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Padéapproximants for truncated post-Newtonian neutron star models
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Padéapproximants to truncated post-Newtonian neutron star models are constructed. The Pade´ models
converge faster to the general relativistic~GR! solution than the truncated post-Newtonian ones. The evolution
of initial data using the Pade´ models approximates better the evolution of full GR initial data than the truncated
Taylor models. In the absence of full GR initial data~e.g., for neutron star binaries or black hole binary
systems!, Pade´ initial data could be a better option than the straightforward truncated post-Newtonian~Taylor!
initial data.

PACS number~s!: 04.25.Nx, 04.25.Dm, 04.40.Dg
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I. INTRODUCTION

Compact binary systems of neutron stars and black h
inspiralling under gravitational radiation reaction are one
the most promising sources of gravitational waves for ki
meter arms length interferometric gravitational wave det
tors such as the Laser Interferometric Gravitational Wa
Observatory~LIGO! and VIRGO. The inspiral phase is be
described by a post-Newtonian approximation which sho
eventually break down and the final merger and coalesce
may be only accessible via numerical integration of E
stein’s equations. A major obstacle in the numerical stud
of such systems is the non-availability of physically satisf
tory initial data. Given the constraints on computational
sources, one would like to start the numerical integration
close as possible to the final coalescence phase, using
initial data obtained by matching on to the known analyti
results of inspiral. One of the suggestions in this direction
to use the analytical post-Newtonian results of inspiral
provide initial data~e.g. @1,2#! for the numerical integration
of the fully general relativistic system.

Before attempting to apply the above strategy to the co
plicated compact binary system, as a preliminary step, S
kai @3# has constructed a single neutron star model using
post-Newtonian approach and concluded that the trunc
second order post-Newtonian approximation is close eno
to describe a general relativistic single star. The trunca
post-Newtonian series used above is essentially a Taylor
pansion in the three small parametersA5p/(r tc

2), B
54ppr3/(mc2) and C52Gm/(rc2) where p is the pres-
sure,r t , the total energy density of the system,r the radial
coordinate, andm(r ) the mass contained in a sphere of rad
coordinater. We shall refer to the post-Newtonian truncat
models alternatively asTaylor models. Recently, in a related
context of gravitational wave phasing, the slow converge
of straightforward Taylor approximants has been critica
investigated@4,5#. It was shown that new approximants, wi
much improved convergence properties, may be constru
for gravitational wave data analysis applications using, as
important tool, Pade´ techniques to estimate the relevant fun
tions from only the first few terms in their perturbative po
Newtonian expansion. This approach has been systemati
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extended in a series of publications@6,7# and most recently
has been used to go beyond the adiabatic approximatio
inspiral and provide an analysis of the transition from t
inspiral to the plunge in binary black hole coalescences@2#.
This work also provides for the first time initial dynamic
data~positions and momenta! for binary black holes starting
to plunge, so that there is less than an orbit left to evolve
view of this experience, in this report, we construct Pa´
approximants to the truncated post-Newtonian~Taylor! neu-
tron star models discussed by Shinkai@3# and investigate
their performance. We show that the Pade´ models are better
than the truncated post-Newtonian~PN! models and con-
verge faster to the exact general relativistic solution. Furth
we also show that the evolution of a general relativis
~single! star is described much better by Pade´ initial data as
compared to the truncated Taylor initial data of the sa
order.

In the next section we discuss the Tolman-Oppenheim
Volkov ~TOV! equation and the truncated post-Newtoni
models. In Sec. III we introduce the standard Pade´ approxi-
mant, discuss its applicability to the present problem, a
adapt it to construct an appropriate generalization for
case of 3-small parameters. Pade´ models corresponding to
the ‘‘Taylor’’ truncated models are constructed. In the la
section we discuss the results and summarize our con
sions. The Appendix lists the more involved formulas for t
3PN Pade´ models.

II. TOV EQUATION AND TRUNCATED
POST-NEWTONIAN „TAYLOR …

NEUTRON STAR MODELS

In general relativity the metric of a spherically symmetr
static star can be written as

ds252e2n(r )dt21e2l(r )dr21r 2~du21r 2sin2udf2!,
~2.1!

and the equations of hydrostatic equilibrium—the Tolma
Oppenheimer-Volkoff~TOV! equations—obtained~in ge-
ometrized units:G5c5M (51) from the Einstein field
equations, for a given fluid distribution specified by an ad
batic equation of statep5p(r t), are given by
©2000 The American Physical Society38-1
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dm

dr
54pr 2r t , ~2.2!

dp

dr
52

mr t

r 2 S 11
p

r t
D S 11

4ppr3

m D S 12
2m

r D 21

,

~2.3!

dn

dr
5

m

r 2 S 11
4ppr3

m D S 12
2m

r D 21

. ~2.4!

m is given in terms of metric componentl as

e2l5S 12
2m

r D 21

. ~2.5!

The above set of equations are integrated from the ce
(r 50) to the boundary of the star, with the initial condition
m(r 50)50; r t(r 50)5r tc

and n(r 50)5nc . nc is res-
caled appropriately such that it matches with the exte
Schwarzschild solution at the boundary. The radius of
star, R, is characterized as the radius where densityr t(r
5R) drops to 106 gm/cc@approximatelyO(10210) in geom-
etrized units#.

Schematically, Eqs.~2.3! and ~2.4! can be written as

dp

dr
52

mr t

r 2
~11A!~11B!~12C!21, ~2.6!

dn

dr
5

m

r 2
~11B!~12C!21. ~2.7!

Assuming thatA, B andC are of comparable orders of sma
ness and making a Taylor series expansion inA, B, and C
around the origin, the above equations to third po
Newtonian order then yield

~2.8!

~2.9!

where the post-Newtonian order of the relevant terms is
dicated by the PN label under the braces. These equa
describe the truncated post-Newtonian model@3#. Before
proceeding ahead, we must verify that the above trunca
is consistent and meaningful in the present problem of n
tron stars. For a range of models, we evaluate the succe
combinations that appear in Eqs.~2.8! and ~2.9!, using the
exact TOV equations. Figure 1 shows the combinations
pearing in Eq.~2.8! for two such models with an equation o
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state of intermediate stiffness, one which is very close to
maximum mass limit and another, a little further down t
stable branch. From the figure it is clear that numerically
successive combinations are perturbatively smaller to
consistently denoted as 1PN, 2PN and 3PN contribution

III. PADÉ APPROXIMANTS TO THE TRUNCATED
POST-NEWTONIAN „TAYLOR … MODELS

Given a Taylor series of ordern in one expansion param
eterx

Sn~x!511a1x1•••1anxn, ~3.1!

its Pade´ approximant is the ratio of rational functions,

Pk
m~x!5

Nm~x!

Dk~x!
, ~3.2!

satisfying the condition

Tn@Pk
m~x!#[Sn~x!; k1m5n. ~3.3!

In the above,Nm andDk are polynomials inx of orderm and
k respectively andTn denotes the operation of expanding
function in Taylor series up to ordern.

A convenient choice of Pade´ approximants is its diagona
~or nearly diagonal! continued fraction form@8# i.e., Pm

m

whenn52m ~even! and Pm11
m whenn52m11 ~odd!. For

instance,

FIG. 1. Post-Newtonian coefficients appearing in Eq.~2.8! as a
function of the radial distance~in units of km!. The models are for
a polytropic equation of state with intermediate stiffness (G52)
with the central densityrc5831014 g/cm3 @panel ~a!# and 1.85
31015 g/cm3 @panel~b!#. The latter is a model which is very clos
to the maximum mass limit.
8-2
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FIG. 2. ParametersA,B,C and the ratios of parametersA/B,C/B as a function of radial distance. From the panels~c! and~d!, we see the
weak dependence of the ratioC/B on r ~the radial distance!, thoughA/B is almost constant all through, except near the surface.
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c0

11
c1x

11
c2x

11c3x

, ~3.4!

where theci ’s are determined in terms of the Taylor coef
cientsai by

c051, c152a1 , c25
a1

22a2

a1
, c35

a1a32a2
2

a1~a1
22a2!

.

~3.5!

To construct the Pade´ approximant of the truncated pos
Newtonian models discussed in the previous section,
must proceed carefully. In the problem under discussion
general, there are three independent small parametersA, B,
C, of the same order of smallness. Given this system of
proximate differential equations containing three indep
dent small parameters, can we construct an associated́
like approximation with faster and improved convergenc
Assume for a moment, that sinceA, B, C are of the same
order of smallness, we decide to use as the variable of
pansion the parameterB that takes the maximum value in th
entire range of integration. The first order Taylor termA
1B1C would be rewritten asB(11A/B1C/B). If we treat
only B as the independent variable then its associated c
ficient would be 11A/B1C/B. If A/B andC/B have only a
weak dependence onr, we can indeed use a simpler Pa´
form with only one variable and this should suffice. We c
04403
e
in

p-
-

ade
?

x-

f-

l

this the one parameter Pade´ form for the TOV equations. In
this case, the relevant equations at 2PN are the followin1

dm

dr
54pr 2r t , ~3.6a!

dp

dr
52

mr t

r 2

1

F2
, ~3.6b!

dn

dr
5

m

r 2

1

G2
, ~3.6c!

where

F25
A1B1C2AB2BC2CA2C2

A1B1C1A21AB1CA1B21BC
, ~3.6d!

and

G25
B1C2BC2C2

B1C1B21BC
. ~3.6e!

~The more involved equations2 at 3PN are listed in the Ap-
pendix.! To examine more quantitatively the validity of th
above treatment, we consider, as before, a few models

1Identical equations obtain if one uses any ofA, B or C as the
expansion parameter. It is also equivalent to introducing by han
small parameter say« in terms of which we~Taylor or Pade´! ex-
pand, treating as coefficients the associatedA,B,C dependence.

2The explicit forms ofF2 ,G2 and the corresponding 3PN forms i
the Appendix are exibited for analytical completeness. In our
merical computation however, we directly substitute Eqs.~3.4! and
~3.5! in Eqs.~3.6b! and ~3.6c!.
8-3
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compute the values ofA, B andC and the associated ratios o
A/B andC/B. The results are displayed in Fig. 2. From t
figure it is clear, that as required,A, B, C are approximately
of the same order of smallness. However, if one looks at
ratio of C/B, one finds that there is a regime where t
r-dependence is not very weak. Consequently, we are w
of using only the usual straightforward one parameter P´
form discussed above and proceed as follows. We gener
the usual construction for the one parameter Pade´ to the situ-
ation where there exist, not one, but three small parame
The advantage of usinga three parameter form is that its ‘
efficients’’ are pure numbers with no explic
‘‘ r -dependence.’’ By treatingA, B, C as independent vari
ables, we avoid the explicit issue of the ‘‘wea
r-dependence’’ of the associated coefficients.3

To this end, we start with the most general second or
post-Newtonian accurate polynomial in three small para
etersA, B andC as

T2511tAA1tBB1tCC1tAAA21tBBB2

1tCCC21tABAB1tBCBC1tCACA. ~3.7!

The associated Pade´ approximant in continued fraction form
may be chosen as

P1
15

1

F2
, ~3.8!

where

F2511
p1A

11p11A1p12B1p13C
1

p2B

11p21A1p22B1p23C

1
p3C

11p31A1p32B1p33C
. ~3.9!

By matching coefficients of the Taylor expansion ofP1
1, Eq.

~3.8!, andT2, Eq. ~3.7!, the three coefficientsp1 , p2 andp3
are uniquely determined as

p152tA ; p252tB ; p352tC . ~3.10!

The remaining nine coefficientspi j , where i , j 51,2,3, are
not uniquely determined; they are solutions to the followi
~under-determined! system of six equations:

tA~ tA2p11!5tAA , ~3.11a!

tB~ tB2p22!5tBB , ~3.11b!

tC~ tC2p33!5tCC , ~3.11c!

tAp121tBp2152tAtB2tAB , ~3.11d!

tBp231tCp3252tBtC2tBC , ~3.11e!

3Indeed, one cannot relax this requirement in our three param
construction either; however, this is only implicit in the fact thatA,
B, C are of the same order of smallness.
04403
e

ry
e

ize

rs.
-

er
-

tCp311tAp1352tCtA2tCA . ~3.11f!

If tAÞ0, tBÞ0, tCÞ0, p11, p22 and p33, can also be
uniquely determined using Eqs.~3.11a!, ~3.11b! and~3.11c!,
respectively. We have

p115
tA
22tAA

tA
, ~3.12a!

p225
tB
22tBB

tB
, ~3.12b!

p335
tC
2 2tCC

tC
. ~3.12c!

The remaining six non-diagonal terms cannot be uniqu
determined from the remaining three equations Eq.~3.11d!–
~3.11f! without further input. The natural requirement that a
Padécoefficientspi j contributing to a particular Taylor term
contribute equally, leads one to the following symme
choice:

p125p21, p235p32, p135p31. ~3.13!

One can then uniquely determine all the required coefficie
and finally obtain

p125p215
2tAtB2tAB

tA1tB
, if tA1tBÞ0, ~3.14a!

p235p325
2tBtC2tBC

tB1tC
, if tB1tCÞ0, ~3.14b!

p315p135
2tCtA2tCA

tC1tA
, if tC1tAÞ0. ~3.14c!

Since the form of Eq.~2.8! is equivalent to Eq.~3.7! and Eq.
~2.7! has a less general form containing only 2-parameterB
and C, the second order Pade´ approximant to the secon
order truncated TOV equations may be written as

dm

dr
54pr 2r t , ~3.15!

dp

dr
52

mr t

r 2

1

F2
, ~3.16!

dn

dr
5

m

r 2

1

G2
, ~3.17!

whereF2 is given by Eq.~3.9! and G2 is obtained by sub-
stituting A50 in F2 . A comparison of Eqs.~2.8! and ~3.7!
yields

tA5tB5tC5tAB5tBC5tCA5tCC51, ~3.18a!

tBB5tAA50, ~3.18b!

ter
8-4
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FIG. 3. A comparison of the two different Pade´ aprroximants constructed here: the one parameter Pade´ in panels~d!–~f! and three
parameter Pade´ in panels~a!–~c!. It is clear that in the stable region both models give very similar results.
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so that thepi j @Eqs.~3.12a!–~3.12c! and ~3.14a!-~3.14c!# in
this case become

p115p2251, p3350, ~3.19a!

p125p235p135
1

2
. ~3.19b!

FIG. 4. Total mass~in units of M () as a function of centra
density (rc) ~in units of g/cm3) for three values ofG. Displayed
here and in all subsequent figures are the one parameter Pade´ mod-
els. The three parameter Pade´ models also give very similiar results
Padéapproximants do extremely well as compared to Taylor tr
cated models up to maximum mass limit, i.e., for all the stable T
models~models to the left of the first extrema!. For the behavior in
the region beyond this extremum, see the discussion in Sec. IV
04403
The associated forms ofF2 andG2 are finally given by

F2512
A

11A1
B1C

2

2
B

11B1
A1C

2

2
C

11
A1B

2

,

~3.20!

G2512
B

11B1
C

2

2
C

11
B

2

. ~3.21!

Equations~3.20! and ~3.21! define the three parameter 2P
Padémodel associated with the 2PN truncated model d
cussed in@3#. The 3PN three parameter Pade´ model may be
similarly obtained but since the expressions are lengthier,
list them in the Appendix together with the one parame
3PN Pade´ model.

IV. RESULTS AND DISCUSSION

We consider the polytropic equation of statep5KrG

choosing the same models as studied by Shinkai@3#, i.e., G
55/3, 2 and 3 withK ~the polytropic constant! 54.35, 102

and 105, respectively. Before presenting the final results,
have compared the performance of the one parameter P´
models with three parameter Pade´ models and display in Fig
3 a typical comparison. From the figure it is clear that bo
models yield similar numerical performance and the diff
ence, if any, appears in the region where anyway these m
els are not recommended. Consequently, all our Figs. refe
the one parameter Pade´ models though we have verified tha
the three parameter Pade´ models also yield similar results.

In Fig. 4, we plot mass~in solar mass units! as a function
of central density. The different curves represent the ex
TOV, the 2PN and 3PN truncated~Taylor! models~hence-
forth 2-Taylor, 3-Taylor etc.; for more details, see@3#! and
our new Pade´ approximated models. We do not plot curv
corresponding to 1PN truncated Taylor and the associa

-

8-5
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FIG. 5. Total mass (M ( units! as a function of radius~km! for the intermediate value ofG discussed in Fig. 4, i.e.,G52. The deviation
of the 3-Pade´ curve with respect to the GR curve for smaller radii models correspond to models~with high values of the central density! that
fall in the unstable branch of the mass-central density curves. Pade´ models should not be used beyond the maximum mass limit.
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first order Pade´ model as they are very far away from th
exact GR curve and thus evidently inadequate. It is v
clear from the figure that for all models to the left of th
~first! maximum, which represents the stable branch of
mass-density curve, the Pade´ models do extremely well a
compared to Taylor models. In this regime the third ord
Padé~now onwards 3-Pade´! curve~dashed line! is very close
to the exact GR curve~solid line!. The 2-Pade´ ~long-dashed
04403
y
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line! curve is not only better compared to the 2-Taylor o
~dot-dashed! but even far better than the 3-Taylor curve~dot-
ted line!. In the unstable branch i.e., to the right to the ma
mum, the Pade´ approximation starts becoming bad. This fe
ture is more severe when the stiffness of the conside
equation of state and the order of the Pade´ approximants are
higher4 ~Figs. 4b and 4c!. However, the stable branch is ap
proximated well by Pade´ models even for a very stiff equa
1PN
e

FIG. 6. The exponentn of metric componentgtt at r 50 as a function of central density.

4While computing the PN coefficients in Eq.~2.8! for the models which fall in the unstable branch, we notice that the values for the
terms become even greater than one, indicating that neither the Taylor truncation nor the Pade´ expansion is reliable in this region. For th
stable branch models these coefficients are always lesser than one as shown in Fig. 1.
8-6



lue
the
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FIG. 7. The evolution of central density for exact TOV, Pade´ models and Taylor truncated TOV initial configurations with the same va
of central densityrc51.2831023 and G52; k5102. The numerical truncation error triggers the dynamical evolution and shows
pulsation which corresponds to the physical pulsation modes of a stable spherically symmetric model.
s

en

d on

n

r-
tion of state (G53, Fig. 4c!, where the approximation break
down near (2.7531015 g/cm3) the maximum mass limit
(1.8531015 g/cm3). Studies of mass-radius curves andnc
~the exponent of the metric componentgtt at the center of the
star! vs central density curves also show a similar dep
04403
-

dence on the stiffness of the chosen equation of state an
the central density. In Fig. 5 and Fig. 6, we plot massvs
radius andnc vs central density curves respectively, for a
equation of state with intermediate stiffnessG52. The de-
viation of the 3-Pade´ solutions from the exact GR ones co
FIG. 8. gtt andgrr over the grid at timet50 ms@~a! and~b!, respectively#. The insets zoom into particular portions of the grid~near the
center forgtt and near the surface forgrr ) to highlight the Pade´ behavior more clearly.~c! and~d! are the same as~a! and~b!, respectively,
but at t510 ms. The model is the same as in Fig. 7.
8-7
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respond to the configurations lying on the unstable branc
The studies of these equilibrium configurations imp

clearly that the stable general relativistic TOV configuratio
are approximated very well by Pade´ models as compared t
Taylor truncated models, even if they do not perform so w
in the unstable branch. To study this further, we next num
cally evolve these five initial configurations—exact TO
2-Pade´, 3-Pade´, 2-Taylor and 3-Taylor truncated models—
time and qualitatively compare their evolution. We use
spherically symmetric general relativistic hydrodynamic
code for this purpose@9#. The code uses polar slicing an
radial gauge. The spacetime is evolved using the Arnow
Deser-Misner~ADM ! formalism and the hydrodynamic evo
lution is based on a high resolution shock capturing@10,11#
scheme. The grid boundary is fixed at about four times
radius of the TOV model. We choose a model with cent
density 1.2831023 ~geometrized units!, G52,k5102 and
then evolve it up to 10 ms~though the code runs for a muc
longer time, 10 ms evolution is sufficient for our analysis!. In
Fig. 7 the evolution of central density using various init
data is displayed. We find that the 3-Pade´ curve follows the
TOV evolution curve very closely. Even the 2-Pade´ evolu-
tion is much better than the 3-Taylor and the 2-Taylor e
lutions. The oscillations in the central density are due to
numerical truncation errors which introduce non-zero rad
velocity. These truncation errors act as the small pertur
tions on a stable spherically symmetric configuration a
give rise to the radial pulsation modes of the system. A F

FIG. 9. The norms of the Hamiltonian constraint equationl `

~maximum value at a given time step! and l̄ 1 ~the average of the
absolute value! as a function of time@~a! and~b!, respectively#. The
model is the same as in Fig. 7.
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rier transform of the density or radial velocity evolution ca
be used to extract these pulsation modes@12# and we hope to
return to this in a subsequent work. In Fig. 8 we plot t
metric componentsgtt andgrr over the grid fort50 ~initial
time! andt510 ms~final time!. To compare the global per
formance of the initial data used~the exact TOV and the
various truncated models!, the norms of the Hamiltonian
constraintsl ` ~maximum value at a given time step! and l̄ 1
~average of the absolute value! are evaluated and shown i
Fig. 9. These figures, once again, confirm the superior p
formance of Pade´ approximants over Taylor approximants
the same order. Though we do not display them, we
similar results for the other stable configurations both
relatively softer and stiffer equations of state. A final com
ment on the models in the unstable branch of the ma
density curve: the truncation errors are enough to trigge
collapse and make the system unstable on a time scal
short that a comparison of various approximations is not p
sible. A more detailed analysis would be needed in this
gard.

To conclude: Detailed studies of equilibrium configur
tions of single neutron stars and their evolution indicate, t
in the stable branch, the second order Pade´ model converges
to the exact general relativistic model even better than
straightforward third order truncated~Taylor! PN model.
Both the simpler one parameter Pade´ form and a more in-
volved three parameter Pade´ form exhibit similar improve-
ment over the Taylor models. The Pade´ models are thus quite
robust and controlled and perform better than the simp
Taylor truncated models. It is better to use initial data o
tained from a Pade´ approximant to the Taylor model tha
initial data from a straightforward post-Newtonian truncat
model of the same order. This feature should be generic
extend to binary neutron stars and black holes@especially
since a useful simplification in a two-body problem is via
reduction to an equivalent one-body problem# and prove use-
ful in numerical studies of such systems in the future.
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APPENDIX

The 3PN truncated model in general has the form

T3511tAA1tBB1tCC1tAAA21tBBB21tCCC21tABAB1tBCBC1tCACA1tAAAA31tBBBB31tCCCC31tABCABC

1tAABA2B1tBBCB2C1tCCAC2A1tABBAB21tBCCBC21tAACA2C. ~A1!
8-8
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The associated 3PN Pade´ may be written as

P35
1

F3
, ~A2a!

where

F3511
p1A

11
p11A

S11
1

p12B

S12
1

p13C

S13

1
p2B

11
p21A

S21
1

p22B

S22
1

p23C

S23

1
p3C

11
p31A

S31
1

p32B

S32
1

p33C

S33

, ~A2b!

whereSi j 511pi j 1A1pi j 2B1pi j 3C, i , j 51 . . . 3. Theanalysis discussed in Sec. III at 2PN may be repeated at 3PN
making the following natural symmetric choice implied by the requirement that all Pade´ coefficients contributing to a par
ticular Taylor term contribute equally:

p1125p1215p211, ~A3a!

p1225p2215p212, ~A3b!

p1135p1315p311, ~A3c!

p1235p1325p2315p2135p3125p321, ~A3d!

p3135p3315p133, ~A3e!

p3225p2325p223, ~A3f!

p3325p2335p323. ~A3g!

The remaining 10 independent 3PN Pade´ coefficients, uniquely determined by 1PN, 2PN and 3PN Taylor coefficients
given by

p1115
2tAA

21tAAAtA

tA~ tA
22tAA!

, ~A4a!

p2225
2tBB

21tBBBtB

tB~ tB
22tBB!

, ~A4b!

p3335
2tCC

21tCCCtC

tC~ tC
2 2tCC!

, ~A4c!

p1125$@2tA
4tB12tB

2tA
31„2tB

31~22tAB12tAA!tB1tAAB…tA
21~22tAAtAB12tAABtB12tB

2tAB!tA22tAAtB
3

1tAABtB
22tAB~2tAA1tAB!tB#%$~ tB1tA!2~2tAtB2tAA2tAB1tA

2!%21, ~A4d!

p1225$@~2tB
222tBB!tA

31~2tBtAB12tB
31tABB!tA

21„2tB
41~2tBB22tAB!tB

2

12tABBtB2tAB~ tAB12tBB!…tA22tABtBBtB1tABBtB
2#%$~ tB1tA!2~ tB

212tAtB2tAB2tBB!%21, ~A4e!

p1135$@2tCtA
412tA

3tC
21„2tC

31~2tAA22tAC!tC1tAAC…tA
2

1~22tAAtAC12tC
2tAC12tAACtC!tA22tAAtC

31tAACtC
22tAC~ tAC12tAA!tC#%

3$~ tA1tC!2~ tA
212tCtA2tAA2tAC!%21, ~A4f!

p1235$@„22tB
2tC1~22tC

222tBC!tB22tBCtC…tA
31„22tCtB

31~2tBC12tAC112tC
2!tB

2

1@22tC
31~2tAB24tBC12tAC!tC1tABC#tB1~2tAB12tBC!tC

21tABCtCtA
21„~22tC

222tAC!tB
3

1@22tC
31~2tAB12tBC24tAC!tC1tABC#tB

21@~2tAC12tBC24tAB!tC
212tABCtC22tAB~ tBC1tAC!#tB
044038-9
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22tC
3tAB1tABCtC

222tAC~ tAB1tBC!tC…tA22tCtB
3tAC1„~2tAC12tAB!tC

21tABCtC…tB
21„22tC

3tAB1tABCtC
2

22tBC~ tAB1tAC!tC…tB#%$~ tA1tC!~ tB1tC!~ tB1tA!~2tAtB12tBtC12tCtA2tAC2tAB2tBC!%21, ~A4g!

p1335$@~22tCC2tC
2!tA

31~2tC
3 12tCtAC1tACC!tA

21„2tC
41~2tCC22tAC!tC

212tACCtC2tAC~2tCC1tAC!…tA1tACCtC
2

22tACtCCtC#%$~ tA1tC!2~2tCtA2tCC2tAC1tC
2!%21, ~A4h!

p2235$@2tCtB
412tB

3tC
21„2tC

31~2tBB22tBC!tC1tBBC…tB
21~22tBBtBC12tC

2tBC12tBBCtC!tB22tBBtC
31tBBCtC

2

2tBC~2tBB1tBC!tC#%$~ tB1tC!2~ tB
212tBtC2tBC2tBB!%21, ~A4i!

p2335$@~22tCC2tC
2 !tB

31~ tBCC12tC
312tBCtC!tB

21„2tC
41~2tCC22tBC!tC

212tBCCtC2tBC~2tCC1tBC!…tB1tBCCtC
2

22tBCtCCtC#%$~ tB1tC!2~2tBtC2tCC1tC
22tBC!%21. ~A4j!

@The above solution obtains if none of the factors in the denominators of the above expressions are vanishing.#
For theF3 associated with the TOV equation at 3PN order, we have

tCCC5tABC5tACC5tBCC51, ~A5a!

tAAA5tBBB5tAAB5tABB5tBBC5tAAC50. ~A5b!

p1115p22250, ~A6a!

p1125p1215p21152
1

8
, ~A6b!

p1225p2215p21252
1

8
, ~A6c!

p1135p1315p31152
1

8
, ~A6d!

p1235p1325p2315p2135p3125p32152
1

6
, ~A6e!

p3135p3315p13352
1

4
, ~A6f!

p3225p2325p22352
1

8
, ~A6g!

p3325p2335p32352
1

4
. ~A6h!

The solution forp333, Eq. ~A4c!, is not applicable, sincetC5tCC51. One finds thatp333 is indeterminate. We choose it to b
zero. The functionF3 andG3 then reduce to

F3512
A

D1
2

B

D2
2

C

D3
, ~A7a!

D1511
A

S 12
~B1C!

8 D 1
B

2S 12
~A1B!

8
2

C

6 D 1
C

2S 12
A

8
2

B

6
2

C

4 D , ~A7b!

D2511
A

2S 12
~A1B!

8
2

C

6 D 1
B

12
~A1C!

8

1
C

2S 12
A

6
2

B

8
2

C

4 D , ~A7c!
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D3511
A

2S 12
A

8
2

B

6
2

C

4 D 1
B

2S 12
A

6
2

B

8
2

C

4 D . ~A7d!

G3512
B

D5
2

C

D6
, ~A8a!

D5[11
B

12
C

8

1
C

2S 12
B

8
2

C

4 D , ~A8b!

D6[11
B

2S 12
B

8
2

C

4 D . ~A8c!

The corresponding one parameter Pade´ approximant at 3PN order on the other hand is given by

F35$A31~11B1C!A21@B21~11C!B1C#A1B31~11C!B21BC%21

3$@B21~C21!B2C11#A21@~C21!B21~22C1C211!B2C21C#A

1~12C!B21~C2C2!B%, ~A9a!

G35
~12C!B21~C2C2!B

B31~11C!B21BC
. ~A9b!
nd
n

.

.
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g-
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A.
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