that may be bur
in noisy data by the method of matched filtering, we need
employ PN accurate representations for the two functi
E8(v) andF(v) that appear in the above phasing formula
To any approximantEA(v), FA(v), corresponds@by replac-
ing E(v)→EA(v), F(v)→FA(v) in Eqs. ~4.1! and ~4.2!#
some approximate parametric representationt5tA(vF), f
5fA(vF), and therefore a corresponding approximate tim
domain template

hA5hA~ t;C,tLSO,fLSO,m,h!, ~4.3!

obtained by replacingvF , in the following vF-parametric
representation of the wave form

hA~vF!5CvF
2 cosfA~vF! ~4.4!

by the function of timevF5vA(t), obtained by invertingt
5tA(vF).

The standard approximants forE(v) andF(v) are simply
their successive Taylor approximantsETn

and FTn
, respec-

tively. The DIS strategy for constructing new approximan
to E(v) and F(v) is two pronged: Starting from the mor
basic energy-type and flux-type functions,e(v) and l (v)
@13#, we construct Pade´-type approximants, sayePn

, l Pn
, of

the ‘‘basic’’ functions e(v), l (v).9 We then compute the
required energy and flux functions entering the phasing
mula. The successive approximantsE@ePn

# and F@ePn
,l Pn

#

have better convergence properties than their Taylor coun
partsETn

@eTn
# and FTn

@eTn
,l Tn

#. In DIS we were working

directly with the time-domain signalh(t). As explained
above this necessarily requires a numerical inversion of
parametric representationt5t(vF). By contrast, if one wants
to compute the usual stationary phase approximation
h(t)5CvF

2(t)cosf„vF(t)… there is no need to invert thi
parametric representation. Indeed, from Eq.~3.7!, it is suffi-
cient to know the instantaneous amplitude and the phas
the timet f , wheref 5F(t f). This time is simply given by the

9For explicit formulas representingE(v) andF(v) see Eqs.~3.8!,
~4.2!, and~4.3! of DIS. The associatede(v) and l (v) functions are
given by Eqs.~3.7!, ~3.9! and Eqs.~4.4!–~4.9! in DIS . See also
Eqs.~3.5!, ~3.11! and Eqs.~3.18!–~3.23! there.
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same expression Eq.~4.1! as above with the replacement o
vF[(pmF)1/3 by v f[(pm f)1/3, i.e., the stationary pointt f
is given by

t f5tLSO1mE
v f

vLSOE8~v !

F~v !
dv. ~4.5!

One then substitutes this value oft f in Eq. ~4.2! to compute
the phasec f(t f)[2p f t f2f(t f) of the Fourier component

c f~ t f !52p f tLSO2fLSO12E
v f

vLSO
~v f

32v3!
E8~v !

F~v !
dv.

~4.6!

In terms of these quantities one has

h̃uspa~ f !5
1

2
C

v f
2

AḞ~ t f !
ei [c f (t f )2(p/4)]. ~4.7!

The inclusion of relativistic effects inh̃uspa( f ) is then simply
accomplished by using relativistic accurate expressions
E8(v) and F(v) in the formulas givingc f(t f) and Ḟ(t f).
The coefficientC, in Eq. ~4.4!, determining the actual ampli
tude of the wave form reads

C~r ,i ,u,f̄,c̄ !5~4h!S m

d DC~ i ,u,f̄,c̄ !, ~4.8!

whered is the distance to the source, and where

C~ i ,u,f̄,c̄ !5AA21B2, ~4.9a!

with

A5 1
2 ~11cos2i !F1 ; B5cosiF 3 , ~4.9b!

with the beam-pattern factors

F1~u,f̄,c̄ !5 1
2 ~11cos2u!cos 2f̄ cos 2c̄

2cosu sin 2f̄ sin 2c̄, ~4.10a!

F3~u,f̄,c̄ !5 1
2 ~11cos2u!cos 2f̄ sin 2c̄

1cosu sin 2f̄ cos 2c̄. ~4.10b!

In these formulas the anglei denotes the inclination of the
orbit with respect to the plane of the sky, and the anglesu,
f̄, andc̄ parametrize both the propagation direction and
polarization of the gravitational wave with respect to the d
tector~see Ref.@5# for exact definitions; we added a bar ov
f and c to distinguish them from the GW phasef and
Fourier phasec, respectively!. Performing averages over th
angles in the squared SNR leads to

^F1
2 &u,f̄,c̄5^F3

2 &u,f̄,c̄5 1
5 , ~4.11!

and finally

^C2& i ,u,f̄,c̄5 4
25 . ~4.12!
6-22
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FREQUENCY-DOMAIN P-APPROXIMANT FILTERS FOR . . . PHYSICAL REVIEW D 62 084036
We are finally in a position to write down the rms and ide
SNR’s. For a binary at a distanced from the earth consisting
of stars of individual massesm1 and m2 ~total massm
[m11m2 and symmetric mass ratioh5m1m2 /m2) the rms
and ideal SNR’s, obtained by using the rms and ideal val
of C, namelyC52/5 andC51, respectively, when replacin
Eq. ~4.7! in Eq. ~2.20!, or equivalently, when replacing
a( f )5(1/2)Cv2( f )52hmd21Cv2( f ) in Eq. ~2.22! @with
Eq. ~2.26! and a truncation atFLSO# are given by

r rms5
m5/6

dp2/3S h

15D
1/2F E

0

FLSO
d f

f 27/3

Sn~ f !G1/2

, r ideal5
5

2
r rms.

~4.13!

Note that the SNR depends only on the combinationM
5mh3/5—the chirp mass~see e.g., Ref.@19#!, and that the
first Eq. ~4.13! is equivalent to Eq.~1.8!.

Let us next delineate the qualitative differences betw
the relativistic and nonrelativistic cases by considering
function appearing as denominator in the USPA, Eq.~4.7!

Ḟ~ t !5
1

2p

d2f

dt2
52

3v2

pm2

F~v !

E8~v !
. ~4.14!

At the LSO, the gravitational wave fluxF(v) is finite ~it
blows up only later, when reaching the light ring@13#! while,
by definition,E8(v) vanishes linearly,E8(v)}v2vLSO. As
we shall see below this means thatḞ(t) blows up as (tLSO
2t)21/2. A consequence of this blowup is that the last tw
terms in Eq.~3.9! blow up like (tLSO2t)23/2 confirming the
need for a special treatment of the Fourier transform near
LSO. We are here speaking of the exact behavior of
functionsE(v) andF(v), as supposedly known from com
bining the test-mass limit results@39# with the best available
results on the physics underlying the existence of the L
@13#, and the emission of gravitational waves in compara
mass systems@24#. In DIS, we have incorporated this infor
mation so that all theP approximantsEPn

[E(ePn
),FPn

[F@ePn
,l Pn

# that we define share, with the ‘‘exact’’ func

tions E and F the crucial properties mentioned above@i.e.,
finite F(vLSO) and E8(v)}v2vLSO#. The ~less-convergent!
successiveT approximantsETn

and FTn
do not incorporate

this information exactly, and only asn increases do they ten
to incorporate it. In our opinion theTn approximants dis-
qualify as ‘‘relativistic’’ approximants since they do not co
sistently incorporate the expectation~based on several differ
ent methods; see references in@40#! that the frequency at the
LSO is ~for any h<1/4) numerically near the
Schwarzschild-like prediction, Eq.~2.14!. Indeed, if we de-
fine the 2PN Taylor estimate ofFLSO by the value ofv
5(pmF)1/3 where the straightforward Taylor approxima
ET4

(v)5(k50
4 Ek(h)vk reaches a minimum, we find, e.g

that: ~i! whenm540M ( andh50, FT4
5200 Hz, which is

very different from the exact value of 110 Hz, and~ii ! when
m540M ( andh51/4, thatFLSO

T4 5221.4 Hz, which is very

different from the other predictionsFLSO
P4 5143 Hz and
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Ref.@40]5118.6 Hz. We compare and contrast in Fig. 7 t

Newtonian and relativistic behaviors of the wave amplitu
and instantaneous frequencyF(t) during the last couple of
orbits before the LSO. The blowup ofḞ(t), i.e., the fact that
the slope ofF(t) becomes vertical is an effect which is lo
calized in the last part of the last cycle before the LSO. N
also in Fig. 7 that a less localized consequence of
blowup is that the average frequency a few cycles before
LSO is smaller ~for a given FLSO) in the relativistic case,
than in the~unphysical! Newtonian one. Note that the phys
cal origin of the blowup ofḞ is that, just before the LSO the
‘‘effective potential’’ for the radial motion becomes very fla
~before having an inflection point at the LSO!. In picturesque
terms, the radial motion becomes ‘‘groundless’’ at the LS
Evidently, the blowup ofḞ is due to our use of the ‘‘adia
batic’’ approximation down to the LSO. In reality, radiatio
reaction will cause a progressive transition between the
spiral and plunge which will modify the evolution ofF(t) in
the last cycle before the LSO. We shall discuss this issu
detail in a forthcoming paper@43# and subsequently its dat
analysis consequences.

B. Edge contribution to the non-resonant relativistic h̃¿„f …

As in the Newtonian-like case we decomposeh̃( f ) in two
contributions: Eqs.~3.12b! and ~3.12c!. The nonresonan
contributionh̃1( f ) will be dominated by the ‘‘edge’’ contri-
bution to an integral of our usual type, Eq.~2.38!. Though
the problem is similar to the one we have generically solv
in Sec. III D wecannotapply the results Eqs.~3.16!, ~3.17!,
~3.18a!, and~3.18b!, because of the limiting hypothesis~iii !

FIG. 7. The instantaneous GW frequencyF(t) vs t for the New-
tonian and relativistic cases during the last few orbits before
plunge at LSO. Notice the rapid increase in the inspiral rate clos
the last stable orbit in the relativistic case.
6-23
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mentioned in our introductory discussion of Sec. II D. I
deed, the problem is that in the~physically relevant! case of
relativistic signals the functionsa(t) and c(t) are not
smooth at the upper edget5tLSO. Let us see explicitly in
what way they violate smoothness there. Let us first defi

e1~h![F d

dv S E8~v !

F~v ! D G
vLSO

, ~4.15!

so that near the LSO we may write

E8~v !

F~v !
5e1~v2vLSO!1O@~v2vLSO!2#. ~4.16!

If we were to use the test-mass approximation for the ene
function E8(v) and the Newtonian~quadrupole! one for the
flux function F(v) this would give

e1
P0(tm)

~h!.
15

2

1

4h

1

vLSO
8 ~123vLSO

2 !3/2
.

27 492

4h
.

~4.17!

We have numerically estimated the functionē1
P4(h)

[4he1(h), when using theP4 approximant of Ref.@13# in
the definition of Eq.~4.15!. We find that to a good approxi
mation

4he1
P4~h![ē1

P4~h!.26 091.611 94 exp~24.474 405 683h!.
~4.18!

In terms of

t[
tLSO2t

m
, t>0 for v<vLSO, ~4.19!

and using

t52E
v

vLSO
dv

E8~v !

F~v !
5

1

2
e1~v2vLSO!21O@~v2vLSO!3#,

~4.20!

and Eq.~4.2! for f(v), we find the following approximate
representation~valid near the LSO! for the phasef(t):

t2tLSO52mt, ~4.21a!

f~ t !2f~ tLSO!.22vLSO
3 t1

4A2

Ae1

vLSO
2 t3/2. ~4.21b!

Note also that Eq.~4.20! gives the following representatio
for v(t), and therefore for the amplitudea(t)5Cv2(t)

v.vLSO2
A2

Ae1

t1/2, ~4.22a!

a~ t !.aLSOF12
2A2

Ae1

1

vLSO
t1/2G . ~4.22b!
08403
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We are interested in evaluating the edge contribution to
integral

I 5h̃1~ f !5E
2`

tLSO
dta~ t !eic f

1

~ t !5mE
0

1`

dt a~t!eic f
1(t).

~4.23!

Near the LSO boundary, i.e., near the edget50 in the t
form of the integral, the amplitude behaves as Eq.~4.22b!
while the appropriate phasec f

1(t) behaves, from Eqs
~4.21a! and ~4.21b!, as

c f
1~t!.c f LSO

1 22pm~FLSO1 f !t1
4A2

Ae1

vLSO
2 t3/2,

~4.24!

where

c f LSO
1 [c f

1~ tLSO!52p f tLSO1fLSO. ~4.25!

The appearance of fractional powers oft in the expansions
Eqs.~4.22a! and~4.22b! show explicitly the violation of the
C ` property ofa(t) andc(t) at the edge. We cannot use th
integration-by-parts method to evaluate the expansion
I edge. However, we can still use the general method sketc
in Sec. II D. Without rotating explicitly the thet contour in
the complex plane the edge contribution toI is obtained by
inserting the expansions, Eqs.~4.22b! and ~4.24!, in Eq.
~4.23! and expanding everything out, except for the ma
phase,c f LSO

1 22pm(FLSO1 f )t which must be kept in the
exponent. This yields

I edge5maLSOeic f LSO
1 E

0

`

dte2 iytS 12
2A2

Ae1

1

vLSO
t1/2

1
i4A2

Ae1

vLSO
2 t3/2D , ~4.26a!

where

y[2pm~FLSO1 f !. ~4.26b!

Note that, instead of rotatingt in the complex plane, we can
~equivalently! consider thaty possesses a small negativ
imaginary contribution:y→y2 i0. The integrals appearing
in Eq. ~4.26b! are evaluated by the general formula

i a5E
0

`

dte2 iytta5
e2 i (p/2)(a11)

ya11
G~a11!. ~4.27!

This yields finally

h̃1
edge~ f !.

maLSOei [c f LSO
1 ]

iy

3F11S 3

2

FLSO

FLSO1 f
21De2 ip/4

A2p

Ae1

1

vLSOAy
G .

~4.28!
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The leading contribution„}( iy)21
… to the relativistic result

Eq. ~4.28! agrees with the leading contribution in E
~3.18b!. Note that the next-to-leading contribution does n
have the same dependence onf 1FLSO as the corresponding
term in the nonrelativistic result in Eq.~3.18b!. In spite of
the breakdown of the formal expansion, Eq.~3.18b! the frac-
tional correction given by the last term in the bracket of E
~4.28! is checked to be numerically small. This check w
the main motivation for us to computeh̃1

edge to next-to-
leading order in the relativistic case. The lesson is that
formal blowup ofḞ near the LSO has only a small numeric
effect onh̃1

edge. This is again a confirmation that our resu
are robust under a refinement of our knowledge of the sig
We shall further check below that, as in the Newtonian ca
h̃1

edgehas only a negligible effect on overlaps.

C. Improved stationary phase approximation for relativistic
signals

Let us now consider the resonant contributionh̃2( f ), con-
sidered in the crucial domain where the stationary poin
near the edgetLSO. As before, the optimal approximants
h̃2( f ) that we can construct are also given by different a
lytical expressions according to the value off. However, we
now need to introduce a new definition of the two ranges
frequencies in which one must~minimally! divide thef axis.
More precisely, we introduce a frequencyf up, near but be-
low Fmax, and we shall construct a ‘‘lower’’ approximatio
h̃2,( f ) in the rangef , f up, and an ‘‘upper’’ oneh̃2.( f ) in
the range f . f up ~which includes f 5Fmax). The optimal
value of f up will be determined below.

In the lower range,f , f up, we can draw on the work o
Sec. III D. Indeed, in that range there exists a saddle-poin
the domain of integration. However, as that saddle-point
become rather neartmax ~becausef up is nearFmax), we can
significantly improve the usual SPA estimate by using o
previous result, i.e., by defining

f < f up: h̃2,
irspa~ f !5C~z,~ f !!

a~ t f !

AḞ~ t f !
ei [c f (t f )2p/4],

~4.29a!

z,~ f !52Ac f~ t f !2c f~ tmax!. ~4.29b!

The label ‘‘irspa’’ in Eq. ~4.29a! stands forimproved rela-
tivistic SPA.

Let us finally explore the optimal analytic approximatio
to h̃2( f ) in the upper rangef > f up. Proceeding as in Sec
IV B in this case one has

c f
2~ t !.c f LSO

2 12pm~FLSO2 f !t2
4A2

Ae1

vLSO
2 t3/2,

~4.30!

where

c f LSO
2 [c f

2~ tLSO!52p f tLSO2fLSO. ~4.31!
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We shall use this expansion@which replaces the paraboli
approximation Eq.~3.5a! used in the Newtonian case# to
evaluate the Fourier integral Eq.~3.28!. To this end we must
introduce a new special function~characteristic of the rela
tivistic phasing near the LSO! to replace the error function
Let us define the function

g3/2~x![E
0

`

dt̂ei (3xt̂22t̂3/2), ~4.32!

where the new variablet̂ is related tot by t5at̂ where

a5 1
2 vLSO

24/3e1
1/3. ~4.33!

In the test-mass case corresponding to Eq.~4.17! the value of
a is 49.83/(4h)1/3. The value defined by theP4 approximant
on the other hand is given by combining Eqs.~2.15! and
~4.18!. In particular,a equals 30.055~54.578! for h50.25
~0.1!, respectively. The index32 in g3/2(x) alludes to the
powert̂3/2 replacing the powert̂2 in the usual error function,
and where the conventional coefficients 3 and 2 have b
chosen to simplify some formulas~although they complicate
others!! The final result is conveniently written in terms of
variablex given by

x5
2p

3
am~FLSO2 f !. ~4.34!

This improved relativisticSPA is thus written as

f > f up: h̃2.
irspa~ f !5maeic f

LSO
a~ tLSO!g3/2~x!. ~4.35!

Note that f ,FLSO corresponds tox.0 ~saddle point do-
main!, while f .FLSO corresponds tox,0 ~absence of a
saddle-point!. Roughly speaking the variablex( f ) corre-
sponds to2z( f ) of the nonrelativistic case, andg3/2(x) is
the relativistic analogue of the combinationC(z)ei z2

appear-
ing in the previous treatment@see, e.g., Eq.~3.31a!#.

It is useful to summarize some properties of the funct
g3/2(x):

g3/2~0!5
1

3

~12 iA3!

41/3
GS 2

3D50.284 34720.492 503i ,

~4.36a!

g3/2~x! ;A4px

3
ei (x32p/4), x.0, @1, ~4.36b!

g3/2~x!;
i

3x
; x,0, 2x@1. ~4.36c!

By expanding the integrand ofg3/2(x) in powers ofx, and
integrating term by term@using the properties of the EulerG

integral after having changed the variable of integrationt̂
5e2( ip/3)(u/2)2/3#, one proves thatg3/2(x) is given by the
following, everywhere convergent, Taylor–Maclaurin e
pansion
6-25
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g3/2~x!5
21/3

3
e2 ip/3(

n50

n5` G@ 2
3 ~n11!#

n! S 3x

22/3
eip/6D n

.

~4.37!

With about 300 terms the above series representsg3/2(x)
accurately enough for values ofx in the range xP
@22.3,2.3#. We used this series to generate the plot
g3/2(x) represented in Fig. 8. Although we do not use it
this paper, note that for2x→`, the following ~divergent!
asymptotic expansion is also valid:

g3/2~x!;2
1

3x (
n50

n5` G~ 3
2 n11!

n! F 22

~23x!3/2G n

e2( ip/4)(n12).

~4.38!

In all our calculations of overlaps we shall define the f
quencyf up separating the lower range from the upper ran
by choosingxup50.36 as the RHS of Eq.~4.34!. This value
is chosen so that atxup one has a smooth transition from th
lower to the upper approximation. We have also checked
the overlaps do not change very significantly forxup between
0.2 and 0.4.

In summary our best analytic representation of tim
windowed relativistic signals in the Fourier domain would
defined by combining theP-approximant construction of th
functionsE8(v), F(v) @13# with the totalimproved relativ-
istic approximants~irtot! defined as

h̃irtot~ f !5h̃2
irspa1h̃1

edge, ~4.39!

whereh̃1
edge is defined in Eq.~4.28! and h̃2

irspa is defined for
f < f up by Eqs.~4.29a!, ~4.29b!, and, forf > f up by Eq.~4.35!.

FIG. 8. The real and imaginary parts of theg3/2(x) function Eq.
~4.37! in terms of which the improved relativistic SPA~IRSPA! is
represented. The thick lines represent the asymptotic behavio
x→6` given by Eqs.~4.36b! and ~4.36c!.
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Actually, as in the case of Newtonian signals, we have fou
that the inclusion ofh̃1

edgehas only a minimal~though favor-
able! effect on overlaps. Moreover, such a contribution
absent in the case of real signals. Therefore, our finalprac-

tical and bestproposal consists of using onlyh̃2
irspa ~for sim-

plicity we henceforth drop the subscript minus!. We shall
henceforth refer to the improved frequency domain stati
ary phaseP approximants based on the IRSPA as the S
approximants.

D. Comparison between the usual SPA, the improved
relativistic SPA and the ‘‘exact’’ SPA „numerical DFT…

In this section, we test the accuracy of our analytical a
proximations in various ways. Figure 9 compares an insp
wave from a~20,20! M ( binary generated by three differen
methods:~i! directly in the time domain and terminated whe
the instantaneous gravitational wave frequency reaches
value at the LSO~solid line!; ~ii ! in the Fourier domain using
the usual SPA but with a square window betweenf min540
Hz, f max5FLSO ~USPAW! and then inverse Fourier trans
formed ~dashed line!, and ~iii ! again in the Fourier domain
but using IRSPA with Fourier components computed up
Nyquist frequency and then inverse Fourier transformed
obtain its time-domain representation~dotted line!. We only
exhibit the comparison near the crucial LSO region~much
before the LSO the USPA is nearly equivalent to the IRS
and they both do a good job in representing the actual
nal!. We observe that the USPAW begins to get out of ph

as

FIG. 9. Visual comparison of a chirp generated directly in t
time domain~solid line! with the inverse Fourier transforms of th
usual SPA terminated at LSO~USPAW! ~dashed line! and the im-
proved relativistic SPA~IRSPA! extended up to the Nyquist fre
quency~dotted line!, all during the last few cycles before the la
stable circular orbit frequency is reached, for the relativistic@second
PN P-approximant case (P4)# inspiral of a binary of total massm
540M ( .
6-26
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with the wave directly generated in the time domain dur
the last cycle and rings a few times beyond the shutoff po
Our new proposal, IRSPA, keeps in phase with the tim
domain signal until the last moment although it too has
couple of low amplitude cycles beyond the LSO.

Matched filtering involves not just the correlation of tw
signals but rather their weighted correlation—the weig
coming from the detector spectral noise density. To furt
compare and contrast our newf-domain approximants to th
usual frequency-windowed SPA it is conceptually useful
compare various approximations in the ‘‘whitened-tim
domain’’ introduced in Sec. II A. As discussed above, in th
picture~and only in this picture! the optimal filter consists o
correlating the output of the detector with an exact copy
the expected signal. The whitened@i.e., convolved with the
whitening kernelw1/2 Eq. ~2.10!# signals are plotted and
compared in Fig. 10, which is the same as Fig. 9 except
all the waves here are whitened@i.e., divided byASn( f ) and
then inverse Fourier transformed#. The inset in Fig. 10 shows
the full whitened signal that was originally generated in t
time domain. Several observations are in order. First, we
how low-frequency components are suppressed relativ
high-frequency components which occur in a more sensi
band of the detector. Second, we can very clearly see
nonlocal behavior of the whitening kernel. It has the effect
softening the window imposed on the wave that was dire
generated in the time domain and curbing the oscillation
the IRSPA beyondFLSO. Finally, this same whitening is
seen to have worsened the mismatch of USPAW with
whitened version of the original time-truncated signal. T
conclusions drawn from these visual comparisons are bo
out by detailed numerical experiments we performed.

FIG. 10. This plot is the same as in Fig. 9 except that we co
pare whitened signals to show the effect of the detector resp
function on the time development. The inset shows the entire ti
domain signal starting fromFGW530 Hz and terminating atFLSO.
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To compare the approximants more quantitatively,
Table III we list the overlaps of the exact Fourier represe
tation of a model wave form~i.e., a signal generated in th
time domain and then Fourier transformed using a DFT
gorithm! with their approximate Fourier representations an
lytically computed using one of the following: th
frequency-windowed usual SPA@i.e., USPAW, cf. Eq.
~3.7!#, the improved Newtonian SPA@INSPA is the same as
IRSPAW, cf. Eq.~4.29b!#, and the improved relativistic SPA
@cf. Eq. ~4.39!#. The USPA and the INSPA used in compu
ing these overlaps are terminated atf 5FLSO

A , whereFLSO
A is

the last stable orbit frequency determined by the condit
EA8 (v)50 ~hence the labels SPAW and INSPAW where
stands for windowed—in the frequency domain!. This is be-
cause both USPA and INSPA vanish at the LSO~due to the

factor 1/AḞLSO) and are either not defined~in the case of the
usual SPA! or formally vanishing@according to the definition
Eq. ~3.31a! in the case of INSPA# beyond the LSO. Contras
this with the Newtonian case where it is possible to anal
cally extend the usual SPA beyondFLSO.

It is generally true, as stated in DIS, that the station
phase approximation to the Fourier transform worsens v
significantly as we consider more massive binaries. In t
sense the USPA poorly represents the exact chirp. We c
clude that, for massive systems with total massm5m1
1m2&40M ( , the only uniformly acceptable analytic repre
sentation of the Fourier transform is the IRSPA.

-
se
e-

TABLE III. Accuracy of the various approximations to the Fou
rier transform of a chirp signal computed in the test-mass limit
P approximants at different PN ordersvn ~column 1! is measured
by their overlaps with a wave form of exactly the same parame
but computed in the time domain and then Fourier transform
using an FFT algorithm. The approximations considered are
usual SPAW~column 2!, INSPAW ~column 3!, and IRSPA~col-
umn 4! ~with the choicexup50.36). Both USPA and INSPA are
windowed in frequency beyondFLSO. Only the IRSPA has a spec
trum extending beyondFLSO although we put a numerical cutoff a
xcutoff5220. xup50.36 andxcutoff5220 in all subsequent tables.

USPAW INSPAW IRSPA

n ^h̃Pn

FFT,h̃Pn

USPAW& ^h̃Pn

FFT,h̃Pn

INSPAW& ^h̃Pn

FFT,h̃Pn

IRSPA&

m151.4M ( , m2510M (

4 0.9967 0.9986 0.9994
5 0.9965 0.9990 0.9997
6 0.9965 0.9986 0.9993

m15m2510M (

4 0.9764 0.9762 0.9951
5 0.9771 0.9775 0.9955
6 0.9751 0.9786 0.9953

m15m2520M (

4 0.8613 0.8613 0.9891
5 0.8680 0.8773 0.9819
6 0.8897 0.9038 0.9829
6-27
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TABLE IV. Faithfulnessof the Fourier domainP approximants in the formaltest-masscase. Values
quoted are theminimaxoverlap~see DIS! of an approximant wave form generated directly in the freque
domain with the exact wave form generated in the time domain and Fourier transformed using th
algorithm. The approximations considered are the usual USPAW~column 2! and IRSPA~column 3!. As
mentioned earlierxup50.36,xcutoff5220. For compactness of presentation, in this table and Tables V an

we use for the column headings the abbreviation USPAW to denote^h̃X
FFT,h̃Pn

USPAW&, IRSPA to denote

^h̃X
FFT,h̃Pn

IRSPA&.

n ~1.4,10! ~10,10! ~13,13! ~20,20!

USPAW IRSPA USPAW IRSPA USPAW IRSPA USPAW IRSPA

4 0.8360 0.8316 0.9596 0.9707 0.9513 0.9965 0.8248 0.97
5 0.9755 0.9729 0.9727 0.9914 0.9473 0.9973 0.8283 0.98
6 0.9921 0.9903 0.9739 0.9938 0.9479 0.9972 0.8285 0.98
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V. FAITHFULNESS AND EFFECTUALNESS OF SPP
APPROXIMANTS

So far we have concentrated on developing an accu
Fourier representation of the inspiral wave form at vario
levels of approximation from Newtonian toP approximants.
In order to quantify the accuracy, we used the overlap of
DFT of the wave form computed using a FFT of the tim
domain signal with an analytical approximation of the FT
the same time-domain signal using the improved SPA s
gested in Secs. III and IV. However, an important quest
still remains: What is the total loss of accuracy due to co
bining the loss ofprecisionentailed by the use of an analyt
cal approximant to the FT~loss that we have shown how t
minimize by defining the IRSPA! with the loss ofaccuracy10

entailed by the use of some finite order in the PN appro
mation of the exact signal. In other words, how accurate
the approximate frequency-domain representation of a
approximant in modeling the exact FT of the exact gene
relativistic signal? More precisely, what fraction of the SN
of a true signal is the Fourier-domain approximant likely
extract? Additionally, one is also interested in knowing t
biases induced in the estimation of parameters when u
the frequency-domain approximants introduced in this wo

We shall follow DIS in saying that a representation of
signal is faithful if it has a good overlap11 with the exact
signal for the same values of the~dynamical! parameters~or
more precisely, if the overlap is maximized for template p
rameters which have acceptably small biases with respe
the exact signal parameters!. As in DIS, we employ as nec
essary criterion for faithfulness the requirement that the ‘‘
agonal’’ ambiguity function be larger than 0.965. On t
other hand, we shall say that a representation of a sign
effectualif the overlap, maximized over the template para
eters, is very near one. To use these definitions we fol
DIS in introducing afiducial exactgeneral relativistic signal

10We distinguishprecision and accuracy in the same way tha
they are distinguished in metrology.

11When discussing faithfulness and effectualness we always
sume, as in DIS, Eq.~2.17! there, that the overlap Eq.~2.8! is first
maximized with respect to the relative time lag~and relative phase!.
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In Table IV and Table V we use as fiducial exact signal t
formal ‘‘test-mass case’’ for which the functionE(v) is
known analytically andF(v) numerically@26#. In Table VI
we use as fiducial exact signal the one defined in DIS
comparable masses@see Eq.~4.11! there for the definition of
the exact new energy function, and Eqs.~7.1! ~7.2! for the
exact factored flux function; we took the valuek0547/39 for
the parameter defining formal higher PN effects in E
~4.11!#. As above we consider that the exact time-dom
signal is shut off after the LSO.@For each considered wav
form, defined by some approximate energy and flux fu
tionsEA(v) andFA(v), we shut it off at the LSO defined by
the corresponding energy functionEA(v).#

In Tables IV and VI we list the overlaps for differen
approximants for the three ‘‘massive’’ archetypal binari
@(1.4M (,10M (),(10M (,10M (), and (20M (,20M ()# that
could be searched for in GEO-LIGO-VIRGO data. The
overlaps are computed using the expected LIGO noise
~1.4a! by maximizing over the lag parametert @47# and
phasefc but without readjusting the intrinsic parameter
i.e., the masses of the two stars in the approximants, to m
mize the overlap.~This implies that the value ofFLSO used in
the approximant is different from that in the ‘‘exact’’ signal!
The overlaps are therefore a reflection of how accurate
various representations are in an absolute sense. In o
words, they compare thefaithfulnessof the different approxi-
mants. Two independent aspects of approximation are in
tigated in these tables. First, the comparison between the
alternatives in the frequency domain: the usual S
~USPAW! and our improved relativistic SPA~IRSPA!, and
second, the PN order to which the phasing is computed.
investigate further the performance of these approximants
summarize in Table V the overlaps obtained by maximiz
over all the parameters in the approximants including
intrinsic ones. Thus in addition to maximizing over the la
parametert and the phasefc one also extremizes over th
masses of the two starsm1 andm2. In other words, we com-
pare theeffectualnessof the various approximants. We als
compute the bias introduced in the total massm.

From Tables IV–VI one can conclude the following:~i!
The improved relativistic SPA is significantly more faithfu
and more effectual for massive systems with total massm

s-
6-28
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TABLE V. Effectualnessof the Fourier domainP-approximants in the formaltest-masscase. We list
minimaxoverlaps of the approximate wave forms generated directly in the frequency domain with the
wave form generated in the time domain and Fourier transformed using an FFT algorithm. Howe
addition to maximization over the lag parametert and the initial phase of the approximate wave form we a
maximize over the two massesm1 and m2. The percentage bias in the estimation of the total mass 10
2mA /m) are listed in parenthesis below the overlaps.

~1.4,10! ~10,10! ~13,13! ~20,20!

n USPAW IRSPA USPAW IRSPA USPAW IRSPA USPAW IRSPA

4 0.9942 0.9963 0.9798 0.9984 0.9651 0.9979 0.9166 0.996
(22.300) (22.744) (20.664) (20.858) (20.962) (21.081) (22.500) (21.250)

5 0.9882 0.9987 0.9795 0.9979 0.9653 0.9968 0.9174 0.996
(10.480) (21.301) (20.626) (20.467) (20.631) (20.481) (21.875) (20.340)

6 0.9970 0.9982 0.9805 0.9964 0.9649 0.9963 0.9174 0.996
(20.311) (21.166) (0.000) (20.626) (20.662) (0.000) (21.250) (20.340)
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*20M ( , and mandatory for m*26M ( ; ~ii ! Comparing
with DIS, we see that the frequency-domain IRSPA does
well as the time-domain wave form even for massive bi
ries up to 40M ( ; ~iii ! The 2.5PN SPP approximant is both
faithful and an effectual approximant for a wide range
binary systems (m&40M (). It only introduces a small bias
Note also that, in regard to effectualness, the gain in go
from 2PN to 2.5PN accuracy is quite significant~mainly in
decreasing the biases! and especially for low-mass system
~which have many useful cycles!, while the gain in going
from 2.5PN to 3PN seems very slight.

To summarize, if one would like to lose no more than
tenth of the events that would be observable had one kn
the exact general-relativistic signal, then the 2.5PN SPP
proximants are a must. Furthermore, unbiased paramete
timation requires 2.5PN SPP approximants in all cases.

VI. WHY ARE TIME DOMAIN RELATIVISTIC SIGNALS
MORE EXPENSIVE TO COMPUTE?

The main purpose of this work is to provide a set of to
to the experimenters so that they can generate templates
a minimal computational cost. We next, therefore, addr
the issue of computational costs of various algorithms
template generation.

First, though the signal is initially given in the time do
main, the time-domain version of the Wiener filter contain
double time integration@see second form of Eq.~2.2!# which
is ~given the existence of FFT algorithms! much more com-
putationally expensive than the single frequency-domain v
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sion of the Wiener filter@see first form of Eq.~2.2!#. There-
fore, in the computation of the correlation of a template w
the detector output, what is required is the Fourier transfo
of the matched filter. However, the DIS proposal was
compute the templates in the time domain and compute t
exact DFT using FFT algorithms. Admissibly, this procedu
is still highly computation intensive. Let us determine wh
this is so.

To compute the time-domain signal we need a phas
formula f5f(t). Since there is no explicit expression fo
the phasing of inspiral waves as a function of time the st
dard approach is to use the implicit formula, Eqs.~4.1!, ~4.2!.
The binding energyE(v) and the gravitational wave flux
F(v) have been computed, e.g., using Pade´ techniques, as
explicit functions ofv and these when used in Eqs.~4.1! and
~4.2! yield an implicit relation betweenf and t. However,
the problem is that we needf at equal intervals of time~to
enable us to use the standard FFT algorithms! and this makes
the computation off(t) expensive: every time samplef i
[f(t i) is computed by first solving Eq.~4.1! iteratively for
v i , the lower limit in the integral for a givent i , and then
using thisv i as the lower limit in the integral of Eq.~4.2!.
Although the second step is the computation of a single
tegral, the first step is a rather slowly converging (;10 it-
erations for everyt i) computation.

This problem could have been circumvented if it had be
adequate to use the explicit analytical expressionf(t)
5b0(tLSO2t)5/81(k>1bk(tLSO2t)(42k)/8 ~modulo loga-
rithms! obtained by :~i! expanding the quantityE8(v)/F(v)
in the integrands in a straightforward expansion in powers
90
15
68
TABLE VI. Faithfulness, as in Table IV but for wave forms constructed frompost-Newtonianformulas
for a binary with stars of comparable masses. The value of the parameterk0547/39.

~1.4,10! ~10,10! ~13,13! ~20,20!

n USPAW IRSPA USPAW IRSPA USPAW IRSPA USPAW IRSPA

4 0.7919 0.7898 0.9596 0.9584 0.9485 0.9665 0.8764 0.97
5 0.9765 0.9736 0.9820 0.9924 0.9657 0.9921 0.8831 0.98
6 0.9965 0.9958 0.9835 0.9947 0.9669 0.9921 0.8860 0.98
6-29
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v; ~ii ! integrating term by term; and~iii ! inverting analyti-
cally by successive iterations~see e.g., Ref.@24#!. However,
this straightforward PN expansion of the phasing form
defeats the very purpose ofP approximants and loses all th
benefits brought by the constructions given in Ref.@13#.
Consequently, DIS had to use the iterative procedure to c
pute the signal phasing. By contrast, using~any form! of
SPA, i.e., an explicit analyticalf-domain expression, brings
tremendous reduction in computational costs. On the
hand, as we shall discuss below, there is no iterative pro
dure involved in computing SPA. Second they are compu
directly in the frequency domain and hence lead to a furt
cost reduction, since time-domain wave forms need to
Fourier transformed using FFTs—costingN log2N floating
point operations—in addition to floating point operations
quired to compute time-domain templates.

Let us recall that the usual SPA is given by Eq.~3.7!. In
this expressiont f is the stationary point of the phase in th
integral of Eq.~3.4b!. At a Fourier frequencyf 5v f

3/pm the
stationary pointt f is given by Eq.~4.5!, which is a nonitera-
tive computation. One then substitutes this value oft f in Eq.
~4.6! to computec f—the phase of the Fourier componen
Moreover, the derivative of the frequency which occurs
the amplitude of the Fourier transform can be computed
ing Eq. ~4.14! while the factora(t f)} f 2/3 from Eq. ~3.2a!.
Every quantity that appears in the SPA is computed usin
straighforward integral or a mere algebraic expressi
Hence, from the computational-cost point of view, it is d
sirable to use some SPA to generate templates. Since
usual SPA has been shown to be inadequate for represe
time-windowed signals from massive binaries, we have p
posed the use of corrections to~for f < f up<FLSO) and ana-
lytic extensions of~for f >Fup) the usual SPA. In Table VII
we compare for archetypal binaries, the computational c
of templates that are generated in the time domain and F
rier transformed using an FFT algorithm with the compu
tional costs for the USPA, INSPA, and IRSPA. This tab

TABLE VII. In this table we list times required to genera
templates first in the time domain and then Fourier transform
using an FFT~column 2! and compare them with times required
construct the same templates directly in the Fourier domain u
one of the three approximation schemes: USPA~column 3!, INSPA
~column 4! and IRSPA~column 5!. For each PN family~column 1!
the timetPn

FFT required to compute time-domainP-approximant tem-
plates is the highest and we normalize all times by this value.

n FFT USPA INSPA IRSPA

tPn

FFT/tPn

FFT tPn

USPA/tPn

FFT tPn

INSPA/tPn

FFT tPn

IRSPA/tPn

FFT

m151.4M ( , m2510M (

4 1 0.013 0.021 0.089
6 1 0.014 0.021 0.090

m15m2510M (

4 1 0.009 0.015 0.11
6 1 0.009 0.016 0.11
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clearly shows that it is sensible to generate templates in
Fourier domain.The SPA is up to a factor of 100 times fast
and the IRSPA is up to a factor of 10 times faster than
corresponding time-domain construction and Fourier tran
formation. Table VII together with Table VI~of overlaps!
demonstrates that SPP approximants are necessary for
cient searches of inspiral signals in gravitational wave int
ferometer data and although more expensive to generate
the usual SPA are nevertheless ‘‘affordable.’’

VII. CONCLUDING REMARKS

After nearly 2 decades of detector-technology devel
ment long-baseline interferometric gravitational wave ant
nas LIGO-VIRGO are scheduled to become operationa
about 2–4 yr with target sensitivities that are good enough
detect inspiral events from massive (m.20M () binaries at
an optimistic rate of a few per year. Searches are planne
be carried out over a range of 0.2–50M ( by the method of
matched filtering.

An important issue in matched filtering is the number
cycles accumulated in the correlation integral since the S
grows as the square root of the number of cycles. While
is strictly true, if the noise power spectrum of the instrume
is independent of frequency, in practice one can only i
prove the SNR in proportion to the square root of a ‘‘usefu
number of cyclesNuseful which is determined by a combina
tion of the detector noise power spectrum and the sign
power spectrum. We have pointed out how the number
useful cycles can be a lot smaller than the actual numbe
cycles for massive and relativistic systems: e.g.,
(10M (,10M () @(20M (,20M ()# binary system has only 7.6
@3.4# useful cycles in the detector’s bandwidth~see Table I!.
A priori, it may seem that the fewer number of cycles sho
make it easier to model the massive black-hole binaries c
pared to the lighter neutron star-neutron star ones with
corresponding large number of cycles to phase. Tables IV
show that there is some truth in this, but that for very m
sive black hole binaries, these fewer cycles are in fact m
difficult to model than the neutron star–neutron star, or n
tron star–black hole cases for two reasons:~i! they are near
the end of the inspiral, i.e., when the radiation reaction
fects drives a faster drift of the frequency which has to
modeled accurately~this is why we needP approximants
introduced in DIS!; ~ii ! they might terminate due to the tran
sition from inspiral to plunge while in the detector’s ban
width, and this poses the problem of accurately describ
the Fourier transform of a time-windowed signal~this re-
quires the correction factors introduced in this paper!. All
this places stringent demands in modeling the wave form
the Fourier domain and due attention needs to be paid
delicate issues of detail. This task is all the more import
since the first detections expected from LIGO/VIRGO a
likely to concern massive systems withm;2565M ( , for
which the LSO frequency lies near the middle of the sen
tivity curve ~see Fig. 1!.

To this end, the present work makes two new robust~i.e.,
assumption-independent! contributions:

g

g
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~i! The proposal of stationary phaseP approximants~SPP!
which combine the excellent performance of our tim
domainP approximants@13# with the analytic convenience
of the stationary phase approximation without serious los
event rate. These Fourier-domainP approximants perform a
well as their time-domain counterparts in extracting the t
general relativistic signal.

~ii ! The definition of a universal Newtonian-like ‘‘edge
correction’’ factorC„z( f )…, as well as its relativistic comple
ment g3/2„x( f )… which take into account the frequenc
domain effects, concentrated around~and on both sides! of
Fmax5F(tmax), for signals which are abruptly shut off, in th
time domain, aftertmax.

In addition to these new achievements, let us mention
other useful contributions of a more technical nature:~i! our
recommendation to systematically use a smooth time w
dow at the lower frequency side to conveniently and e
ciently suppress spurious oscillations due to a numerical
frequency cutoff and~ii ! an emphasis on the comparison
the form of the signals in the ‘‘whitened’’ time domain.

Based on the detailed analysis presented in this pape
find that for PN template generation of binary systems
total massm&5M ( it suffices to use the usual SPA~without
correction factor! of the P approximants defined in DIS. O
the other hand, in the total mass range 5M (&m&40M ( , it
is crucial to use our new SPP approximants to construct
frequency-domain templates.

In addition to the construction of the SPP approximan
the paper has examined in detail the Fourier-domain eff
entailed by a sharp time-domain windowing. As emphasi
in the introduction, at our present stage of knowledge,
cannot be sure that a template wave form terminated~in the
time domain! at the LSO is an accurate-enough represen
tion of a real GW signal coming from massive binaries~say
with m,40M (!. We have given several plausibility argu
ments toward justifying this assumption: brevity of th
plunge, and an expected frequency separation from
merger signal. In the absence of knowledge of the trans
plunge signal and of the final merger signal, we have arg
that it is best to use a template wave form that is termina
at the LSO.@Actually, we anticipate that the effectualness
the template wave form will be increased if we allow it to
terminated at a frequency somewhat larger thanFLSO
~thereby allowing it to approximately represent the plun
wave form!.# Consequently, this work has concentrated
signal models that are truncated in the time-domain by a
function and has aimed at constructing the best associ
Fourier-domain analytical representation for this possibili

We have also pointed out that the opposite assumptio
an abrupt termination atFLSO of the usual SPA in the fre
quency domain implies, when viewed from either the tim
domain or the whitened time domain, the existence of so
coherent oscillations ‘‘ringing’’ after the LSO crossing. W
have done another numerical experiment on this issue
appending to the inspiral signal a smooth decay taking p
over less than 3FLSO

21 time scales. We have found that o
improved SPA was a reasonably good representation of~the
FT of! such a signal, and definitely a better representa
than the usual SPA one. Let us finally reiterate that we do
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claim to have conclusively ruled out the possibility that
frequency-windowed SPA may perform better compared
the time-windowed SPA we propose here. This import
issue is not settled although we conjecture that this is
likely. Anyway, this paper is the first one to explicitly con
struct the frequency-domain version of the time-domainP
approximants which were shown in DIS to bring indispe
sible improvements over the usually consideredT approxi-
mants. Therefore, even in the unlikely case where a strai
forward frequency window turns out to be a better mod
than the time window assumed in most of this work, one w
still require the formulas given in this paper@with the trivial
change of replacing the correction factorsC(z) by a u func-
tion u(FLSO2 f )# to generate sufficiently accuratef-domain
filters. In view of these comments, we feel there is an urg
need to model more precisely the transition from the insp
signal to the plunge signal@43# close to the last stable orbit
We hope that the techniques~if not all the details of our
construction! used in this work to handle the blowup ofḞ(t)
at the LSO will be useful~maybe with some modifications!
even if, on a later examination, this blowup turns out to be
artifact of an approximation which may drastically alter wi
a better treatment of the transition to the plunge. Only w
this improved understanding and its implications for the co
struction of templates can one build even more optimal te
plates for massive binaries and maximize our chance of
tecting them. Independently of issues such as windowing
time versus windowing in frequency or the nature of t
plunge we feel that in generalP approximants are much be
ter tools than the Taylor approximants. We hope to co
back to this question in a future work@48#.

Another aspect that needs to be looked into is the issu
whether the interferometers will work in the time domain
the frequency domain. If indeed, they would decide to wo
in the time domain, i.e., to store the raw output, and to tra
form it nearly online in the defiltered time-domain equivale
GW amplitudeh(t), the analysis of this paper would be i
relevant. In that case, one should store the Wiener tra
formed time-domain filterK(t)5w1* h(t). However, with
the presently available computational resources it se
hopeless to filter in the time domain. We therefore anticip
that, although the raw detector output will be stored in t
time domain, all filtering will be done in the Fourier domai
In this event, the robust aspects of the present analysis
be relevant even if not the details.

The formalism developed in this paper can be applied
only to initial interferometers but also to future generatio
of interferometers. We have refrained from applying our fo
malism to the case of LIGO II since the LIGO II design is
the moment in a state of flux and any quantitative results
may quote will soon be irrelevant. However, we should e
pect the results of this work to be important for any detec
that works with a lower seismic cutoff and a broader ban
width than LIGO I, since in such cases we will have to mat
the signal’s phase for a larger number of effective cycles

There are several notable and obvious improvements
need to be pursued. The sensitivity to the value ofFLSO
needs to be investigated@in particular, our improved SPA
will probably maximize their overlaps with the real signals
6-31
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DAMOUR, IYER, AND SATHYAPRAKASH PHYSICAL REVIEW D 62 084036
we allow some flexibility in the choice ofFLSO ~within some
limits!#. Once the results of 3PN generation of gravitation
waves are available@49# and are combined with the 3PN
results on the dynamics@41# they must be included in the
construction of templates. In our discussion we have not c
sidered wave forms from binaries with spinning compact
jects, nor have we included the effect of eccentricity@50# on
the detectability@23#. These are unarguably important phys
cal effects that need to be incorporated into later data an
sis algorithms. Future research in this area should shed
on these issues.
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APPENDIX A: LIST OF SYMBOLS

a(t) GW amplitude;h(t)52a(t)cosf(t)
a 5 1

2 vLSO
24/3e1

1/3; Eq. ~4.33!
cspa corrected SPA; Eqs.~3.29a!, ~3.29b!
Cn(t12t2) correlation function of noise
C(z) 1

2 erfc(eip/4z); correction factor; softened ste
function

d leading phase correction to SPA; Eq.~3.9!
h symmetric mass ratio[m1m2 /(m11m2)2

erfc(x) complementary error function; Eq.~3.21!
e1(h)

[F d

dv SE8~v!

F~v ! D G
vLSO

; Eq.~4.15!

E(v) dimensionless energy function

«1 [U ȧ~t!

a~t!ḟ~t!
U; Eq.~3.8!

«2 [U f̈~t!

ḟ2~t!
U5U 1

2p

Ḟ~t!

F2~t!
U5 1

2pN
; Eq.~3.8!

FFT Fast Fourier transform
f domain frequency-domain
f window frequency window
F(t) instantaneous GW frequency
F(v) flux function
Fmin(Fmax) GW frequency attmin(tmax)
FLSO GW frequency at LSO
FNyquist Nyquist frequency
f Fourier frequency
f det characteristic detection frequency; minima

effective GW noiseAf Sn( f )
f p frequency at whichd(SNR2)/d(lnf) peaks
f s seismic frequency
f up transition frequency between the low- an

high-frequency approximations for the IRSPA
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g3/2(x) [*0
`dt̂ei (3xt̂22t̂3/2); Eq. ~4.32!

GW Gravitational wave
G Gamma function
hs

2( f ) squared amplitude of effective GW signa
[N( f )a2( f )

hn
2( f ) squared amplitude of effective GW nois

[ f Sn( f )
h(t) time domain signal

h̃( f ) Fourier transform of h(t); h̃( f )
[*2`

` dte2p i f th(t)

h̃1( f ) Fourier transform of nonresonant part ofh(t)

h̃2( f ) Fourier transform of resonant part ofh(t)
h2

inspa( f ) improved Newtonian SPA corresponding

h̃2( f ); Eqs.~3.27!, ~3.31a!
h1

edge( f ) edge approximation toh̃1( f ); Eq. ~3.18b!
hintot( f ) 5h1

edge1h2
inspa: total improved Newtonian SPA

of h(t)
h2

irspa( f ) improved relativistic SPA corresponding t

h̃2( f ); Eqs.~4.29a!, ~4.29b!, ~4.35!
hirtot( f ) 5h1

edge1h2
irspa: total relativistic SPA ofh(t)

inspa improved Newtonian SPA
irspa improved relativistic SPA
l (v) factored flux function
m total mass of the binary
M chirp mass[h3/5m
n(t) noise
n1/2(t) whitened noise;[w1/2(t)* n(t)
Ntot total number of cycles; Eq.~2.18!
N(F) instantaneous number of cycles; Eq.~2.19!
Nnew(F) instantaneous number of cycles in Newtoni

case; Eq.~2.26!
Nrel(F) instantaneous number of cycles in relativis

case; Eq.~2.28!
Nuseful useful number of cycles; Eq.~2.24!
O overlap ~normalized ambiguity function!; Eq.

~2.8!
f(t) GW phase
Pn P approximant of ordervn

r signal to noise ratio
SPA stationary phase approximation
Sn( f ) two-sided noise power spectral density
s( f ) weight function inr2; Eq. ~2.34!
s(t,z1 ,z2) smoothing time window; Eq.~3.35!
tmin starting time of the signal
tmax time at which the signal terminates or is term

nated
Tn Taylor approximant of ordervn

t
tLSO2t

m
u Heaviside step function
uspa usual SPA
uspaw usual SPA frequency windowed
uspan usual SPA up to Nyquist frequency
v invariant velocity (pmF)1/3

vM invariant velocity (pMF)1/3
6-32
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w( f ) weight factor
a2( f )

hn
2( f )

w1(t) correlation inverse of noise correlation fun
tion; Eq. ~2.3!

w1/2(t) whitening kernel; Eq.~2.10!

x 5
2p

am(FLSO2 f ); Eq. ~4.34!
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z0( f ) ApḞ~ t f !~ t f2tmax!; Eq.~3.29b!

z,( f ) 52Ac f~ t f !2c f~ tmax!; Eq.~3.26!

z.( f ) 5
Ap~ f 2Fmax!

AḞ~ tmax!
; Eq.~3.31b!
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