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We have calculated the two-probe Landauer conductance of a one-channel quantum wire containing a
Luttinger liquid and connected to two noninteracting leads through tunnel barriers. The tunneling conductance
shows broad resonances as a function of the bias voltage, this being a manifestation of the spin-charge
separation. In the limit of zero bias and zero barrier, the tunneling conductance reduces to the ballistic contact
valuee2/h per channel.@S0163-1829~96!51020-9#

A quasi-one-dimensional micrometer-length quantum
wire containing repulsively interacting electrons and con-
nected to wide electron reservoirs at the two ends is a non-
trivial mesoscopic transport system of considerable current
interest, made realizable experimentally by the recent ad-
vances in nanoheterostructure technology.1 A minimum elec-
tronic model for such a system is a homogeneous one-
dimensional Luttinger liquid~1DLL! for the quantum wire,
terminating into two 1D leads containing noninteracting
electrons. The latter is to simulate the higher-dimensional
reservoirs that act as perfect absorbers and emitters of elec-
trons. An exact well-known result for the ballistic case of
noninteracting electrons is the quantization of the two-probe
Landauer conductance in units ofe2/2p\ per spin orienta-
tion per transverse channel.2,3 Very recently, however,
Maslov and Stone4 have shown theoretically that the same
result holds equally exactly also in the absence of a repulsive
interaction among electrons in the quantum wire, modeled as
a 1DLL. That there is no renormalization of the quantized
conductance by a repulsive interaction is also consistent with
the recent experimental results5 on very long, high mobility
GaAs wires, but disagrees with some earlier calculations,6–8

where the interaction parameter~i.e., thecorrelation expo-
nent K) for the wire appears explicitly in the conductance
5Ke2/2p\ per channel. HereK51 for the noninteracting
electrons andK,1 for repulsive interaction.

This absence of renormalization of the conductance by
interaction, while presumably exact, does conceal the essen-
tial feature of the Luttinger liquid, namely, the spin-charge
separation.9–11 In this work, we have calculated a related
quantity of interest, namely, the tunneling~differential! con-
ductancedI/dV as function of the bias voltage (V) for a
1DLL quantum wire of lengthL connected to the two ideal
~noninteracting electrons! leads through tunnel barriers.@The
latter make it possible to inject electrons at a tunable energy
E5(eV) above the Fermi level for the wire.# The derived
expression for the conductance shows broad, roughly equi-
spaced resonances as a function of the bias voltage, or wire

length, that clearly reveal the spin-charge separation inherent
to 1DLL, in that the oscillations may be interpreted as the
beatphenomenon resulting from the different speeds of the
spin and the charge carriers. Our calculations are for the
zero-temperature case.

For an infinitely long spin-charge-separated 1D Luttinger
liquid, the retarded one-electron Green functionG(x,E) in
the mixed space (x)2energy (E) representation is~in the
obvious notation!9–11
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Here we have assumed the simplest case of absence of the
large-momentum transfer backscattering. Also, the forward
scattering momentum cutoff (L21) has been set to zero.9

The essential feature ofG(x,E) is its decomposition into the
right-only- and the left-only-moving parts. It is this feature
of 1DLL that enables us, despite interactions, to treat the
two-probe tunneling conductance problem—a la
Landauer—as one of multiple scattering and transmission of
an electron through the two tunnel barriers separating the
finite-length quantum wire and the terminal leads as follows.

Consider an electron wave of unit amplitude incident on
the barrier atx50 from the left lead at an energyE above
the Fermi energy. Let the amplitude transmission coefficient
of the tunneling barrier bet(E). Then the amplitude for the
electron injected atx50 will be t(E). Now this injected
amplitude atx50 will be propagated adiabatically towards
the right barrier by the right-moving propagatorGR(x,E)
properly normalized to unity atx50. Thus the propagated

PHYSICAL REVIEW B 15 MAY 1996-IIVOLUME 53, NUMBER 20

530163-1829/96/53~20!/13239~3!/$10.00 R13 239 © 1996 The American Physical Society



amplitude at x5L will be t(e)gR(L,E) with
gR(x,E)[GR(x,E)/GR(0,E). The barriers atx5L trans-
mits t(E)gR(L,E)t(E) and reflects t(E)gR(L,E)r (E),
where r (E) is the amplitude reflection coefficient for the
barrier, withut(E)u21ur (E)u251. This reflected amplitude is
now propagated to the left barrier atx50 with an amplitude
t(E)gR(L,E)r (E)gL(2L,E), and so on for the multiple
scatterings. The total transmitted amplitudeT(E) is then
given by the series

T~E!5t~E!gR~L,E!t~E!1t~E!gR~L,E!r ~E!

3gL~2L,E!r L~E!gR~L,E!t~E!1•••

5
t2~E!gR~L,E!

12r 2~E!gR~L,E!gL~2L,E!
. ~2!

Here we have assumed the two barriers to be identical and
symmetrical. The tunneling conductanceG(V) with E set
equal toeV is now given by
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whereQ52L@kF1E/\vH#. This is our main result.
It is readily seen that in the limitV→0 and t(E)→1,

r (E)→0, i.e., in the zero-bias zero-barrier limit, the conduc-
tance reduces to the well-known expressione2/p\ ~as for
the spin case!. As function of the bias voltageV, the differ-
ential tunneling conductanceG(V) shows oscillations, with
equispaced peaks separated bydV;(\vg /eL)(vg /Dv). For
vg;105 ms21, Dv/vg;0.1, and L;10 mm, we get
dV;0.5 mV. Of course, the bias voltage must be kept low
enough to keep the number of active transverse channels
fixed ~51 in the present case!. These oscillations, of course,
disappear with the velocity differenceDv→0, suggesting
their origin in the spin-charge separation.

Above, we have taken the leads to contain noninteracting
electrons. If the leads are modeled by yet another 1D Lut-
tinger liquid, all we have to do is to recalculate the prefactor
e2(]n/]E)vE in our Eq. ~3! for a 1DLL. This can be done
very generally through an identity stating that for a system in
a stationary state the expectation value of the time derivative
of the current operatorj (x) must vanish.12 Applying this to a
1DLL in the presence of a local potentialdU(x), and using
the well-known expression11 for j (x), we get for the change
in the local electron densitydn(x) due to dU(x) as
2dU(x)(K/2phvF8 ) giving for (]n /]E)vF85K/2p\, where
K is the standard interaction parameter as defined in Ref. 11.
This givesG(V) ~with interacting leads! 5KG(V) ~with
noninteracting leads!.

The following comment on our Eq.~2! for the transmis-
sion amplitude seems in order. As mentioned earlier, this
equation is exact in the case of a strictly one-electron prob-
lem, or, equivalently, in the absence of mutual interaction in
the wire, where this can be obtained directly by wave-

function matching. In this case we can propagate the injected
wave amplitudec in(x50,E) at the incident energyE
through the composition rule13

c~x,E!5G0~x2x8,E!S i\2m ]J

]x8
Dc in~x8,E!, ~4!

where (i\/2m) ]J/]x8 gives the mean of the velocities on the
two sides ofx850, andG0 is the Green function for a one-
electron problem forx.0. This ensures that thec(x,E) for
x.0 is matched to the incident amplitudec in(0,E) at
x50. In the present case we have assumed such a matching
for the case of our 1DLL, made plausible in the absence of
backscattering.

A number of remarks are in order now to clarify the main
approximation involved in the idealized Luttinger-liquid
model adopted here, and the extent of its robustness relevant
to our treatment of tunneling. First, we have considered here
a minimum model of spin Luttinger liquid that retains the
spin-charge separation, but without the additional complica-
tion of the anomalous power-law correlation function. The
latter involves scattering between the left- and the right-
going branches caused by the unscreened short-ranged two-
body repulsion. Our expression@Eq. ~1!# for the electron
propagator is valid only in the corresponding limit of the
coupling constantg-ology.10,11 Second, the question natu-
rally arises as to whether our tunneling results are robust
against this neglect of interbranch backscattering. This ques-
tion becomes particularly relevant in view of the recent pub-
lished work14 where the short-ranged repulsive interaction is
shown to lead to vanishing linear conductance even for an
arbitrarily weak one-body scatterer—a subtle manifestation
of the ~soft! Coulomb gap. Inasmuch as in our case the tun-
nel barrier does cause backscattering, one could conclude
that there would be a vanishing tunneling conductance—at
vanishing bias voltage. The latter, of course, is the whole
point. We have considered here the differential tunneling
conductance as a function of the bias voltage. The latter in-
volves carrier injection at energiesaway from the Fermi
level. The vanishing of the tunneling density of states~and
hence of the linear conductance! due to the repulsive inter-
action and the one-body scattering mentioned above refer
strictly to the zero bias-voltage limit, i.e., the condition at the
Fermi level. Thus, our tunneling conductance and its reso-
nant qualitative features should persist at nonzero bias volt-
age. It is only in the limit of zero bias voltage that they will
be washed out by the soft Coulomb gap due to the relevant
repulsive interaction. Of course, we do expect quantitative
modifications at all bias voltages due to the soft Coulomb
gap.

Finally, we would like to point out that the earlier study of
spin-charge separation15 involved the effect of an Aharonov-
Bohm ~AB! magnetic flux through a Luttinger-liquid loop on
the transmission through the loop. This is qualitatively quite
different from the present study in that our tunneling at finite
bias voltage involves carrier injection away from Fermi level
while their AB-flux effects are related to the conditions at
Fermi level. The latter could, therefore, be relatively more
subject to the blockade effects discussed above.
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In conclusion, we have shown that the tunneling conduc-
tance of a Luttinger-liquid quantum wire connected to the
leads through tunnel barriers shows resonances as function of
the bias voltage. This is due to the spin-charge separation
and should be observable. Physical arguments based on
forward-only scattering for the 1DLL are given to justify our
Landauer-type one-electron-scattering approach. Our result

agrees with the known result in the appropriate limit of zero
bias and no barrier.
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