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Effect of Landauer’s blow torch on the equilibration rate in a bistable potential
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The kinetic aspect of Landauer’s blow-torch effect is investigated for a model double-well potential with
localized heating. Using the supersymmetric approach, we derive an approximate analytical expression for the
equilibration rate as a function of the strength, width, and the position of the hot zone, and the barrier height.
We find that the presence of the hot zone enhances the equilibration rate, which is found to be an increasing
function of the strength and width of the hot zone. Our calculations also reveal an intriguing result, namely,
that placing the hot zone away from the top of the potential barrier enhances the rate more than when it is
placed close to it. A physically plausible explanation for this is attempted. The above analytical results are
borne out by detailed numerical solution of the associated Smoluchowski equation for the inhomogeneous
medium.@S1063-651X~99!01301-X#

PACS number~s!: 05.40.Jc
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I. INTRODUCTION

In a now influential paper@1# on the relative stability, i.e.
relative occupation, of the competing local energy minim
for a system far from equilibrium, Landauer pointed out t
globally determining role played by the nonequilibrium k
netics of the unstable intermediate states even as thes
very rarely populated. More specifically, for the case of t
local energy minima, i.e., a bistable potential, he showed
the application of localized heating at a point on the react
coordinate lying between the lower energy minimum and
potential barrier maximum can raise the relative populat
of the higher-lying energy minimum over that given by t
thermal Boltzmann factor exp(2D E/kBT). This is the so-
called ‘‘blow-torch’’ effect @1# associated with a nonuniform
thermal bath. It generalizes the problem of escape o
Brownian particle over a potential barrier under the influen
of equilibrium thermal fluctuations, studied originally b
Kramers@2–4#, to the case of nonuniform temperature alo
the reaction coordinate. Later, in a related context, it
been shown that a state-dependent diffusion coefficient
produce maxima in the probability distribution at poin
which are not the potential minima@5–7#.

A decade later, van Kampen@8# derived an equation ap
propriate for the description of diffusion in an inhomog
neous medium where he developed a stochastic treatmen
the case of nonuniform temperature. Apart from justifyi
Landauer’s conjecture, he also showed that there could
net current when the particles are allowed to diffuse b
through an alternate route bypassing the hot zone. The p
lem was also treated by Bu¨ttiker around the same time@9#.
He showed that a net current is possible, even in the abs
of an externally applied field, provided both the potential a
the state-dependent diffusion constant are periodic wit
relative phase difference. Later Landauer@10# considered
this aspect of the problem again in light of van Kampe
work. Sinha and Moss@11# have verified Landauer’s conjec
ture by computer simulation. This has also been applied
PRE 591063-651X/99/59~1!/143~7!/$15.00
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thermal activation in a superconducting ring with a weak li
where transitions produce temperature changes@12#. Indeed,
a whole new field of research has emerged centering on
idea of the possibility of directed motion out of noisy stat
under diverse athermal driving conditions, generically su
sumed under ‘‘thermal ratchets’’@13–18#, and traceable to
the original ‘‘blow-torch theorem’’ of Landauer in the sens
that the latter may be viewed as injection of noise@19#.

Most of the investigations based on the blow-torch eff
study the influence of space-dependent temperature on
steady-state relative occupations of the energy minima.
the best of authors’ knowledge, there has been no analy
attempt to study the kinetic aspect of the system, specifica
the calculation of the longest relaxation time in a bista
potential in the presence of a blow torch~hot zone!. In this
work, we address this problem and calculate the equilibra
rate for a simple bistable potential with the localized heat
positioned somewhere in the~unstable! intermediate region.
The associated Smoluchowski equation describing the ph
cal situation will be dealt with using the supersymmet
~SUSY! approach@20–22#. In doing so, we have adapted th
supersymmetric potential approach normally applicable
the original Kramers barrier-crossing problem to the ca
when the temperature is nonuniform along the reaction co
dinate.

The rest of the paper is organized as follows. Section
contains a brief introduction to the SUSY method for extra
ing the longest relaxation rate~i.e., equilibration rate! from
the Smoluchowski equation for the case in which tempe
ture is space-dependent. In Sec. III, applying the SU
method to a model double-well potential with a hot zone,
obtain a matrix equation determining the equilibration ra
In Sec. IV, we present an approximate analytical express
obtained from the matrix equation. The latter is also solv
numerically for the sake of comparison. As an independ
check for these results, we have solved the Smoluchow
equation numerically and obtained the equilibration rate. T
results we obtained from the above three methods for
143 ©1999 The American Physical Society
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144 PRE 59BEKELE, RAJESH, ANANTHAKRISHNA, AND KUMAR
equilibration rate as a function of different parameters ch
acterizing the hot zone are then discussed. We devote
final section to summary and conclusions.

II. THE METHODOLOGY

The Smoluchowski equation describing the kinetics o
Brownian particle in an inhomogeneous medium is given
@8#

]P~x,t !

]t
5

]

]xFm~x!S U8~x!P~x,t !1
]

]x
„T~x!P~x,t !…D G ,

~1!

where the mobility,m, and temperature,T, are in general
space-dependent.~We take Boltzmann’s constant,kB51.)
Here,P(x,t) is the probability density of finding the particl
at positionx at time t, U(x) describes the potential profile
and the prime onU denotes the derivative with respect tox.

Some remarks on the use of the Smoluchowski equat
Eq. ~1!, for the case of an inhomogeneous medium are
order at this point as the latter has been a subject of s
debate that still continues@8,10,19,23,24#. Landauer has
argued @10,19# for a generalization of the Smoluchows
equation where the second term on the right-hand side
Eq. ~1! is to be replaced by P(x,t)„]T(x)/]x…
1aT(x)„]P(x,t)/]x…. The parametera was shown to de-
pend on the physical conditions to be imposed across
temperature discontinuity for no net current. The parame
a50.5 corresponds to a particle interacting with the therm
bath for which the particle velocity is taken to be propo
tional to AT or P(x)}1/AT(x). On the other hand,a51
corresponds to the case when particles equilibrate via c
sion ~pressure equilibration!, i.e., P(x)}1/T(x). However, a
direct derivation based on the phase-space Smolucho
equation by van Kampen gave Eq.~1! corresponding toa
51. This is also supported by the work of Jayannavar a
Mahato@25# based on a microscopic treatment of the therm
bath as a set of harmonic oscillators. In our work, we w
continue to use Eq.~1! for purposes of providing a physicall
valid description of the problem under consideration.

We consider the case in which temperature is spa
dependent but the medium is homogeneous so that the
bility, m, is taken to be constant. A similar assumption
constantm has been taken by Sinha and Moss in their wo
@11#. Then, the corresponding Smoluchowski equation is

]P~x,t !

]t
5m

]

]xFU8~x!P~x,t !1
]

]x
„T~x!P~x,t !…G . ~2!

The stationary solution of Eq.~2! is given by

Pss~x!5
C

T~x!
expF2E

2`

x U8~ x̃!

T~ x̃!
dx̃G , ~3!

where C is the normalization constant. In this work, w
choose a simple temperature profile whose value isconstant
both outside and inside the hot zone withT5T0 and T
5T01Tb , respectively, whereTb is the excess temperatur
above the constant background valueT0 . @See Eq.~10!.#
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P~x,t !5
f~x!

T~x!
expF2E

2`

x U8 ~ x̃!

2T~ x̃!
dx̃Ge2lt, ~4!

we convert Eq.~2! to a Euclidean Schro¨dinger equation

H1f15A1Af15E1f1 . ~5!

Here,E15l/mT0 and the operatorsA andA1 are given by

A5
f ]

]x
1

U8~x!

2 f T0
, A152

f ]

]x
1

U8~x!

2 f T0
. ~6!

In Eq. ~6!, the parameterf reflects the excess temperatu
defined byf 5A11s, with s5Tb /T0 . Thus, for the interval
of x outside the hot zone, the corresponding operators h
f 51. The HamiltonianH1 corresponds to the motion of
particle in the potential

V1~x!5S U8~x!

2T~x! D
2

2
U9~x!

2T~x!
. ~7!

For a high barrier, the longest relaxation rate is determin
by the smallest nonzero eigenvaluel1 associated with the
first excited state of Eq.~5!. On the other hand, this eigen
state is degenerate with the ground statef2

0 of the ‘‘super-
symmetric partner potential’’V2(x) given by

V2~x!5S U8~x!

2T~x! D
2

1
U9~x!

2T~x!
, ~8!

such that

H2f2
0 5AA1f2

0 5E2f2
0 , ~9!

where E25l1 /mT0 . Thus, the problem of finding the
equilibration rate amounts to finding the ground-state eig
value of this ‘‘partner’’ potential. It is worth pointing ou
here that for the temperature profile we use, weexcludethe
two points whereT(x) is discontinuous. However, following
the line of attack used for obtaining the solution of t
Schrödinger equation in the presence of ad-function poten-
tial, we devise a technique of relating the wave functions
either side of these points~see the Appendix!.

Here we would like to mention that the SUSY method
a powerful analytical method used for simple model pote
tials such as theW potentials. The applicability for calculat
ing Kramers’ escape rate in aW potential for auniform tem-
perature case has been demonstrated by Scho¨nhammer@22#.
We found this method to be particularly useful while inve
tigating the influence of barrier subdivision on the esca
rate, where we have demonstrated the existence of the
mal number of subdivisions that maximizes the escape
@26#.

III. THE MODEL AND ITS SOLUTION

We consider a simple bistable potential in the form o
symmetricW potential which is piecewise linear having th
same magnitude in slope. It is described by the barrier he
U0 and the distance 2L0 between the two potential minim
located atx56L0 on either side of the origin@Fig. 1~a!#.
The localized hot zone of a certain width is taken to
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positioned somewhere between the two potential minim
We assume a simple temperature profile of the follow
form for the heat bath:

T~x!5T01TbFQS x2db1
wb

2 D2QS x2db2
wb

2 D G .
~10!

Here,Q(x) is the Heaviside function,T0 is the background
~constant! temperature, andTb is the excess temperature
the hot zone. The parametersdb and wb specify, respec-
tively, the distance of the midpoint of the hot zone from t
barrier top and the width of the hot zone@Fig. 1~b!#.

The corresponding supersymmetric ‘‘partner’’ potent
V2(x) with the hot zone is given by

V2~x!5
2u0

L0
@d~x1L0!2d~x!1d~x2L0!#1S u0,1

L0
D 2

.

~11!

This relation holds well at all pointsexceptat the two points
of temperature discontinuity. Here,u05U0/2T0 and u1
5u0/(11s). It is clear that the potentialV2(x) takes a con-
stant value (u0 /L0)2 outside the hot zone and (u1 /L0)2

within. Three additionald-function potentials~two repulsive
and one attractive! are superposed at different locations
shown in Fig. 1~c!. Changing the variablex to y5x/L0 gives
a new dimensionless Hamiltonianh25L0

2H2 such that

h2f2
0 ~y!5ebf2

0 ~y!, ~12!

whose potential is

V2~y!52u0@d~y11!2d~y!1d~y21!#1~u0,1!
2.

~13!

Here, eb is a dimensionless quantity equal toL0
2E2 or

equivalentlyL0
2l1 /mT0 . In the scaled form, the position o

FIG. 1. ~a! The W potential,~b! temperature profileT(x), hav-
ing the hot zone,~c! SUSY partner potential,V2(x).
a.
g

l

the midpoint of the hot zone from the top of the barrier a
the width of the hot zone are defined byd5db /L0 and w
5wb /L0 , respectively. Henceforth, we use only the sca
variables. The transfer-matrix method has been used to
the equation governing the eigenvalueeb . Below, we outline
the procedure leaving the details to the Appendix.

The ground-state wave function,f2
0 , is taken to have the

form Ane2k(y2yn)1Bnek(y2yn) located with respect to the
positionsy5yn of each of thed-function potentials and a
points of discontinuity in the temperature profile. The amp
tudesAn ,Bn andAn8 ,Bn8 on either side of these special poin
are shown in Fig. 1~c!. For regions outside the hot zone, th
wave vectork is given by

k05Au0
22eb, ~14!

while for within the hot zone it is given by

k15Au1
22

eb

11s
. ~15!

The amplitudesA48 andB48 that appear just on the left side o
the positived-function potential located aty521 are re-
lated toA0 and B0 , which appear on the right side of th
positived-function potential located aty51 through a trans-
fer matrix M , such that

S A48

B48
D 5M S A0

B0
D . ~16!

The matrixM is the product of successive transfer matric
which are derived in the Appendix. Since we are looking
a bound state solution,A485B050. This implies that the 11-
matrix element ofM must be zero, i.e.,

M1150, ~17!

the solution of which gives the value ofeb and, hence, the
equilibration rate.

IV. RESULTS AND DISCUSSION

The effect of the hot zone on the equilibration rate for t
given potential is studied in terms of the three parame
characterizing the hot zone:~i! the relative degree of hotnes
of the hot zone with respect to the rest of the heat baths
5Tb /T0 , ~ii ! the scaled width of the hot zone,w5wb /L0 ,
and ~iii ! the scaled distance of the hot zone from the top
the potential barrier,d5db /L0 . Since the hot zone is in
between the top of the barrier and the right minimum, t
parametersd and w can only take values between 0 and
On the other hand, the strengths can take positive values fo
the hot zone and negative values~greater than21) for the
cold zone. In addition, for each of these cases we have s
ied the influence of the barrier heightu05U0/2T0 on the
equilibration rate.

The change in the equilibration rate due to the presenc
the hot zone is better appreciated in terms of a quan
which we call theenhancement factor, f b , and defined by
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f b5
eb

e0
, ~18!

wheree0 stands foreb when there is no hot zone (s50). f b
physically represents the factor by which the equilibrat
rate improves due to the presence of the hot zone.

An expression for the enhancement factor in terms of
the relevant parameters can be found from Eq.~17!. By not-
ing that, for a high barrier,k0 andk1 can be expanded abou
u0 and u1 , respectively, we find the enhancement factor
be approximately given by

f b5
exp~ss! cosh~ss!

11s exp~ss! sinh~s! exp~22u0d!
, ~19!

wheres[wu0/(11s). Even though this equation gives ve
accurate values comparable to those obtained by numeri
solving Eq.~17!, the above equation can be further appro
mated into a more transparent form when the hot zon
located halfway down the top (d50.5) and is given by

f b5
1

2F11expS 2u0w
s

11sD G . ~20!

Equation~20! shows that for a given barrier heightu0 and
width w, f b increases as the strength of the hot zones,
increases and saturates for large values. In addition, the
hancement factorf b has an exponential dependence on b
the widthw of the hot zone and the barrier heightu0 . It may
be noted that the above expression has the correct lim
behavior as a function of boths→0 and w→0. Equation
~19! shows that the enhancement factorf b saturates as the
blow torch is moved away from the top of the potential b
rier.

As an independent check of the analytical results@Eq.
~19!#, we have numerically solved Eq.~2! for a given tem-
perature and potential parameters. Before numerically
taining f b , we have studied the evolution of the probabili
distribution towards the steady state. This was done by u
an initial probability distribution sharply peaked around t
bottom of the right well. A three-dimensional plot of the tim
evolution of the probability distribution towards the stea
state is shown in Fig. 2~a!. The numerically obtained
asymptotic steady-state distribution is shown in Fig. 2~b!.
This clearly has a higher population in the left well than t
right, which in the absence of the hot zone would be sy
metric about the origin. Our numerical results show that t
asymptotic distribution is practically identical with th
steady-state distributionPss(y) in terms of the scaled vari
able.

One direct method of determiningthe long time decay
rate of the probability distribution is to allow the system
evolve for long enough time towards the steady state. At
stages when the probability distribution is observed not
show any appreciable change, we can calculate the d
rate by plotting thetotal probability on the right well as a
function of time ~on lnt scale!. However, it must be men
tioned here that for calculating the equilibration rate, a m
efficient way is to take the initial distribution to be a distr
bution which ismarginally different from the stationary dis
tribution @given by Eq.~3!#. Even so, high values ofu0
(;10) take long computer time for the system to reach
near station-
ll

lly
-
is

n-
h

g

-

b-

g

-
s

te
o
ay

e

e

ary state required for calculating the equilibration rate. F
this reason, for the numerical works based on Eq.~2! we
have limited our calculation tou054. Although this value of
u0 satisfies the high barrier condition, it is on the low sid

We now consider the influence of the hot zone on
equilibration rate. We shall refer to the results obtained fr
the approximate analytic expression@Eq. ~19!# as analytical
results, exact results obtained by numerically solving the r
of the equation@Eq. ~17!# as semianalytical results, and th
results obtained by numerically solving Eq.~2! as numerical
results. Figure 3 shows plots of the enhancement factof b
versus strength of the blow torchs for various values of the
barrier heightu0 placing the blow torch~of width w50.1)
midway from the top of the potential (d50.5). ~The set of
curvesa, b, andc refer to three different values of the barrie
heightu054, 10, and 15, respectively.! We have shown the
analytical results by a dashed line, the semianalytical res
by a continuous line, and the numerical results by fill
circles. ~For higher values ofu0 , we have shown only the
analytical results and semianalytical results, since numer
results are time consuming.! As can be seen from Fig. 3, fo

FIG. 2. ~a! Time evolution of the probability distribution
P(y,t), towards the steady state for a given temperature. The
rameter values ares51.0,u054, w50.1, andd50.5. ~b! Very late
stage probability distribution obtained by numerically integrati
Eq. ~2! taken as the steady-state distribution. Note the dip in
probability value at the location of the hot zone shown by an arro
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higher values of the barrier heightu0 , analytical results are
not distinguishable from the semianalytical results over
entire range ofs. This clearly reflects the fact that largeu0
approximation made in obtaining Eq.~19! holds well. Con-
sider the dependence off b on the width of the hot zonew.
Figure 4 shows plots off b as a function ofw for u054, 10,
and 15 labeled by~a!, ~b!, and~c!, respectively, fors51 and
keeping the blow torch halfway down the barrier top, i.
d50.5. As before, foru054, where we have numerical re
sults there is excellent agreement between the numerica
sults, and analytical and semianalytical results over the en
range ofw. For u0510 and 15, semianalytical results a
indistinguishable from the analytical results. Lastly, we co
sider the dependence of the enhancement factor,f b , on the
position of the hot zone from the barrier top,d. Figure 5
shows plots off b versusd for u054, 10, and 15 denoted b
~a!,~b!, and~c!, respectively~keeping the strength of the ho
zones51 and its widthw50.1). For relatively low barrier

FIG. 3. Plot off b versuss, for d50.5, andw50.1 for the values
of ~a! u054, ~b! u0510, and~c! u0515. Dashed lines correspon
to the results from Eq.~19!, solid lines to the semianalytica
method, and filled circles to numerical solution.

FIG. 4. Three plots off b versusw, for d50.5, ands51 for the
values of~a! u054, ~b! u0510, and~c! u0515. Dashed lines cor-
respond to the results from Eq.~19!, solid lines to the semianalyti
cal method, and filled circles to numerical solution.
e

,

re-
re

-

height, u054, we see that the analytical results agree w
with the semianalytical results and the numerical results. U
like for small barrier height, for whichf b saturates slowly,
for large barrier heights@~b! and ~c!#, f b saturates quickly
and stays nearly constant beyondd;0.2. Here again, the
analytical results agree very well with the semianalytical
sults. The above results reveal that the equilibration rat
higher when the hot zone isaway from the barrier top.

The above dependence of enhancement factor (f b) for the
equilibration rate on the position of the blow torch (d),
shown in Fig. 5, is intriguing. The enhancement factor
seen to saturate quickly~to a value greater than unity! as the
blow torch moves away from the barrier top~i.e., asd in-
creases beyondT0 /U0), while it decreases towards unity a
the blow torch approaches the top of the potential barr
~Of course, for sufficiently smalld, the hot zone begins to
bracket the potential maximum because of finite width.! The
above general feature may be physically understood in te
of an argument due to Landauer@27# based on the equilibra
tion rate, 1/t51/tL11/tR , for the occupation of the two
wells, wheretL and tR refer to the time for crossing the
barrier from the left and from the right, respectively. Thu
for a blow torch on the right side of the barrier, we expe
not onlytR to increase as we approach the top of the bar
~asd decreases!, but alsotL should increase as the particle
crossing the barrier from the left well will be returned ba
by the blow torch. This might qualitatively explain the resu
of d dependence of the enhancement factor,f b . However,
this argument does not enable us to estimate the rela
importance of the two effects, namely, the variation oftL
and tR with d. To clarify this point, we have carried ou
calculation oft for a highly asymmetric double-well poten
tial in the limit of a very deep right well. We considered tw
cases:~i! when the hot zone is placed to the right of th
barrier top and~ii ! when it is to the left. This enabled us t
isolate to a very good approximation thed dependence oftL
andtR , respectively, fromt(d). Our finding is that the de-
crease in the enhancement factor, fb , as d decreases is

FIG. 5. Plots of f b versusd for s51.0, andw50.1 for the
values of~a! u054, ~b! u0510, and~c! u0515. Dashed lines cor-
respond to the results from Eq.~19!, solid lines correspond to semi
analytical results, and filled circles to numerical solution.
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dominated by the increase oftR , althoughtL also increases
weakly. This is somewhat counterintuitive.

V. SUMMARY AND CONCLUSIONS

In summary, we have been able to study the kinetic asp
of Landauer’s blow-torch theorem using the supersymme
approach and using a simple modelW potential. The choice
of the W potential is particularly well adapted to the SUS
method. Our analysis shows that the rate of equilibration
substantially improved due to the presence of the hot reg
The exact magnitude depends on its strength, its width
location, and also on the barrier height. We have also
tained an approximate analytical expression for the equilib
tion rate from transfer matrices derived using the SU
method. These results agree well with the results obtaine
numerical solution of the associated Smoluchowski equat

We expect that the present analysis would be usefu
understanding some problems when local heating is vie
in a more general context of local noise injection. View
from this angle, these results are clearly applicable e
when fluctuations are athermal. One example where athe
fluctuations play an important role is the depinning of dis
cation segments from obstacles resulting in movemen
dislocations@28#. Another example where the present ana
sis may be useful is the study of kinetics of phase trans
mations. In this case, the free energy takes the role of
potential and the order parameter takes the role of the r
tion coordinate. However, it is worth pointing out that,
general, subjecting a range of order parameter values to
cess heating is not easy since there is no correspond
between the values taken by the order parameter and it
cation in space. In this context, martensite transforma
offers a promising physical situation in which we are ac
ally dealing with the free energy in terms of strain ord
parameter. It would be interesting to realize the applicabi
of the present analysis to some experimental situations.
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APPENDIX

In this appendix we outline the method of evaluating t
matrix M that relates the amplitudesA48 , B48 of f2

0 found on
the left side of thed-function potential aty521 to the
amplitudesA0 , B0 found on the right side of thed-function
potential aty51. @See Fig. 1~c!.#

The region of theW potential has four intervals of con
stant potentialV2(x) marked by I, II, III, and IV as shown in
Fig. 1~c!. In these intervals, only simple phase changes in
wave function occur. In contrast, the wave function chan
in a significant way across regions of temperature disco
ct
ic
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nuity and at points whered functions are present. First, con
sider the phase changes which are simple to evaluate.
pairs of amplitudesAn11 and Bn11 at the left end of these
regions~I to IV ! are related to those at the right end,An8 and
Bn8 , through the matrix equation

S An11

Bn11
D 5P~a!S An8

Bn8
D , ~A1!

where

P~a!5S e2ka 0

0 ekaD . ~A2!

Herea stands for the width of the concerned interval andk is
eitherk0 or k1 depending on whether the interval is outsi
or within the hot zone.

Now, consider relating the amplitudes across the point
discontinuity in the temperature profile. The probability de
sity P(y,t) which is related tof2

0 (y) through the transfor-
mation Eq.~4!, is a continuous function of the positionin-
cluding the two points where temperature is discontinuo
Therefore,f2

0 (y) on either side of these two points must b
discontinuous in such a way thatP(y,t) remains continuous
In particular, aty15d1w/2, using Eq.~3! and using the
continuity conditionP(y1

1 ,t)5P(y1
2 ,t), we get

f2
0 ~y1

1!5
f2

0 ~y1
2!

~11s!
. ~A3!

Herey1
65y16e with e→0.

The second relation between the amplitudes comes f
integrating the SE equation acrossy1 and exploiting the con-
tinuity of P(y,t). This leads to the continuity of](TP)/]y.
At y5y1 , this implies that

„f2
0 ~y1

1!…85„f2
0 ~y1

2!…8, ~A4!

where the primes denote the spatial derivative. Using E
~A3! and ~A4!, the pairs of amplitudesA1 ,B1 and A18 ,B18
found on the two sides of the discontinuous temperature p
file located aty1 are related through the equation

S A18

B18
D 5M1S A1

B1
D , ~A5!

where

M15
1

2k1
S ~11s!k11k0 ~11s!k12k0

~11s!k12k0 ~11s!k11k0D . ~A6!

In the same way, the two sets of amplitudesA2 ,B2 and
A28 , B28 found on the two sides of the discontinuous tempe
ture profile located aty25d2w/2 are related through the
matrix equation

S A28

B28
D 5M2S A2

B2
D , ~A7!
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where

M25
1

2~11s!k0
S k01~11s!k1 k02~11s!k1

k02~11s!k1 k01~11s!k1D .

~A8!

We are now left with relating the amplitudes on either sid
of the threed-function potentials located aty521, 0, and 1.
At all these threed functions,f2

0 is continuous since tem
perature is continuous. Thus, the pairs of amplitudesA0 ,B0

and A08 ,B08 on the right and the left sides of thed function
located aty51 are related through

A081B085A01B0 . ~A9!

Integrating the Euclidean Schro¨dinger equation across thi
positived function with the width of the integration tendin
to zero give a second relation between these amplitudes

A082B0852
2u0

k0
~A01B0!1A02B0 . ~A10!

These two relations give a matrix equation relating the t
sets of amplitudes:

S A08

B08
D 5M1S A0

B0
D . ~A11!
ck

tt.

et
s

o

The same transfer matrixM1 also relates the pairs of ampl
tudesA48 ,B48 to A4 ,B4 since features aroundy51 are iden-
tical to those aroundy521. When relating the pairs of am
plitudesA3 ,B3 to A38 ,B38 corresponding to the two sides o
the d function located aty50, we note that the only differ-
ence is that the sign of thed function is negative. Going
through the same procedure as above, we get the m
equation

S A38

B38
D 5M2S A3

B3
D . ~A12!

The transfer matricesM6 are given by

M65
1

k0
S k07u0 7u0

6u0 k06u0D . ~A13!

Using all the transfer matrices relating the successive set
amplitudes, the matrixM is given by

M5M1P~1!M2PS d2
w

2 DM2P~w!M1PS 12d2
w

2 DM1 .

~A14!
is

ra-
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