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Padeapproximants to truncated post-Newtonian neutron star models are constructed. Thendehsie
converge faster to the general relatividi@R) solution than the truncated post-Newtonian ones. The evolution
of initial data using the Padmodels approximates better the evolution of full GR initial data than the truncated
Taylor models. In the absence of full GR initial da@g., for neutron star binaries or black hole binary
systemy, Padeinitial data could be a better option than the straightforward truncated post-Newtdiaigior)
initial data.

PACS numbd(s): 04.25.Nx, 04.25.Dm, 04.40.Dg

I. INTRODUCTION extended in a series of publicatiof$,7] and most recently
has been used to go beyond the adiabatic approximation to
Compact binary systems of neutron stars and black holespiral and provide an analysis of the transition from the
inspiralling under gravitational radiation reaction are one ofinspiral to the plunge in binary black hole coalescer{@s
the most promising sources of gravitational waves for kilo-This work also provides for the first time initial dynamical
meter arms length interferometric gravitational wave detecdata(positions and momentdor binary black holes starting
tors such as the Laser Interferometric Gravitational Waveo plunge, so that there is less than an orbit left to evolve. In
Observatory(LIGO) and VIRGO. The inspiral phase is best view of this experience, in this report, we construct Pade
described by a post-Newtonian approximation which shouldipproximants to the truncated post-Newton{@aylor) neu-
eventually break down and the final merger and coalescendeon star models discussed by Shink&j and investigate
may be only accessible via numerical integration of Ein-their performance. We show that the Padedels are better
stein’s equations. A major obstacle in the numerical studieghan the truncated post-NewtonidRN) models and con-
of such systems is the non-availability of physically satisfac-verge faster to the exact general relativistic solution. Further,
tory initial data. Given the constraints on computational re-we also show that the evolution of a general relativistic
sources, one would like to start the numerical integration a$single) star is described much better by Palitial data as
close as possible to the final coalescence phase, using teémpared to the truncated Taylor initial data of the same
initial data obtained by matching on to the known analyticalorder.
results of inspiral. One of the suggestions in this direction is In the next section we discuss the Tolman-Oppenheimer-
to use the analytical post-Newtonian results of inspiral toVolkov (TOV) equation and the truncated post-Newtonian
provide initial data(e.g.[1,2]) for the numerical integration models. In Sec. Ill we introduce the standard Pagproxi-
of the fully general relativistic system. mant, discuss its applicability to the present problem, and
Before attempting to apply the above strategy to the comadapt it to construct an appropriate generalization for the
plicated compact binary system, as a preliminary step, Shircase of 3-small parameters. Paedels corresponding to
kai [3] has constructed a single neutron star model using ththe “Taylor” truncated models are constructed. In the last
post-Newtonian approach and concluded that the truncategection we discuss the results and summarize our conclu-
second order post-Newtonian approximation is close enougsions. The Appendix lists the more involved formulas for the
to describe a general relativistic single star. The truncate@PN Pademodels.
post-Newtonian series used above is essentially a Taylor ex-

pansion in the three small parameteks=p/(pc?), B [l. TOV EQUATION AND TRUNCATED
=47pr3/(mc®) and C=2Gm/(rc?) wherep is the pres- POST-NEWTONIAN (TAYLOR)
sure,p;, the total energy density of the systemthe radial NEUTRON STAR MODELS

coordinate, andn(r) the mass contained in a sphere of radial
coordinater. We shall refer to the post-Newtonian truncated
models alternatively aaylor modelsRecently, in a related
context of gravitational wave phasing, the slow convergence §g2— _ g2v(Nq24 @2MNgr2+ r2(d6%+r2sit6d ¢2),

of straightforward Taylor approximants has been critically (2.2
investigated4,5]. It was shown that new approximants, with

much improved convergence properties, may be constructezhd the equations of hydrostatic equilibrium—the Tolman-
for gravitational wave data analysis applications using, as a®ppenheimer-Volkoff(TOV) equations—obtainedin ge-
important tool, Padéechniques to estimate the relevant func-ometrized units:G=c=My=1) from the Einstein field
tions from only the first few terms in their perturbative post- equations, for a given fluid distribution specified by an adia-
Newtonian expansion. This approach has been systematicalbatic equation of statp=p(p,), are given by

In general relativity the metric of a spherically symmetric
static star can be written as
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The above set of equations are integrated from the cente i . . | . | ) ]

(r=0) to the boundary of the star, with the initial conditions % 2 4 6 8
m(r=0)=0; pt(I’ZO)Iptc and v(r=0)=w.. v IS res-
caled appropriately such that it matches with the exterior
Schwarzschild solution at the boundary. The radius of the FIG. 1. Post-Newtonian coefficients appearing in E48) as a
star, R, is characterized as the radius where dengitfy function of the radial distanceén units of km. The models are for
=R) drops to 16 gm/cc[approximately®(10 1% in geom- @ polytropic equation of state with intermediate stiffnefs=@)

Radial distance (km)

etrized unit3. with the central density.=8x 10" g/cn?® [panel (a)] and 1.85
Schematically, Eq5(2.3) and (2.4) can be written as X 10 g/cr_n'3 [panel(b)]. The latter is a model which is very close

to the maximum mass limit.

dp mpy 1 ) . . C

ar 7(1+A)(1+ B)(1-C)~ %, (2.6 state of intermediate stiffness, one which is very close to the
maximum mass limit and another, a little further down the
stable branch. From the figure it is clear that numerically the

@: T(1+B)(17C)*1 2.7 successive combinations are perturbatively smaller to be

dr 2 ' ' consistently denoted as 1PN, 2PN and 3PN contributions.

Assuming that, B andC are of comparable orders of small-
ness and making a Taylor series expansiom\iB, andC
around the origin, the above equations to third post-

Ill. PADE APPROXIMANTS TO THE TRUNCATED
POST-NEWTONIAN (TAYLOR ) MODELS

Newtonian order then yield Given a Taylor series of orderin one expansion param-
eterx
b __ D (1 +A+B+C+AB+BC+CA+C>
dr 2 5 S,(X)=1+a;x+---+ax", (3.1
1PN 2PN
FABCHAC +BC 4 C3 4 O(4) - - ) 2.9 its Padeapproximant is the ratio of rational functions,
M N (X
3PN PI(x)= M, (3.2
dv m Dy(x)
—=—(14+B+C+BC+C*+BC*+C*+0(4)---), (2.9
dr ;2 . . y e——

LPN 5PN 3PN satisfying the condition

m — . —
where the post-Newtonian order of the relevant terms is in- Tl PKOO]=S4(x); k+m=n. 33

dicated by the PN label under the braces. These equations

describe the truncated post-Newtonian mofg]. Before Inthe aboveN,, andD, are polynomials irx of orderm and
proceeding ahead, we must verify that the above truncatiok respectively andr, denotes the operation of expanding a
is consistent and meaningful in the present problem of neufunction in Taylor series up to ordex

tron stars. For a range of models, we evaluate the successive A convenient choice of Padgpproximants is its diagonal
combinations that appear in Eq2.8) and (2.9), using the (or nearly diagonal continued fraction form8] i.e., Py
exact TOV equations. Figure 1 shows the combinations apahenn=2m (even and P, , whenn=2m+1 (odd). For
pearing in Eq(2.8) for two such models with an equation of instance,
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FIG. 2. Parameter&,B,C and the ratios of parametef$B,C/B as a function of radial distance. From the parfe)Jsand(d), we see the
weak dependence of the rai@/B onr (the radial distange thoughA/B is almost constant all through, except near the surface.

N Co this the one parameter Paftem for the TOV equations. In
Po=———x (3.4  this case, the relevant equations at 2PN are the following:
1+ —=
14 C2X dm_ 5
1+cgx ar " AT (3.69
d mp; 1
-2 (3.60
where thec;’s are determined in terms of the Taylor coeffi- r 2
cientsa; by
dv ~m1 36
aj—ap a;a;—aj where
C0:1, C]_:_a.l, C2: y 03:2—.
a1 a (aj—ap) - A+B+C—-AB—BC—CA-C? .60
@9 > A+B+C+A2+AB+CA+B2+BC
and
To construct the Padapproximant of the truncated post- B4+ C_BC_C2
Newtonian models discussed in the previous section, we - - = = (3.60

must proceed carefully. In the problem under discussion, in > B+C+B2+BC
general, there are three independent small paramAteBs

C, of the same order of smallness. Given this system of apcThe more involved equatiofist 3PN are listed in the Ap-
proximate differential equations containing three indepenfendix) To examine more quantitatively the validity of the
dent small parameters, can we construct an associated Pa@leove treatment, we consider, as before, a few models and
like approximation with faster and improved convergence?

Assume for a moment, that sinée B, C are of the same

order of smallness, we decide to use as the variable of ex-1gentical equations obtain if one uses any/AfB or C as the
pansion the paramet@rthat takes the maximum value in the expansion parameter. It is also equivalent to introducing by hand a
entire range of integration. The first order Taylor teAn  small parameter say in terms of which we(Taylor or Padg ex-

+ B+ C would be rewritten aB(1+A/B+ C/B). If we treat  pand, treating as coefficients the associatel,C dependence.

only B as the independent variable then its associated coef-2The explicit forms ofF,,G, and the corresponding 3PN forms in
ficient would be % A/B+C/B. If A/IB andC/B have only a  the Appendix are exibited for analytical completeness. In our nu-
weak dependence on we can indeed use a simpler Pademerical computation however, we directly substitute Eg4) and
form with only one variable and this should suffice. We call (3.5) in Egs. (3.6 and(3.60).
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compute the values &, B andC and the associated ratios of tePsittaPiz=2tcta—tca- (3.11h
A/B andC/B. The results are displayed in Fig. 2. From the

figure it is clear, that as required, B, C are approximately If t,#0, tg#0, tc#0, pi11, P2 and ps3, can also be
of the same order of smallness. However, if one looks at theniquely determined using Eq&.113, (3.11h and(3.110,
ratio of C/B, one finds that there is a regime where therespectively. We have

r-dependence is not very weak. Consequently, we are wary

of using only the usual straightforward one parameter Pade tA—taa

form discussed above and proceed as follows. We generalize P11~ thn (3.129
the usual construction for the one parameter Radke situ-

ation where there exist, not one, but three small parameters. t2—tgg

The advantage of usinga three parameter form is that its ““co- p22=t—, (3.12bh
efficients” are pure numbers with no explicit B

“r-dependence.” By treating\, B, C as independent vari- 2
ables, we avoid the explicit issue of the “weak P :tC_tCC (3.129
r-dependence” of the associated coefficiehts. Bt '

To this end, we start with the most general second order o ] ) .
post-Newtonian accurate polynomial in three small param’he remaining six non-diagonal terms cannot be uniquely

etersA, B andC as determined from the remaining three equations Bdl1d—
(3.111 without further input. The natural requirement that all
To=1+tyA+tgB+tcC+tapA%+tggB2 Padecoefficientspij contributing to a particular Taylor term,

) contribute equally, leads one to the following symmetry
+tccCo+tagAB+1tgcBC+1tcACA. B9 choice:

The associated Pad@proximant in continued fraction form

may be chosen as P12=P21, P23=P32, P13=Pas- (3.13

One can then uniquely determine all the required coefficients

Pi:F_Z’ (3.9  and finally obtain
where P1o= p21=%, if ta+tg#0, (3.143
A B
o Tt B prsC T pod P T Po 0 pazz%ﬁ, ity te 0, (3.148
C
ks p31Af;328+ PasC e P31=P13= 2t§ti_ttCA: if tc+ta#0. (3.140
CTtA

By matching coefficients of the Taylor expansionRyf, Eq.
(3.8), andT,, Eq.(3.7), the three coefficientp;, p, andps  Since the form of Eq(2.8) is equivalent to Eq(3.7) and Eq.

are uniquely determined as (2.7 has a less general form containing only 2-parameBers
_ i i - 31 and C, the second order Padgpproximant to the second
Pa==tas P2=~1e, Ps=~lc- (310 5rder truncated TOV equations may be written as
The remaining nine coefficients;;, wherei,j=1,2,3, are dm
not uniquely determined; they are solutions to the following —=47r%p,, (3.15
(under-determinedsystem of six equations: dr
ta(ta—P11) =taa, (3.113 dp mp; 1
-z B (3.19
ta(ts— P22) =tae, (3.11b T
te(te— =tcc, 3.11 dv m 1
c(tc=Ps3) =tcc ( 0 L 3.17
dr 2 G,
taP12TtgP21=2tAtg— tag, (3.119
_ whereF, is given by Eq.(3.9) and G, is obtained by sub-
taP23+tcP3a=2tgtc—tac, (3.119 stituting A=0 in F, . A comparison of Egs(2.8) and (3.7)
yields
%Indeed, one cannot relax this requirement in our three parameter  ta=tg=tc=tag=tgc=tca=tcc=1, (3.183
construction either; however, this is only implicit in the fact that
B, C are of the same order of smallness. tgg=tan=0, (3.18h
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FIG. 3. A comparison of the two different Pad@rroximants constructed here: the one parameter Paganels(d)—(f) and three
parameter Pad@ panels(a)—(c). It is clear that in the stable region both models give very similar results.

so that thep;; [Egs.(3.129—(3.129 and(3.143-(3.140] in
this case become

08
0.6
0.4
0.2

1.5

Mass (in units of solar mass)

P11=pP2=1, p33=0,

o _1
P12=P23= P13~ 2

(3.193

(3.199

©Ir=3

— Exact
2-Taylor
3-Taylor
-—— 2-Padé
---- 3-Padé

Central density (g/cms)

FIG. 4. Total masgin units of Mg) as a function of central
density ) (in units of g/cn) for three values of. Displayed

here and in all subsequent figures are the one parametemiatie ] .
els. The three parameter Padedels also give very similiar results. Of central density. The different curves represent the exact
Padeapproximants do extremely well as compared to Taylor trun-TOV, the 2PN and 3PN truncatg@aylor) models(hence-
cated models up to maximum mass limit, i.e., for all the stable TOVforth 2-Taylor, 3-Taylor etc.; for more details, sg&) and
models(models to the left of the first extremdaror the behavior in
the region beyond this extremum, see the discussion in Sec. IV. corresponding to 1PN truncated Taylor and the associated

The associated forms &f, and G, are finally given by

A B C
Fp=1- B+C A+C ~ A+B’
LHA+ —— 14+B+— 5
(3.20
C
G,=1— c 5 (3.21)
14B+5 145

Equations(3.20 and(3.21) define the three parameter 2PN
Pademodel associated with the 2PN truncated model dis-
cussed if3]. The 3PN three parameter Pauedel may be
similarly obtained but since the expressions are lengthier, we
list them in the Appendix together with the one parameter
3PN Pademodel.

IV. RESULTS AND DISCUSSION

We consider the polytropic equation of stgpe=Kp"
choosing the same models as studied by Shif&hii.e., I"
=5/3, 2 and 3 withK (the polytropic constant=4.35, 16
and 10, respectively. Before presenting the final results, we
have compared the performance of the one parameter Pade
models with three parameter Padedels and display in Fig.

3 a typical comparison. From the figure it is clear that both
models yield similar numerical performance and the differ-
ence, if any, appears in the region where anyway these mod-
els are not recommended. Consequently, all our Figs. refer to
the one parameter Padeodels though we have verified that
the three parameter Padedels also yield similar results.

In Fig. 4, we plot massin solar mass unijsas a function

our new Padepproximated models. We do not plot curves
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FIG. 5. Total massNl o units) as a function of radiugkm) for the intermediate value df discussed in Fig. 4, i.el;=2. The deviation
of the 3-Padeurve with respect to the GR curve for smaller radii models correspond to m@dtishigh values of the central densjtihat
fall in the unstable branch of the mass-central density curves. iadels should not be used beyond the maximum mass limit.

first order Pademodel as they are very far away from the line) curve is not only better compared to the 2-Taylor one
exact GR curve and thus evidently inadequate. It is verydot-dashegbut even far better than the 3-Taylor curdet-
clear from the figure that for all models to the left of the ted line. In the unstable branch i.e., to the right to the maxi-
(first) maximum, which represents the stable branch of thenum, the Padapproximation starts becoming bad. This fea-
mass-density curve, the Padedels do extremely well as ture is more severe when the stiffness of the considered
compared to Taylor models. In this regime the third orderequation of state and the order of the Pageroximants are
Pade(now onwards 3-Padeurve(dashed lingis very close  highef (Figs. 4b and 4c However, the stable branch is ap-
to the exact GR curvésolid line). The 2-Paddlong-dashed proximated well by Padenodels even for a very stiff equa-

0 T T LI B B B B B T T T T T T 17T

— Exact
----- 2-Taylor
~~~~~~~ 3-Taylor
--- 2-Padé
---- 3-Padé

10 10 10
Central density (g/cm3)

FIG. 6. The exponent of metric componeng,; atr=0 as a function of central density.

“While computing the PN coefficients in E(.8) for the models which fall in the unstable branch, we notice that the values for the 1PN
terms become even greater than one, indicating that neither the Taylor truncation nor trexPamion is reliable in this region. For the
stable branch models these coefficients are always lesser than one as shown in Fig. 1.
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FIG. 7. The evolution of central density for exact TOV, Padadels and Taylor truncated TOV initial configurations with the same value
of central densityp,=1.28x10 % andI'=2; k=10?. The numerical truncation error triggers the dynamical evolution and shows the
pulsation which corresponds to the physical pulsation modes of a stable spherically symmetric model.

tion of state {'=3, Fig. 49, where the approximation breaks dence on the stiffness of the chosen equation of state and on
down near (2.7%10' g/cn?) the maximum mass limit the central density. In Fig. 5 and Fig. 6, we plot mass
(1.85x10% g/cn?). Studies of mass-radius curves and  radius andy, vs central density curves respectively, for an
(the exponent of the metric componept at the center of the equation of state with intermediate stiffnelss=2. The de-

sta) vs central density curves also show a similar depen~viation of the 3-Padsolutions from the exact GR ones cor-

r (km) r (km)

— Exact
----- 2-Taylor
------- 3-Taylor
——- 2-Padé
---- 3-Padé

gﬂ

—1038

N3

0 10 20 30 0 10 20 30
r (km) r (km)

FIG. 8. g;; andg,, over the grid at timeé=0 ms[(a) and(b), respectively. The insets zoom into

particular portions of the gmnear the

center forg,, and near the surface fagy,) to highlight the Padéehavior more clearly(c) and(d) are the same a®) and(b), respectively,

but att=10 ms. The model is the same as in Fig. 7.
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025 - I - | - T - ; rier transform of the density or radial velocity evolution can
N gf%z;lor r=2k=10° be used to gxtract these pulsation mofde gnd we hope to
L 3-Taylor ' return to this in a subsequent work. In Fig. 8 we plot the
0.15 |- |--- 2-Padé - metric componentg,; andg,, over the grid fort=0 (initial

- 3-Pade L 1 time) andt=10 ms(final time). To compare the global per-
L formance of the initial data usedhe exact TOV and the

,,,,,,,,,, > various truncated modglsthe norms of the Hamiltonian

constraintd ., (maximum value at a given time stegnd | ;
(average of the absolute vajuare evaluated and shown in
Fig. 9. These figures, once again, confirm the superior per-
formance of Padapproximants over Taylor approximants of
the same order. Though we do not display them, we get
similar results for the other stable configurations both for
relatively softer and stiffer equations of state. A final com-
ment on the models in the unstable branch of the mass-
density curve: the truncation errors are enough to trigger a

0 . ' ' ' - ' . collapse and make the system unstable on a time scale so
0 500 1000 1500 2000 . . o .
short that a comparison of various approximations is not pos-
Time (in units of 0.005 ms) sible. A more detailed analysis would be needed in this re-
gard.

FIG. 9. The norms of the Hamiltonian constraint equatign
(maximum value at a given time stepnd |, (the average of the
absolute valugeas a function of timé(a) and(b), respectively. The
model is the same as in Fig. 7.

To conclude: Detailed studies of equilibrium configura-
tions of single neutron stars and their evolution indicate, that
in the stable branch, the second order Paxdelel converges
to the exact general relativistic model even better than the
respond to the configurations lying on the unstable branch.straightforward third order truncate(Taylor) PN model.

The studies of these equilibrium configurations imply Both the simpler one parameter Paiem and a more in-
clearly that the stable general relativistic TOV configurationsvolved three parameter Padigrm exhibit similar improve-
are approximated very well by Padeodels as compared to ment over the Taylor models. The Padedels are thus quite
Taylor truncated models, even if they do not perform so wellrobust and controlled and perform better than the simpler
in the unstable branch. To study this further, we next numeriTaylor truncated models. It is better to use initial data ob-
cally evolve these five initial configurations—exact TOV, tained from a Pad@pproximant to the Taylor model than
2-Pade 3-Pade 2-Taylor and 3-Taylor truncated models—in initial data from a straightforward post-Newtonian truncated
time and qualitatively compare their evolution. We use amodel of the same order. This feature should be generic and
spherically symmetric general relativistic hydrodynamicalextend to binary neutron stars and black hdlespecially
code for this purpos§9]. The code uses polar slicing and since a useful simplification in a two-body problem is via a
radial gauge. The spacetime is evolved using the Arnowittreduction to an equivalent one-body probleamnd prove use-
Deser-Misne(ADM) formalism and the hydrodynamic evo- ful in numerical studies of such systems in the future.
lution is based on a high resolution shock captufihg,11]

scheme. The grid boundary is fixed at about four times the ACKNOWLEDGMENTS
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APPENDIX
The 3PN truncated model in general has the form
Ta=1+tpA+tgB+tcC+tapA%+1tgpB2+tccCol+tagAB+1tgcBC+teaCA+ taapA3+tppeB3+teccC3+tagABC

+tapgAZB+tggcB2C+tccaC?A+taggAB2+tgccBC2+tancAZC. (A1)
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The associated 3PN Padey be written as

1
P3:_F3' (A2a)
where
p:A p2B psC
Fa=1+ + + \ (A2b)
A B C A B C A B C
1+ P11 n P12 n P13 1+ P21 n P22 n P23 1+ P31 P32 P33

S11 S12 S13 S21 S22 SZ3 S31 S32 S33

where S =1+ p;j1A+p;j2B+p;j3C, i,j=1...3. Theanalysis discussed in Sec. lll at 2PN may be repeated at 3PN after
making the following natural symmetric choice implied by the requirement that all BeeRficients contributing to a par-
ticular Taylor term contribute equally:

P112= P121= P211, (A3a)
P12o= P221= P212, (A3b)
P113= P131= P31, (A3c)
P125= P132= P231= P213= P312= P321, (A3d)
P313= P331= P133; (A3e)
P322= P232= P223; (A3f)
P332= P233= P323- (A3g)

The remaining 10 independent 3PN Paxefficients, uniquely determined by 1PN, 2PN and 3PN Taylor coefficients, are
given by

—tan’ +tanata
Pt ——5 (Ada)
ta(ta—tan)
—tgg’+tapels
P22~ ——%——— (Adb)
ts(t5—tap)
—ted? +teede
Pess=—— 5 -~ . (A4c)
te(te—teo)
Pr12={[ —ta'tg+ 2tataA3 + (—te3+ (— 2tagt 2tan) tg+ tane)ta®+ (— 2tantapT 2tandts T 2tg*tag)ta— 2tants®
+tanete® — tan(2tant tap)ta H(ts + ta) %(2tatg— tan—tap+ta®)} 1 (A4d)
P12o={[(—tg®— 2tgp)ta®+ (2tgtagt 2tg3 + tage)ta”+ (—tg*+ (2tgg— 2tap)ts?
+ 2t ppete — tas(tapT 2tge))ta— 2tastpets + tagetalH(ta +ta) A(tp?+ 2tatg—tag—tep)} 1 (Ade)
Pr13={[ —tcta®+ 2ta3t 2+ (—tc3+ (2tan— 2tad te T tandta”
+(—2taatact 2tc’tact 2tandic)ta— 2tantc® + taadic? — tac(tact 2tantcl}
X{(tat+tc)?(ta%+ 2tcta—tan—tad)} (A4f)

Prog={[ (— 2tg%tc+ (— 2tc?— 2t tg— 2tact)ta’+ (— 2tcty + (2tpet 2tact 12:2) g2
[ = 2t3+ (2tag— Atpet 2tad e+ tapclta + (2tapt 2tpo)tc? Ftapdtcta’+ ((—2tc%— 2tad)ts®

[ =2t + (2tagt 2tge— Atad) tet+ tapclte® + [(2tact 2tgc— 4tap)tc” + 2tapdtc — 2tap(tact tad) Its
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—2t3tapt tapdc?— 2tac(tagt tao)to)ta— 2tetpltact (2tact 2tap)tc? + tapdt)ts® + (— 2t3tap+ tapdc?
—2tgc(tagt tadtotelH(ta+te) (tg+te) (tg+ta) (2tatp+ 2tgtc+ 2tcta—tac—tag—tec)} 4 (Adg)

Pras={[(— 2tcc—tcA a3+ (2t3+ 2tctact tacdta?+ (— te*+ (2tcc— 2tad tc?+ 2tacdic— tac 2tect tac)ta+ tacd c?

—2tactectclH(tatte)?(2tcta—tec—tactted)} 4 (A4h)
Paza={[ —tcte®+ 2tg3t %+ (—tcP+ (2tgg— 2tpo)te + tppdte®+ (— 2tpatpet 2tctpet 2tppdtc) ta— 2tpptc® + tgpdc?
—tgc(2tept tgo)tc]H(tg +te) (tg?+ 2tgtc—tgc—tge)} 1 (Adi)

Poas={[(— 2tcc—tE)te>+ (tscct 2t + 2tadc)ta+ (— te*+ (2tec— 2tad tc? + 2tgedic— tac 2tect teo) s + taed c?
—2tgctectclH(te+te)?(2tgte—tect tc? —tgo) L (A4))

[The above solution obtains if none of the factors in the denominators of the above expressions are vianishing.
For theF 5 associated with the TOV equation at 3PN order, we have

tccc=tasc=tacc=tecc=1, (A5a)

taaa=teee=taas=tase=teec=taac=0. (A5b)

P111= P222=0, (A6a)
1

P112= P121= P211= — 8’ (A6b)
1

P122= P221= P212= — 8 (A6cC)
1

P113=P131= P311= — 8’ (A6d)

1

P123= P132= P231™ P213= P312= P321= — 5’ (AGe)
1

P313= P331= P133™ — R (A6f)
1

P322= P232= P223= — g (ABQ)
1

P332= P233= P323= — 4 (A6h)

The solution forpsss, Eq. (A4c), is not applicable, since-=tcc=1. One finds thaps;;is indeterminate. We choose it to be
zero. The functiorF5; and G; then reduce to

Fo=1 AB C A7
3= D—l D_z D_3 (A7a)
D,=1+ + B + c A7b
v . (B¥O) " [ (A+B) C A B C|’ (ATH)
8 8 6 8 6 4
D,=1 > c AT
2= +2 _(ATB) C +1 (A+C)+2 A B C (ATC)
8 6 8 6 8 4
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Dy=1 A 5 A7d
3 +2 X A B C o1 A B C (A7)
8 6 4 6 8 4
G;=1 8_C A8
3= _D_s_D_e' (A8a)
D=1+ B + c A8b
8 8 4
8 4
The corresponding one parameter Pagproximant at 3PN order on the other hand is given by
F3={A3+(1+B+C)A%2+[B2+(1+C)B+CJA+B3*+(1+C)B?+BC} 1
x{[B2+(C—1)B—C+1]A%?+[(C—1)B?+(—2C+C?+1)B—C2+C]A
+(1-C)B?+(C—-C?B}, (A9a)
(1-C)B?+(C—-C?B
3= (A9b)

B3+(1+C)B%+BC
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