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Effect of Landauer’s blow torch on the equilibration rate in a bistable potential
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The kinetic aspect of Landauer’s blow-torch effect is investigated for a model double-well potential with
localized heating. Using the supersymmetric approach, we derive an approximate analytical expression for the
equilibration rate as a function of the strength, width, and the position of the hot zone, and the barrier height.
We find that the presence of the hot zone enhances the equilibration rate, which is found to be an increasing
function of the strength and width of the hot zone. Our calculations also reveal an intriguing result, namely,
that placing the hot zone away from the top of the potential barrier enhances the rate more than when it is
placed close to it. A physically plausible explanation for this is attempted. The above analytical results are
borne out by detailed numerical solution of the associated Smoluchowski equation for the inhomogeneous
medium.[S1063-651X99)01301-X

PACS numbdps): 05.40.Jc

I. INTRODUCTION thermal activation in a superconducting ring with a weak link
where transitions produce temperature chai@gt Indeed,

In a now influential pap€rl] on the relative stability, i.e., a whole new field of research has emerged centering on the
relative occupation, of the competing local energy minimaidea of the possibility of directed motion out of noisy states
for a system far from equilibrium, Landauer pointed out theunder diverse athermal driving conditions, generically sub-
globally determining role played by the nonequilibrium ki- sumed under “thermal ratchetg13-18, and traceable to
netics of the unstable intermediate states even as these ate original “blow-torch theorem” of Landauer in the sense
very rarely populated. More specifically, for the case of twothat the latter may be viewed as injection of ndi4é].
local energy minima, i.e., a bistable potential, he showed that Most of the investigations based on the blow-torch effect
the application of localized heating at a point on the reactiorstudy the influence of space-dependent temperature on the
coordinate lying between the lower energy minimum and thesteady-state relative occupations of the energy minima. To
potential barrier maximum can raise the relative populatiorthe best of authors’ knowledge, there has been no analytical
of the higher-lying energy minimum over that given by the attempt to study the kinetic aspect of the system, specifically,
thermal Boltzmann factor exp(A E/kgT). This is the so- the calculation of the longest relaxation time in a bistable
called “blow-torch” effect[1] associated with a nonuniform potential in the presence of a blow tor@ot zong. In this
thermal bath. It generalizes the problem of escape of avork, we address this problem and calculate the equilibration
Brownian particle over a potential barrier under the influenceate for a simple bistable potential with the localized heating
of equilibrium thermal fluctuations, studied originally by positioned somewhere in tHenstable intermediate region.
Kramers[2-4)], to the case of nonuniform temperature alongThe associated Smoluchowski equation describing the physi-
the reaction coordinate. Later, in a related context, it hagal situation will be dealt with using the supersymmetric
been shown that a state-dependent diffusion coefficient cafBUSY) approact20-23. In doing so, we have adapted the
produce maxima in the probability distribution at points supersymmetric potential approach normally applicable to
which are not the potential minin{&—7]. the original Kramers barrier-crossing problem to the case

A decade later, van Kampd®] derived an equation ap- when the temperature is nonuniform along the reaction coor-
propriate for the description of diffusion in an inhomoge- dinate.
neous medium where he developed a stochastic treatment for The rest of the paper is organized as follows. Section I
the case of nonuniform temperature. Apart from justifyingcontains a brief introduction to the SUSY method for extract-
Landauer’s conjecture, he also showed that there could beiag the longest relaxation ratge., equilibration ratefrom
net current when the particles are allowed to diffuse backhe Smoluchowski equation for the case in which tempera-
through an alternate route bypassing the hot zone. The proldre is space-dependent. In Sec. lll, applying the SUSY
lem was also treated by Biker around the same tim@]. method to a model double-well potential with a hot zone, we
He showed that a net current is possible, even in the absenobtain a matrix equation determining the equilibration rate.
of an externally applied field, provided both the potential andn Sec. IV, we present an approximate analytical expression
the state-dependent diffusion constant are periodic with abtained from the matrix equation. The latter is also solved
relative phase difference. Later Landaljdf] considered numerically for the sake of comparison. As an independent
this aspect of the problem again in light of van Kampen’scheck for these results, we have solved the Smoluchowski
work. Sinha and MosEL1] have verified Landauer’s conjec- equation numerically and obtained the equilibration rate. The
ture by computer simulation. This has also been applied toesults we obtained from the above three methods for the
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equilibration rate as a function of different parameters char- B(X) x U (%) -
acterizing the hot zone are then discussed. We devote the P(x,t)= Too & —f —dx|e M, 4
final section to summary and conclusions. (%) —=2T(x)

we convert Eq(2) to a Euclidean Schobnger equation

— At —
The Smoluchowski equation describing the kinetics of a Hids=A"AS =B, .. ®)
Brownian particle in an inhomogeneous medium is given byHere,E+:)\/,uT0 and the operatord andA™ are given by

(8]

II. THE METHODOLOGY

POx.) fa+U’(x) AF fa+U’(x) ®
P(x,t) 4 a == tor= ==t o=
A ' - ox  2fTy’ ox 2T
T o mx)(u (P, +— (T(x)P(x,t»”, 0 0
(1) In Eq. (6), the parametef reflects the excess temperature

N ] defined byf=1+s, with s=T,/T,. Thus, for the interval
where the mobility,x, and temperatuteT, are in general  of y oytside the hot zone, the corresponding operators have
space-dependen{We take Boltzmann's constankg=1.) {1 The HamiltoniarH corresponds to the motion of a
Here,P(x,t) is the probability density of finding the particle particle in the potential

at positionx at timet, U(x) describes the potential profile,
and the prime otJ denotes the derivative with respectxo
Some remarks on the use of the Smoluchowski equation, Vi(x)=
Eqg. (1), for the case of an inhomogeneous medium are in
order at this point as the latter has been a subject of someor a high barrier, the longest relaxation rate is determined
debate that still continue$8,10,19,23,2% Landauer has by the smallest nonzero eigenvalig associated with the
argued[10,19 for a generalization of the Smoluchowski first excited state of Eq5). On the other hand, this eigen-
equation where the second term on the right-hand side aftate is degenerate with the ground stafe of the “super-
Eg. (1) is to be replaced by P(x,t)(dT(x)/X)  symmetric partner potential¥_(x) given by
+aT(x)(dP(x,t)/dx). The parameterr was shown to de-
pend on the physical conditions to be imposed across the
temperature discontinuity for no net current. The parameter V_(x)=
a=0.5 corresponds to a particle interacting with the thermal
bath for which the particle velocity is taken to be propor-such that
tional to \T or P(x)=1/{T(x). On the other handg=1
corresponds to the case when particles equilibrate via colli- H_ ¢’ =AA"¢2=E_¢°, 9
sion (pressure equilibrationi.e., P(x)«1/T(x). However, a e
direct derivation based on the phase-space Smoluchowsihere E_=\;/uTo. Thus, the problem of finding the
equation by van Kampen gave E@) corresponding ta equmbratlon rﬁte amoHnts to f[ndlng _the ground—_stgte eigen-
=1. This is also supported by the work of Jayannavar andalue of this “partner” potential. Itis worth pointing out
Mahato[25] based on a microscopic treatment of the thermaft€re that for the temperature profile we use, exeludethe
bath as a set of harmonic oscillators. In our work, we will WO Points whereT (x) is discontinuous. However, following
continue to use Eq1) for purposes of providing a physically he liné of attack used for obtaining the solution of the
valid description of the problem under consideration. Schradinger equation in the presence obgunction poten-
We consider the case in which temperature is spacet-'?‘l* we _deV|se atechnl_que of relating the wave functions on
dependent but the medium is homogeneous so that the m&ither side of these pointsee the Appendix ,
bility, 4, is taken to be constant. A similar assumption of ~Here we would like to mention that the SUSY method is

constaniu has been taken by Sinha and Moss in their work® Powerful analytical method used for simple model poten-
[11]. Then, the corresponding Smoluchowski equation is tials such as th&V potentials. The applicability for calculat-
ing Kramers’ escape rate in\ potential for auniformtem-

perature case has been demonstrated by $ammerf22].
. (20 We found this method to be particularly useful while inves-
tigating the influence of barrier subdivision on the escape
rate, where we have demonstrated the existence of the opti-
mal number of subdivisions that maximizes the escape rate
[26].

UI(X))Z U”(X) (7)

2T(x)] 2T (%)

U/(X))Z U”(X) (8)

2T(x) 2T(x)’

P(xt)  d
g Mox

J
U (x)P(x,t)+§—X(T(x)P(x,t))

The stationary solution of Eq?2) is given by

~C o (xU®X
Pss(x)—_l_(x)ex;{ f_w — dx], 3

where C is the normalization constant. In this work, we  We consider a simple bistable potential in the form of a
choose a simple temperature profile whose valumisstant  symmetricW potential which is piecewise linear having the
both outside and inside the hot zone with=T, and T  same magnitude in slope. It is described by the barrier height
=Ty+Ty, respectively, wherd, is the excess temperature Uy and the distancel?, between the two potential minima
above the constant background vallig. [See Eq.(10).] located atx= =L, on either side of the origifiFig. 1(a)].
Using the transformation The localized hot zone of a certain width is taken to be

Ill. THE MODEL AND ITS SOLUTION
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x=0 the midpoint of the hot zone from the top of the barrier and
the width of the hot zone are defined Hy=d,/L, andw
=wy /Ly, respectively. Henceforth, we use only the scaled
variables. The transfer-matrix method has been used to find
the equation governing the eigenvakye Below, we outline
the procedure leaving the details to the Appendix.

The ground-state wave functio? , is taken to have the

(a) Ux)

e e e om e e e e o 2|_0 R —— by ¢ )
form A,e ¥+ B ek=¥n) |ocated with respect to the
TAT positionsy=y, of each of thed-function potentials and at
(b) T(x) |_| or'e points of discontinuity in the temperature profile. The ampli-
To tudesA, ,B,, andA/ ,B;, on either side of these special points
________________________________ " db"» are shown in Fig. (c). For regions outside the hot zone, the
wave vector is given by
- % je-
(C) V_(X) kO: \/ué—eb, (14)
RypA, Ryih, A 4 A,
. B"TB‘ B’ZEB:I B'°TB° while for within the hot zone it is given by
: v A lAa i !TH!/M |
B, B, U.|2 B’1EB1 ) e,
s > kl_ uy;— 1TS (15

FIG. 1. (a) The W potential(b) temperature profild(x), hav-
ing the hot zone(c) SUSY partner potentialV/_(x). The amplitude#\, andB that appear just on the left side of
the positive 5-function potential located ag=—1 are re-
positioned somewhere between the two potential minimalgted toA, and By, which appear on the right side of the
We assume a simple temperature profile of the followingpositive s-function potential located at=1 through a trans-

form for the heat bath: fer matrix M, such that
_ Cda ) ol g Ve A, A
T(X)=To+Tp| O x—dy+ 2) (X Ao 2” : :M( 0), (16)
(10) By Bo

Here, ®(x) is the Heaviside functioril, is the background The matrixM is the product of successive transfer matrices
(constant temperature, and, is the excess temperature of which are derived in the Appendix. Since we are looking for
the hot zone. The parametedy and wy, specify, respec- a bound state solutiosy,=B,=0. This implies that the 11-
tively, the distance of the midpoint of the hot zone from thematrix element oM must be zero, i.e.,
barrier top and the width of the hot zofkig. 1(b)].

The corresponding supersymmetric “partner” potential Mq;=0, 17
V_(x) with the hot zone is given by

Un 2 the solution of which gives the value ef and, hence, the
—o1) equilibration rate.
Lo

(11

2ug
V_(x)= L—O[ﬁ(x+ Lg) — 8(X)+ 8(Xx—Lg)]+

IV. RESULTS AND DISCUSSION
This relation holds well at all pointsxceptat the two points
of temperature discontinuity. Herejo=Uy/2T, and u;
=up/(1+s). Itis clear that the potentidl _(x) takes a con-
stant value @,/L,)? outside the hot zone anduj/Ly)?
within. Three additional-function potentialgtwo repulsive
and one attractiyeare superposed at different locations as
shown in Fig. 1c). Changing the variableto y=x/L gives
a new dimensionless Hamiltonidn =L3H _ such that

The effect of the hot zone on the equilibration rate for the
given potential is studied in terms of the three parameters
characterizing the hot zoné) the relative degree of hotness
of the hot zone with respect to the rest of the heat bsth,
=T,/Ty, (ii) the scaled width of the hot zone,=w, /L,
and (iii) the scaled distance of the hot zone from the top of
the potential barrierd=d,/Ly. Since the hot zone is in
between the top of the barrier and the right minimum, the

0/ — 0 parametersl andw can only take values between 0 and 1.
h-¢-(¥)=end-(y), (12 On the other hand, the strengtlcan take positive values for
the hot zone and negative valu@geater than—1) for the
cold zone. In addition, for each of these cases we have stud-

V_(y)=2ug[ 8(y+ 1)—5(y)+5(y—1)]+(u0,1)2. ied the influence of the barrier height)=Uy/2T, on the

(13)  equilibration rate.
The change in the equilibration rate due to the presence of
Here, e, is a dimensionless quantity equal t§E_ or  the hot zone is better appreciated in terms of a quantity
equivalentlyLSAl/,uTo. In the scaled form, the position of which we call theenhancement factpf,,, and defined by

whose potential is
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€p T
fb—e—o, (18 0.03+

wheree, stands fore, when there is no hot zones€0). fy,

physically represents the factor by which the equilibration  o.02

rate improves due to the presence of the hot zone.

An expression for the enhancement factor in terms of all
the relevant parameters can be found from @g). By not- 0.01
ing that, for a high barrief, andk; can be expanded about
Up anduy, respectively, we find the enhancement factor to
be approximately given by

Pyt

(= exp(so) cosh{so)
b 1+sexp(so) sinh(o) exp( —2uyd) ’

(19

wherea=wuy/(1+s). Even though this equation gives very  (a)
accurate values comparable to those obtained by numerical
solving Eq.(17), the above equation can be further approxi- 0.01

mated into a more transparent form when the hot zone i
located halfway down the topd& 0.5) and is given by
0.008[
1 S
fb=§ 1+ex;{ 2U0Wm . (20
) ) , ) 0.006
Equation(20) shows that for a given barrier heighg and >
width w, f, increases as the strength of the hot zoge, 8
increases and saturates for large values. In addition, the e™ ¢.004
hancement factof,, has an exponential dependence on both
the widthw of the hot zone and the barrier height. It may
be noted that the above expression has the correct limitin ~ 0.002
behavior as a function of bote—0 andw—0. Equation
(19 shows that the enhancement factgrsaturates as the . . .

blow torch is moved away from the top of the potential bar- 0.2 -1 0 4 1 2
rier. . _ (b) y

As an independent check of the analytical res(Es|.
(19)], we have numerically solved E¢Q) for a given tem- FIG. 2. (8 Time evolution of the probability distribution
perature and potential parameters. Before numerically obP(y,t), towards the steady state for a given temperature. The pa-
taining f,,, we have studied the evolution of the probability rameter values arge=1.0,u,=4, w=0.1, andd=0.5. (b) Very late
distribution towards the steady state. This was done by usingtage probability distribution obtained by numerically integrating
an initial probability distribution sharply peaked around theEq. (2) taken as the steady-state distribution. Note the dip in the
bottom of the right well. A three-dimensional plot of the time probability value at the location of the hot zone shown by an arrow.
evolution of the probability distribution towards the steady
state is shown in Fig. (8. The numerically obtained ary state required for calculating the equilibration rate. For
asymptotic steady-state distribution is shown in Fi¢o)2 this reason, for the numerical works based on E).we
This clearly has a higher population in the left well than thehave limited our calculation ta,=4. Although this value of
right, which in the absence of the hot zone would be sym-, satisfies the high barrier condition, it is on the low side.
metric about the origin. Our numerical results show that this We now consider the influence of the hot zone on the
asymptotic distribution is practically identical with the equilibration rate. We shall refer to the results obtained from
steady-state distributioR.{y) in terms of the scaled vari- the approximate analytic expressipiq. (19)] as analytical
able. results, exact results obtained by numerically solving the root

One direct method of determinintpe long time decay of the equatior{Eq. (17)] as semianalytical results, and the
rate of the probability distribution is to allow the system to results obtained by numerically solving E&) as numerical
evolve for long enough time towards the steady state. At latgesults. Figure 3 shows plots of the enhancement fafgtor
stages when the probability distribution is observed not toversus strength of the blow torahfor various values of the
show any appreciable change, we can calculate the decdarrier heightu, placing the blow torcHof width w=0.1)
rate by plotting thetotal probability on the right well as a midway from the top of the potentiad& 0.5). (The set of
function of time (on Int scalg. However, it must be men- curvesa, b, andc refer to three different values of the barrier
tioned here that for calculating the equilibration rate, a moréheightuy=4, 10, and 15, respectivejyWWe have shown the
efficient way is to take the initial distribution to be a distri- analytical results by a dashed line, the semianalytical results
bution which ismarginally different from the stationary dis- by a continuous line, and the numerical results by filled
tribution [given by Eq.(3)]. Even so, high values afi, circles. (For higher values ofiy, we have shown only the
(~10) take long computer time for the system to reach theanalytical results and semianalytical results, since numerical
near station- results are time consumingAs can be seen from Fig. 3, for

P
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FIG. 5. Plots off, versusd for s=1.0, andw=0.1 for the
values of(a) up=4, (b) uy=10, and(c) u,=15. Dashed lines cor-
respond to the results from E(.9), solid lines correspond to semi-
analytical results, and filled circles to numerical solution.

FIG. 3. Plot off, versuss, for d=0.5, andw=0.1 for the values
of (a) ug=4, (b) uy=10, and(c) uy=15. Dashed lines correspond
to the results from Eq(19), solid lines to the semianalytical
method, and filled circles to numerical solution.

higher values of the barrier height, analytical results are

not distinguishable from the semianalytical results over thdeight,up=4, we see that the analytical results agree well
entire range ok. This clearly reflects the fact that largg ~ With the semianalytical results and the numerical results. Un-
approximation made in obtaining EGL9) holds well. Con- like for small barrier height, for whicli,, saturates slowly,
sider the dependence &f on the width of the hot zonev. for large barrier height$(b) and (c)], f,, saturates quickly
Figure 4 shows plots off, as a function ofw for up=4, 10, and stays nearly constant beyodd-0.2. Here again, the
and 15 labeled bya), (b), and(c), respectively, fos=1 and  analytical results agree very well with the semianalytical re-
keeping the blow torch halfway down the barrier top, i.e.,sults. The above results reveal that the equilibration rate is
d=0.5. As before, folu,=4, where we have numerical re- higher when the hot zone @wvayfrom the barrier top.

sults there is excellent agreement between the numerical re- The above dependence of enhancement fadi)rfor the
sults, and analytical and semianalytical results over the entirgguilibration rate on the position of the blow torci)(
range ofw. For up=10 and 15, semianalytical results are shown in Fig. 5, is intriguing. The enhancement factor is
indistinguishable from the analytical results. Lastly, we con-seen to saturate quicklyo a value greater than unjtgs the
sider the dependence of the enhancement fatforon the 6\ torch moves away from the barrier tdpe., asd in-
position of the hot zone from the barrier tog, Figure 5 o oaq65 heyond,/U,), while it decreases towards unity as
shows plots of, versu§d for uo=_4, 10, and 15 denoted by the blow torch approaches the top of the potential barrier.
(a),(b), and(c), _respt_actwely(keepmg the st_rength of the_hot (Of course, for sufficiently smalll, the hot zone begins to
zones=1 and its widthw=0.1). For relatively low barrier bracket the potential maximum because of finite widTte
above general feature may be physically understood in terms

12 of an argument due to Landadé&7] based on the equilibra-
tion rate, 1#=1/7 +1/7g, for the occupation of the two

0r wells, wherer_ and 7 refer to the time for crossing the
barrier from the left and from the right, respectively. Thus,

8r for a blow torch on the right side of the barrier, we expect
not only 75 to increase as we approach the top of the barrier

In(f,) 6 (asd decreases but alsor; should increase as the particles

crossing the barrier from the left well will be returned back

4l by the blow torch. This might qualitatively explain the result
of d dependence of the enhancement factgr, However,

ol this argument does not enable us to estimate the relative
importance of the two effects, namely, the variationmof

0 and 7 with d. To clarify this point, we have carried out

0 02 04 0.8 0.8 calculation ofr for a highly asymmetric double-well poten-
tial in the limit of a very deep right well. We considered two
cases:(i) when the hot zone is placed to the right of the
FIG. 4. Three plots of , versusw, for d=0.5, ands=1 for the ~ barrier top andii) when it is to the left. This enabled us to
values of(a) uy=4, (b) uy= 10, and(c) u,=15. Dashed lines cor- isolate to a very good approximation thelependence of,
respond to the results from E€L9), solid lines to the semianalyti- and z, respectively, fromr(d). Our finding is that the de-
cal method, and filled circles to numerical solution. crease in the enhancement factok,, fas d decreases is

w
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dominated by the increase @f, althoughr also increases nuity and at points wheré functions are present. First, con-
weakly This is somewhat counterintuitive. sider the phase changes which are simple to evaluate. The
pairs of amplitudes\,,,; andB,,,; at the left end of these
regions(l to IV) are related to those at the right erd, and
B, , through the matrix equation

In summary, we have been able to study the kinetic aspect
of Landauer’s blow-torch theorem using the supersymmetric (An+1)

V. SUMMARY AND CONCLUSIONS

approach and using a simple mod¥lpotential. The choice =P(a)
of the W potential is particularly well adapted to the SUSY
method. Our analysis shows that the rate of equilibration is,,
substantially improved due to the presence of the hot region.

The exact magnitude depends on its strength, its width, its eka o
P(a)z( 0 )

Ag)
: (A1)

Bn+1 B,

location, and also on the barrier height. We have also ob-
tained an approximate analytical expression for the equilibra-
tion rate from transfer matrices derived using the SUSY
method. These results agree well with the results obtained bierea stands for the width of the concerned interval &rid
numerical solution of the associated Smoluchowski equatioreitherk, or k; depending on whether the interval is outside
We expect that the present analysis would be useful irpr within the hot zone.
understanding some problems when local heating is viewed Now, consider relating the amplitudes across the points of
in a more general context of local noise injection. Vieweddiscontinuity in the temperature profile. The probability den-
from this angle, these results are clearly applicable evesity P(y,t) which is related toqsg(y) through the transfor-
when fluctuations are athermal. One example where athermgdation Eq.(4), is a continuous function of the positian-
fluctuations play an important role is the depinning of dislo-¢luding the two points where temperature is discontinuous.
cation segments from obstacles resulting in movement therefore,gbcl(y) on either side of these two points must be
dislocationg 28]. Another example where the present analy-yiscontinuous in such a way thR(y,t) remains continuous.

sis may be useful is the study of kinetics of phase transfory, particular, aty,=d+w/2, using Eq.(3) and using the
mations. In this case, the free energy takes the role of theontinuity Co'nditionP(yf t),=P(yI t), we get

potential and the order parameter takes the role of the reac-
tion coordinate. However, it is worth pointing out that, in d,g(yl—)
general, subjecting a range of order parameter values to ex- qb(i(yl*): —_—
cess heating is not easy since there is no correspondence (1+s)
between the values taken by the order parameter and its I?—i
cation in space. In this context, martensite transformation

offers a promising physical situation in which we are aCtu_integrating the SE equation acrogsand exploiting the con-

ally dealing with the free energy in terms of strain order, ™ A o
parameter. It would be interesting to realize the applicabilityt'nUIty of P(y.t). This leads to the continuity af(TP)/dy.

of the present analysis to some experimental situations. Aty=y,, this implies that
(02(y1)) =(82(y1))', (Ad)
) where the primes denote the spatial derivative. Using Egs.
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APPENDIX 1 [(A+9)kitke (1+5)ki—ko
In this appendix we outline the method of evaluating the M1=2—k1 (1+5)ki—ko (1+S)ky+ko|- (AG)

matrix M that relates the amplitudes,, B}, of ¢° found on

the left side of thes-function potential aty=—1 to the |4 the same way, the two sets of amplitudas,B, and
amplitudesAo, B, found on the right side of thé-function a7 B found on the two sides of the discontinuous tempera-

potential at_y=1. [See Fig. 10).'] . ture profile located at,=d—w/2 are related through the
The region of theW potential has four intervals of con- o4y equation

stant potential/_(x) marked by I, Il, lll, and IV as shown in

Fig. 1(c). In these intervals, only simple phase changes in the A} A,

wave function occur. In contrast, the wave function changes ( = Mz( ) (A7)
in a significant way across regions of temperature disconti- B, B>
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where The same transfer matriM ;. also relates the pairs of ampli-
tudesA,,B, to A,,B, since features arourgi=1 are iden-
1 Kot (1+8)ky ko= (1+8)k tical to those aroungt= — 1. When relating the pairs of am-
M2:2(1+—s)k0 ko— (1+s)k; ko+(1+9s)kq |- plitudesA;,B; to A;,B; corresponding to the two sides of
(A8) the & function located ay=0, we note that the only differ-
ence is that the sign of thé function is negative. Going
We are now left with relating the amplitudes on either sideghrough the same procedure as above, we get the matrix
of the threes-function potentials located gt=—1, 0, and 1.  €guation
At all these threes functions, ¢° is continuous since tem-
perature is continuous. Thus, the pairs of amplitulgsB, A} As
andA},Bg on the right and the left sides of th&function ( ) = ( ) (A12)

located aty=1 are related through Bs Bs

AgtBo=Ao+Bo. (A9)  The transfer matrices .. are given by
Integrating the Euclidean Schiimger equation across this
positive § function with the width of the integration tending 1 KoFUg FuUg
to zero give a second relation between these amplitudes: Mi:k_ Uy KgtUp |- (A13)

ol T +
, , 2uq
AO_BO:_k_O(AO+BO)+A0_BO‘ (AlO)

Using all the transfer matrices relating the successive sets of

These two relations give a matrix equation relating the twc@mplitudes, the matrid is given by
sets of amplitudes:

, w w
Ag 3 (Ao) (ALD) M=M+P(1)MP(d—E)MZP(W)MlP(l—d—E)M+.
B, 1By (A14)
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